ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
ZENG Taorui,WANG Linfeng,ZHANG Yu,et al. Landslide susceptibility modeling and interpretability based on CatBoost-SHAP model[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 37-50. DOI: 10.16031/j.cnki.issn.1003-8035.202309035
Citation: ZENG Taorui,WANG Linfeng,ZHANG Yu,et al. Landslide susceptibility modeling and interpretability based on CatBoost-SHAP model[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 37-50. DOI: 10.16031/j.cnki.issn.1003-8035.202309035

Landslide susceptibility modeling and interpretability based on CatBoost-SHAP model

More Information
  • Received Date: September 25, 2023
  • Revised Date: January 03, 2024
  • Available Online: January 30, 2024
  • This study is dedicated to delving deeply into the uncertainty and interpretability of ensemble learning models in landslide susceptibility modeling. Focusing on the eastern coastal mountainous region of Zhejiang Province as the study area, this research utilizes historical Google imagery and Sentinel-2A imagery to document 552 shallow landslide events triggered by the super typhoon "Megi" in 2016. Initially, the study designs scenarios for continuous factors using non-grading, equal interval method, and natural breaks method, subsequently subdividing them into 4, 6, 8, 12, 16, 20 levels. Thereafter, the Category Boosting Model (CatBoost) is introduced to assess landslide susceptibility values under different scenarios. Coupled with the analysis of ROC (receiver operating characteristic) curves and SHAP (SHapley Additive exPlanation), in-depth investigation into uncertainty and interpretability during the modeling process is conducted, with the aim of determining the optimal modeling strategy. The results indicate that: (1) In the computations of the CatBoost model, aspect emerges as the most critical influencing factor, followed by factors related to water and geological conditions; (2) Under the non-grading scenario, the model achieves the highest AUC value, reaching 0.866; (3) Compared to the equal interval method, the natural breaks method demonstrates superior generalization capability, and the model’s predictive performance imrpoves with an increase in the number of classifications; (4) The SHAP model reveals the controlling mechanisms of the principal influencing factors (aspect, lithology, elevation, and road distance) on typhoon-induced landslides. The findings of this research can deepen our understanding of landslide susceptibility, enhance the accuracy and reliability of landslide predictions, and provide a scientific basis for disaster prevention and mitigation efforts in the related regions.

  • [1]
    郭子正,何俊,黄达,等. 降雨诱发浅层滑坡危险性的快速评估模型及应用[J]. 岩石力学与工程学报,2023,42(5):1188 − 1201. [GUO Zizheng,HE Jun,HUANG Da,et al. Fast assessment model for rainfall-induced shallow landslide hazard and application[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(5):1188 − 1201. (in Chinese with English abstract)]

    GUO Zizheng, HE Jun, HUANG Da, et al. Fast assessment model for rainfall-induced shallow landslide hazard and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 425): 11881201. (in Chinese with English abstract)
    [2]
    刘谢攀,殷坤龙,肖常贵,等. 基于I-D-R阈值模型的滑坡气象预警[J]. 地球科学,2022:1 − 15. [LIU Xiepan,YIN Kunlong,XIAO Changgui,et al. Meteorological early warning of landslide based on I-D-R threshold model[J]. Earth Science,2022:1 − 15. ( in Chinese with English abstract)]

    LIU Xiepan, YIN Kunlong, XIAO Changgui, et al. Meteorological early warning of landslide based on I-D-R threshold model[J]. Earth Science, 2022: 1 − 15. ( in Chinese with English abstract)
    [3]
    CUI Yulong,JIN Jiale,HUANG Qiangbing,et al. A data-driven model for spatial shallow landslide probability of occurrence due to a typhoon in Ningguo city,Anhui Province,China[J]. Forests,2022,13(5):732. DOI: 10.3390/f13050732
    [4]
    黄发明,陈佳武,范宣梅,等. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模[J]. 地球科学,2022,47(12):4609 − 4628. [HUANG Faming,CHEN Jiawu,FAN Xuanmei,et al. Logistic regression fitting of rainfall-induced landslide occurrence probability and continuous landslide hazard prediction modelling[J]. Earth Science,2022,47(12):4609 − 4628. (in Chinese with English abstract)]

    HUANG Faming, CHEN Jiawu, FAN Xuanmei, et al. Logistic regression fitting of rainfall-induced landslide occurrence probability and continuous landslide hazard prediction modelling[J]. Earth Science, 2022, 4712): 46094628. (in Chinese with English abstract)
    [5]
    郭子正,殷坤龙,黄发明,等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报,2019,38(2):287 − 300. [GUO Zizheng,YIN Kunlong,HUANG Faming,et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):287 − 300. (in Chinese with English abstract)]

    GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 382): 287300. (in Chinese with English abstract)
    [6]
    黄发明,李金凤,王俊宇,等. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律[J]. 地质科技通报,2022,41(2):44 − 59. [HUANG Faming,LI Jinfeng,WANG Junyu,et al. Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models[J]. Bulletin of Geological Science and Technology,2022,41(2):44 − 59. (in Chinese with English abstract)]

    HUANG Faming, LI Jinfeng, WANG Junyu, et al. Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 412): 4459. (in Chinese with English abstract)
    [7]
    黄发明,陈佳武,唐志鹏,等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性[J]. 岩石力学与工程学报,2021,40(6):1155 − 1169. [HUANG Faming,CHEN Jiawu,TANG Zhipeng,et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1155 − 1169. (in Chinese with English abstract)]

    HUANG Faming, CHEN Jiawu, TANG Zhipeng, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 406): 11551169. (in Chinese with English abstract)
    [8]
    曾韬睿,殷坤龙,桂蕾,等. 基于滑坡致灾强度预测的建筑物易损性定量评价[J]. 地球科学,2023,48(5):1807 − 1824. [ZENG Taorui,YIN Kunlong,GUI Lei,et al. Quantitative vulnerability analysis of buildings based on landslide intensity prediction[J]. Earth Science,2023,48(5):1807 − 1824. (in Chinese with English abstract)]

    ZENG Taorui, YIN Kunlong, GUI Lei, et al. Quantitative vulnerability analysis of buildings based on landslide intensity prediction[J]. Earth Science, 2023, 485): 18071824. (in Chinese with English abstract)
    [9]
    杜国梁,杨志华,袁颖,等. 基于逻辑回归–信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract)]

    DU Guoliang, YANG Zhihua, YUAN Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 2021, 485): 102111. (in Chinese with English abstract)
    [10]
    闫举生,谭建民. 基于不同因子分级法的滑坡易发性评价——以湖北远安县为例[J]. 中国地质灾害与防治学报,2019,30(1):52 − 60. [YAN Jusheng,TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods:A case study in Yuan’an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):52 − 60. (in Chinese with English abstract)]

    YAN Jusheng, TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods: A case study in Yuan’an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 301): 5260. (in Chinese with English abstract)
    [11]
    黄发明,曹中山,姚池,等. 基于决策树和有效降雨强度的滑坡危险性预警[J]. 浙江大学学报(工学版),2021,55(3):472 − 482. [HUANG Faming,CAO Zhongshan,YAO Chi,et al. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of Zhejiang University (Engineering Science),2021,55(3):472 − 482. (in Chinese with English abstract)]

    HUANG Faming, CAO Zhongshan, YAO Chi, et al. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of Zhejiang University (Engineering Science), 2021, 553): 472482. (in Chinese with English abstract)
    [12]
    黄发明,曹昱,范宣梅,等. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律[J]. 岩石力学与工程学报,2021,40(增刊2):3227 − − 3240. [HUANG Faming,CAO Yu,FAN Xuanmei,et al. Influence of different landslide boundaries and their spatial shapes on the uncertainty of landslide susceptibility prediction[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup 2):3227-3240. (in Chinese with English abstract)]

    HUANG Faming, CAO Yu, FAN Xuanmei, et al. Influence of different landslide boundaries and their spatial shapes on the uncertainty of landslide susceptibility prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 2): 3227-3240. (in Chinese with English abstract)
    [13]
    宋昭富,张勇,佘涛,等. 基于易发性分区的区域滑坡降雨预警阈值确定——以云南龙陵县为例[J]. 中国地质灾害与防治学报,2023,34(4):22 − 29. [SONG Zhaofu,ZHANG Yong,SHE Tao,et al. Determination of regional landslide rainfall warning threshold based on susceptibility zoning:a case study in Longling County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):22 − 29. (in Chinese with English abstract)]

    SONG Zhaofu, ZHANG Yong, SHE Tao, et al. Determination of regional landslide rainfall warning threshold based on susceptibility zoning: a case study in Longling County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 344): 2229. (in Chinese with English abstract)
    [14]
    黄发明,叶舟,姚池,等. 滑坡易发性预测不确定性:环境因子不同属性区间划分和不同数据驱动模型的影响[J]. 地球科学,2020,45(12):4535 − 4549. [HUANG Faming,YE Zhou,YAO Chi,et al. Uncertainties of landslide susceptibility prediction:different attribute interval divisions of environmental factors and different data-based models[J]. Earth Science,2020,45(12):4535 − 4549. (in Chinese with English abstract)]

    HUANG Faming, YE Zhou, YAO Chi, et al. Uncertainties of landslide susceptibility prediction: different attribute interval divisions of environmental factors and different data-based models[J]. Earth Science, 2020, 4512): 45354549. (in Chinese with English abstract)
    [15]
    仉文岗,何昱苇,王鲁琦,等. 基于水系分区的滑坡易发性机器学习分析方法:以重庆市奉节县为例[J]. 地球科学,2023,48(5):2024 − 2038. [ZHANG Wengang,HE Yuwei,WANG Luqi,et al. Machine learning solution for landslide susceptibility based on hydrographic division:case study of Fengjie County in Chongqing[J]. Earth Science,2023,48(5):2024 − 2038. (in Chinese with English abstract)]

    ZHANG Wengang, HE Yuwei, WANG Luqi, et al. Machine learning solution for landslide susceptibility based on hydrographic division: case study of Fengjie County in Chongqing[J]. Earth Science, 2023, 485): 20242038. (in Chinese with English abstract)
    [16]
    杨得虎, 朱杰勇, 刘帅, 等. 基于信息量、加权信息量与逻辑回归耦合模型的云南罗平县崩滑灾害易发性评价对比分析[J]. 中国地质灾害与防治学报,2023,34(5):43 − 53. [YANG Dehu, ZHU Jieyong, LIU Shuai, et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value, weighted information value and logistic regression coupled model in Luoping County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):43 − 53. (in Chinese with English abstract)]

    YANG Dehu, ZHU Jieyong, LIU Shuai, et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value, weighted information value and logistic regression coupled model in Luoping County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 345): 4353. (in Chinese with English abstract)
    [17]
    贾雨霏,魏文豪,陈稳,等. 基于SOM-I-SVM耦合模型的滑坡易发性评价[J]. 水文地质工程地质,2023,50(3):125 − 137. [JIA Yufei,WEI Wenhao,CHEN Wen,et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology,2023,50(3):125 − 137. (in Chinese with English abstract)]

    JIA Yufei, WEI Wenhao, CHEN Wen, et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology, 2023, 503): 125137. (in Chinese with English abstract)
    [18]
    刘海知,徐辉,包红军,等. 基于集成学习的山区中小流域滑坡易发区早期识别优化试验[J]. 工程科学与技术,2022,54(6):12 − 20. [LIU Haizhi,XU Hui,BAO Hongjun,et al. Optimization experiment of early identification of landslides susceptibility areas in medium and small mountainous catchment based on ensemble learning[J]. Advanced Engineering Sciences,2022,54(6):12 − 20. (in Chinese with English abstract)]

    LIU Haizhi, XU Hui, BAO Hongjun, et al. Optimization experiment of early identification of landslides susceptibility areas in medium and small mountainous catchment based on ensemble learning[J]. Advanced Engineering Sciences, 2022, 546): 1220. (in Chinese with English abstract)
    [19]
    曾韬睿,邬礼扬,金必晶,等. 基于stacking集成策略和SBAS-InSAR的滑坡动态易发性制图[J]. 岩石力学与工程学报,2023,42(9):2266 − 2282. [ZENG Taorui,WU Liyang,JIN Bijing,et al. Landslide dynamic susceptibility mapping based on stacking ensemble strategy and SBAS-InSAR[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2266 − 2282. (in Chinese with English abstract)]

    ZENG Taorui, WU Liyang, JIN Bijing, et al. Landslide dynamic susceptibility mapping based on stacking ensemble strategy and SBAS-InSAR[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 429): 22662282. (in Chinese with English abstract)
    [20]
    黄发明,陈彬,毛达雄,等. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性[J]. 地球科学,2023,48(5):1696 − 1710. [HUANG Faming,CHEN Bin,MAO Daxiong,et al. Landslide susceptibility prediction modeling and interpretability based on self-screening deep learning model[J]. Earth Science,2023,48(5):1696 − 1710. (in Chinese with English abstract)]

    HUANG Faming, CHEN Bin, MAO Daxiong, et al. Landslide susceptibility prediction modeling and interpretability based on self-screening deep learning model[J]. Earth Science, 2023, 485): 16961710. (in Chinese with English abstract)
    [21]
    LUNDBERG S M,LEE S I. A unified approach to interpreting model predictions[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4 - 9,2017,Long Beach,California,USA. ACM,2017:4768 − 4777.
    [22]
    陈丹璐,孙德亮,文海家,等. 基于不同因子筛选方法的LightGBM-SHAP滑坡易发性研究[J/OL]. 北京师范大学学报(自然科学版),(2023-08-08)[2023-09-26] https://link.cnki.net/urlid/11.1991.N.20230808.1452.003. [CHEN Danlu,SUN Deliang,WEN Haijia,etal. A study on landslide susceptibility of LightGBMSHAP based on different factor screening methods[J]. Journal of Beijing Normal University (Natural Science),(2023-08-08)[2023-09-26]. (in Chinese with English abstract)]

    CHEN Danlu, SUN Deliang, WEN Haijia, etal. A study on landslide susceptibility of LightGBMSHAP based on different factor screening methods[J]. Journal of Beijing Normal University (Natural Science), (2023-08-08)[2023-09-26]. (in Chinese with English abstract)
    [23]
    DAHAL A,LOMBARDO L. Explainable artificial intelligence in geoscience:a glimpse into the future of landslide susceptibility modeling[J]. Computers & Geosciences,2023,176:105364.
    [24]
    黄发明,曾诗怡,姚池,等. 滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响[J]. 工程科学与技术,2023,56(1):1 − 14. [HUANG Faming, ZENG Shiyi, CHI Yao, et al. Uncertainties of landslide susceptibility prediction modeling:influence of different selection methods of "non-landslide samples"[J]. Advanced Engineering Sciences,2023,56(1):1 − 14. ( in Chinese with English abstract)]

    HUANG Faming, ZENG Shiyi, CHI Yao, et al. Uncertainties of landslide susceptibility prediction modeling: influence of different selection methods of "non-landslide samples"[J]. Advanced Engineering Sciences, 2023, 56(1): 1 − 14. ( in Chinese with English abstract)
    [25]
    罗路广,裴向军,崔圣华,等. 九寨沟地震滑坡易发性评价因子组合选取研究[J]. 岩石力学与工程学报,2021,40(11):2306 − 2319. [LUO Luguang,PEI Xiangjun,CUI Shenghua,et al. Combined selection of susceptibility assessment factors for Jiuzhaigou earthquake-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2306 − 2319. (in Chinese with English abstract)]

    LUO Luguang, PEI Xiangjun, CUI Shenghua, et al. Combined selection of susceptibility assessment factors for Jiuzhaigou earthquake-induced landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 4011): 23062319. (in Chinese with English abstract)
    [26]
    宋宇飞,曹琰波,范文,等. 基于贝叶斯方法的降雨诱发滑坡概率型预警模型研究[J]. 岩石力学与工程学报,2023,42(3):558 − 574. [SONG Yufei,CAO Yanbo,FAN Wen,et al. Probabilistic early warning model for rainfall-induced landslides based on Bayesian approach[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(3):558 − 574. (in Chinese with English abstract)]

    SONG Yufei, CAO Yanbo, FAN Wen, et al. Probabilistic early warning model for rainfall-induced landslides based on Bayesian approach[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 423): 558574. (in Chinese with English abstract)
    [27]
    PROKHORENKOVA L,GUSEV G,VOROBEV A,et al. CatBoost:unbiased boosting with categorical features[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. December 3 - 8,2018,Montréal,Canada. ACM,2018:6639–6649.
    [28]
    高秉海,何毅,张立峰,等. 顾及In SAR形变的CNN滑坡易发性动态评估——以刘家峡水库区域为例[J]. 岩石力学与工程学报,2023,42(2):450 − 465. [GAO Binghai,HE Yi,ZHANG Lifeng,et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation:A case study of Liujiaxia Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):450 − 465. (in Chinese with English abstract)]

    GAO Binghai, HE Yi, ZHANG Lifeng, et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: A case study of Liujiaxia Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 422): 450465. (in Chinese with English abstract)
    [29]
    张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract)]

    ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 352): 284296. (in Chinese with English abstract)
    [30]
    HUANG Faming,ZHANG Jing,ZHOU Chuangbing,et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides,2020,17(1):217 − 229. DOI: 10.1007/s10346-019-01274-9
    [31]
    XING Yin,CHEN Yang,HUANG Saipeng,et al. Research on the uncertainty of landslide susceptibility prediction using various data-driven models and attribute interval division[J]. Remote Sensing,2023,15(8):2149. DOI: 10.3390/rs15082149
    [32]
    李文彬,范宣梅,黄发明,等. 不同环境因子联接和预测模型的滑坡易发性建模不确定性[J]. 地球科学,2021,46(10):3777 − 3795. [LI Wenbin,FAN Xuanmei,HUANG Faming,et al. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models[J]. Earth Science,2021,46(10):3777 − 3795. (in Chinese with English abstract)]

    LI Wenbin, FAN Xuanmei, HUANG Faming, et al. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models[J]. Earth Science, 2021, 4610): 37773795. (in Chinese with English abstract)
    [33]
    方然可, 刘艳辉, 黄志全. 基于机器学习的区域滑坡危险性评价方法综述[J]. 中国地质灾害与防治学报,2021,32(4):1 − 8. [FANG Ranke, LIU Yanhui, HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):1 − 8. (in Chinese with English abstract)]

    FANG Ranke, LIU Yanhui, HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 324): 18. (in Chinese with English abstract)
    [34]
    陈水满, 赵辉龙, 许震, 等. 基于人工神经网络模型的福建南平市滑坡危险性评价[J]. 中国地质灾害与防治学报,2022,33(2):133 − 140. [CHEN Shuiman, ZHAO Huilong, XU Zhen, et al. Landslide risk assessment in Nanping City based on artificial neural networks model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):133 − 140. (in Chinese with English abstract)]

    CHEN Shuiman, ZHAO Huilong, XU Zhen, et al. Landslide risk assessment in Nanping City based on artificial neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 332): 133140. (in Chinese with English abstract)
    [35]
    阳清青, 余秋兵, 张廷斌, 等. 基于GDIV模型的大渡河中游地区滑坡危险性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5):130 − 140. [YANG Qingqing,YU Qiubing,ZHANG Tingbin,et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):130 − 140. (in Chinese with English abstract)]

    YANG Qingqing, YU Qiubing, ZHANG Tingbin, et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control, 2023, 345): 130140. (in Chinese with English abstract)
    [36]
    刘甲美,王涛,杜建军,等. 四川泸定MS6.8级地震诱发崩滑灾害快速评估[J]. 水文地质工程地质,2023,50(2):84 − 94. [LIU Jiamei, WANG Tao, DU Jianjun, et al. Emergency rapid assessment of landslides induced by the Luding MS6.8 earthquake in Sichuan of China[J]. Hydrogeology & Engineering Geology,2023,50(2):84 − 94. (in Chinese with English abstract)]

    LIU Jiamei, WANG Tao, DU Jianjun, et al. Emergency rapid assessment of landslides induced by the Luding MS6.8 earthquake in Sichuan of China[J]. Hydrogeology & Engineering Geology, 2023, 502): 8494. (in Chinese with English abstract)
  • Related Articles

    [1]Chenyang ZHANG, Zhiqian LIU, Guoxu CHEN, Qi ZHAO, Rihui LIANG, Daoyuan TAN, Zhiyi CHEN, Yu HUANG. Application of fiber optic sensing technology in geological safety monitoring[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202501015
    [2]Xin JIANG, Weixiong ZHANG, Xiaohui YANG, Kunquan CHEN, Baoyan DING. Analysis of monitoring and treatment effect of anti-sliping piles for the landslide at Jiangdingya, Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 174-182. DOI: 10.16031/j.cnki.issn.1003-8035.202305037
    [3]Hong ZHOU, Haifeng HUANG, Rui ZHANG, Qinglin YI, Wu YI, Guodong ZHANG, Shuqiang LU, Zhihong DONG, Qing LIU. Suitability Analysis and Recommendations for Professional Monitoring Techniques and Methods of Landslides in the Three Gorges Reservoir: A case study of the Zigui section in Hubei Province[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202404023
    [4]Kang WANG, Junbin CHANG, Xiaoke LI, Wenfeng ZHU, Xiao LU, Hui LIU. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangkelandslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 47-56. DOI: 10.16031/j.cnki.issn.1003-8035.202303037
    [5]Chengye YANG, Tao ZHANG, Gui GAO, Chongyang BU, Hua WU. Application of SBAS-InSAR technology in monitoring of ground deformation of representative giant landslides in Jinsha river basin, Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 94-105. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-11
    [6]Yonggang JIA, Tian CHEN, Peiying LI, Zhenghui LI, Cong HU, Xiaolei LIU, Hongxian SHAN. Research progress on the in-situ monitoring technologies of marine geohazards[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 1-14. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-01
    [7]Yunsheng CHEN, Guangbin LIU, Yiming ZHANG, Haifeng HUANG, Qiujun WU. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 83-91. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-10
    [8]WANG Huimin, LUO Zhongxing, XIAO Yingcheng, LIU Zhengxing, HE Anliang, LIANG Xiaodong. Automatic monitoring system on highway slopes based on GNSS technique[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 60-68. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.08
    [9]LI Xingyu. Research and practice of high-precision intelligent monitoring and early warning technology for landslide deformation[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 21-29. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.03
    [10]ZHANG Kaixiang. Review on geological disaster monitoring and early warning system based on “3S” technology in China[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.01
  • Cited by

    Periodical cited type(11)

    1. 张雪,魏云杰,杨成生,刘勇,杨佳艺. 云南昭通地区滑坡隐患InSAR广域识别与监测. 地球科学与环境学报. 2025(01): 128-142 .
    2. 王林峰,蒋辉,唐宁,黄晓明,谭国金. 无人机贴近摄影技术在高陡边坡的三维重建与结构面识别中的应用. 中国地质灾害与防治学报. 2025(01): 92-100 . 本站查看
    3. 孙成永. InSAR技术在河南信阳新县地质灾害风险调查中的应用. 城市地质. 2024(03): 383-389 .
    4. 孙琪皓,刘桂卫,王飞,张璇钰,王衍汇. 铁路地质灾害早期识别与监测预警技术及应用研究. 铁道标准设计. 2024(09): 24-31 .
    5. 臧烨祺,郭永刚,苏立彬,王国闻,吴升杰,秦得顺. 西藏东南地区滑坡易发性多模型评价方法研究. 中国地质灾害与防治学报. 2024(06): 58-69 . 本站查看
    6. 鲁魏,杨斌,杨坤. 基于时序InSAR的西南科技大学地表形变监测与分析. 中国地质灾害与防治学报. 2023(02): 61-72 . 本站查看
    7. 李凡,李素敏,杨渊,李杰,袁利伟,成睿,毛嘉骐. 基于时序InSAR的沙湾大沟滑坡型泥石流发育特征研究. 地球物理学进展. 2023(02): 532-541 .
    8. 顿佳伟,冯文凯,易小宇,张国强,吴明堂. 白鹤滩库区蓄水前活动性滑坡InSAR早期识别研究——以葫芦口镇至象鼻岭段为例. 工程地质学报. 2023(02): 479-492 .
    9. 于冰,胡云亮,刘国祥,罗小军,胡金龙. 时序InSAR反演唐山市二维地表形变时间序列. 测绘科学. 2023(06): 82-94+230 .
    10. 陈行,刘汉湖,葛宗旭. 时序SBAS-InSAR下的香格里拉市地表形变监测. 宜宾学院学报. 2022(06): 54-59 .
    11. 盖侨侨. PS-InSAR技术在北江下游沿线形变监测中的应用. 水利技术监督. 2022(10): 57-59+72 .

    Other cited types(4)

Catalog

    Article views (787) PDF downloads (164) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return