Citation: | XIE Mingli,JU Nengpan,ZHAO Jianjun,et al. Evaluation on spatial accuracy and validation of geological hazard susceptibility based on a multi-factor combination[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 10-19. DOI: 10.16031/j.cnki.issn.1003-8035.202302032 |
[1] |
黄发明. 基于3S和人工智能的滑坡位移预测与易发性评价[D]. 武汉:中国地质大学,2017. [HUANG Faming. Landslide displacement prediction and vulnerability evaluation based on 3S and artificial intelligence[D]. Wuhan:China University of Geosciences,2017. (in Chinese with English abstract)
HUANG Faming. Landslide displacement prediction and vulnerability evaluation based on 3S and artificial intelligence[D]. Wuhan: China University of Geosciences, 2017. (in Chinese with English abstract)
|
[2] |
CÁRDENAS N Y,MERA E E. Landslide susceptibility analysis using remote sensing and GIS in the western Ecuadorian Andes[J]. Natural Hazards,2016,81(3):1829 − 1859. DOI: 10.1007/s11069-016-2157-8
|
[3] |
POURGHASEMI H R,YANSARI Z T,PANAGOS P,et al. Analysis and evaluation of landslide susceptibility:A review on articles published during 2005-2016 (periods of 2005-2012 and 2013-2016)[J]. Arabian Journal of Geosciences,2018,11(9):193. DOI: 10.1007/s12517-018-3531-5
|
[4] |
ERCANOGLU M. Landslide susceptibility assessment of SE Bartin (West Black Sea region,Turkey) by artificial neural networks[J]. Natural Hazards and Earth System Sciences,2005,5(6):979 − 992. DOI: 10.5194/nhess-5-979-2005
|
[5] |
张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou District of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract)
|
[6] |
MANZO G,TOFANI V,SEGONI S,et al. GIS techniques for regional-scale landslide susceptibility assessment:The Sicily (Italy) case study[J]. International Journal of Geographical Information Science,2013,27(7):1433 − 1452. DOI: 10.1080/13658816.2012.693614
|
[7] |
ABBASZADEH SHAHRI A,SPROSS J,JOHANSSON F,et al. Landslide susceptibility hazard map in southwest Sweden using artificial neural network[J]. CATENA,2019,183:104225. DOI: 10.1016/j.catena.2019.104225
|
[8] |
REICHENBACH P,ROSSI M,MALAMUD B D,et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews,2018,180:60 − 91. DOI: 10.1016/j.earscirev.2018.03.001
|
[9] |
ZHAO Yu,WANG Rui,JIANG Yuanjun,et al. GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing,Southeastern China[J]. Engineering Geology,2019,259:105147. DOI: 10.1016/j.enggeo.2019.105147
|
[10] |
TRIGILA A,IADANZA C,ESPOSITO C,et al. Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily,Italy)[J]. Geomorphology,2015,249:119 − 136. DOI: 10.1016/j.geomorph.2015.06.001
|
[11] |
HE Qingfeng,SHAHABI H,SHIRZADI A,et al. Landslide spatial modelling using novel bivariate statistical based Naïve Bayes,RBF Classifier,and RBF Network machine learning algorithms[J]. Science of the Total Environment,2019,663:1 − 15. DOI: 10.1016/j.scitotenv.2019.01.329
|
[12] |
REGMI N R,GIARDINO J R,VITEK J D. Modeling susceptibility to landslides using the weight of evidence approach:western Colorado,USA[J]. Geomorphology,2010,115(1/2):172 − 187.
|
[13] |
GUZZETTI F,CARRARA A,CARDINALI M,et al. Landslide hazard evaluation:A review of current techniques and their application in a multi-scale study,Central Italy[J]. Geomorphology,1999,31(1/2/3/4):181 − 216.
|
[14] |
黄发明,汪洋,董志良,等. 基于灰色关联度模型的区域滑坡敏感性评价[J]. 地球科学,2019,44(2):664 − 676. [HUANG Faming,WANG Yang,DONG Zhiliang,et al. Regional landslide susceptibility mapping based on grey relational degree model[J]. Earth Science,2019,44(2):664 − 676. (in Chinese with English abstract)
|
[15] |
张玘恺,凌斯祥,李晓宁,等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报,2020,39(8):1595 − 1610. [ZHANG Qikai,LING Sixiang,LI Xiaoning,et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County,Sichuan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1595 − 1610. (in Chinese with English abstract)
|
[16] |
樊芷吟,苟晓峰,秦明月,等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报,2018,26(2):340 − 347. [FAN Zhiyin,GOU Xiaofeng,QIN Mingyue,et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology,2018,26(2):340 − 347. (in Chinese with English abstract)
|
[17] |
武雪玲,沈少青,牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报(信息科学版),2016,41(5):665 − 671. [WU Xueling,SHEN Shaoqing,NIU Ruiqing. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University,2016,41(5):665 − 671. (in Chinese with English abstract)
|
[18] |
陈涛,钟子颖,牛瑞卿,等. 利用深度信念网络进行滑坡易发性评价[J]. 武汉大学学报(信息科学版),2020,45(11):1809 − 1817. [CHEN Tao,ZHONG Ziying,NIU Ruiqing,et al. Mapping landslide susceptibility based on deep belief network[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1809 − 1817. (in Chinese with English abstract)
|
[19] |
范强,巨能攀,向喜琼,等. 证据权法在区域滑坡危险性评价中的应用——以贵州省为例[J]. 工程地质学报,2014,22(3):474 − 481. [FAN Qiang,JU Nengpan,XIANG Xiqiong,et al. Landslides hazards assessment with weights of evidence:A case study in Guizhou,China[J]. Journal of Engineering Geology,2014,22(3):474 − 481. (in Chinese with English abstract)
|
[20] |
许冲,戴福初,姚鑫,等. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报,2010,29(增刊1):2972 − 2981. [XU Chong,DAI Fuchu,YAO Xin,et al. GIS based certainty factor analysis of landslide triggering factors in Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(Sup 1):2972 − 2981. (in Chinese with English abstract)
XU Chong, DAI Fuchu, YAO Xin, et al. GIS based certainty factor analysis of landslide triggering factors in Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup 1): 2972 − 2981. (in Chinese with English abstract)
|