ISSN 1003-8035 CN 11-2852/P
    LIU Xiaoyu, FAN Zhiyong, WU Jiang. Evolution of deformation and monitoring techniques of surface tilt for soil landslides using MEMS technique[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 69-77. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.09
    Citation: LIU Xiaoyu, FAN Zhiyong, WU Jiang. Evolution of deformation and monitoring techniques of surface tilt for soil landslides using MEMS technique[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 69-77. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.09

    Evolution of deformation and monitoring techniques of surface tilt for soil landslides using MEMS technique

    More Information
    • Received Date: August 24, 2020
    • Revised Date: September 09, 2020
    • Available Online: January 21, 2021
    • With the rapid development of modern information technology,the ability to obtain various monitoring information of landslide is becoming stronger and stronger,and the field monitoring data accumulated is also more and more. How to make full use of the monitoring data has become a key issue in landslide monitoring and early warning work. Therefore,soil landslide is taken as the research object in this paper,and the strength reduction finite element method is used to study the temporal-spatial evolution characteristics of surface tilt deformation. It is found that the so-called "rate sequence transition" occurs during the period from sliding surface extension to breakthrough,and the so-called "rate mutation" occurs after the sliding surface passes through. The quantitative correlation between the surface tilt deformation and the internal sliding surface can provide a new perspective and direction for the study of medium and short-term prediction of soil landslides. With the help of theoretical results,this paper further studies the key techniques of surface tilt deformation monitoring,discusses the measurement principle and measurement accuracy of inclination sensor based on MEMS accelerometer,analyzes the influence of environmental temperature difference fluctuation on inclination measurement error,and finally introduces a universal landslide surface tilt deformation monitoring equipment-Shallow deformation measuring instrument for slope.
    • [1]
      黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3):433-454.

      [HUANG R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):433-454.(in Chinese)]
      [2]
      刘传正. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评, 2014, 60(4):858-868.

      [LIU C Z. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 2014, 60(4):858-868.(in Chinese)]
      [3]
      殷跃平, 吴树仁, 等. 滑坡监测预警与应急防治技术研究[M]. 北京:科学出版社, 2012.[YIN Y P, WU S R,et al. Research on landslide monitoring,early warning and emergency prevention technology[M]. Beijing:Science Press, 2012.(in Chinese)]
      [4]
      许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报·信息科学版, 2019, 44(7):957-966.

      [XU Q, DONG X J, LI W L. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.(in Chinese)]
      [5]
      殷坤龙. 滑坡灾害预测预报[M]. 武汉:中国地质大学出版社, 2004.[YIN K L. Landslide hazard prediction and evaluation[M]. Wuhan:China University of Geosciences Press, 2004.(in Chinese)]
      [6]
      许强, 黄润秋, 李秀珍. 滑坡时间预测预报研究进展[J]. 地球科学进展, 2004, 19(3):478-483.

      [XU Q, HUANG R Q, LI X Z. Research progress in time forecast and prediction of landslides[J]. Advance in Earth Sciences, 2004, 19(3):478-483.(in Chinese)]
      [7]
      许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2):360-374.

      [XU Q. Understanding the landslide monitoring and early warn-ing:consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2):360-374.(in Chinese)]
      [8]
      DU J, YIN K L, LACASSE S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China[J]. Landslides, 2013, 10(2):203-218.
      [9]
      李麟玮, 吴益平, 苗发盛, 等. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37(6):1395-1406.

      [LI L W, WU Y P, MIAO F S, et al. Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6):1395-1406.(in Chinese)]
      [10]
      INTRIERI E, CARLÀ T, GIGLI G. Forecasting the time of failure of landslides at slope-scale:a literature review[J]. Earth-Science Reviews, 2019, 193:333-349.
      [11]
      郭科, 彭继兵, 许强, 等. 滑坡多点数据融合中的多传感器目标跟踪技术应用[J]. 岩土力学, 2006, 27(3):479-481.

      [GUO K, PENG J B, XU Q, et al. Application of multi-sensor target tracking to multi-station monitoring data fusion in landslide[J]. Rock and Soil Mechanics, 2006, 27(3):479-481.(in Chinese)]
      [12]
      彭鹏, 单治钢, 董育烦, 等. 多传感器估值融合理论在滑坡动态变形监测中的应用研究[J]. 工程地质学报, 2011, 19(6):928-934.

      [PENG P, SHAN Z G, DONG Y F, et al. Application of multi-sensor valuation fusion theory to monitoring dynamic deformation of landslides[J]. Journal of Engineering Geology, 2011, 19(6):928-934.(in Chinese)]
      [13]
      BAK P, TANG C, WIESENFELD K. Self-organized criticality:an explanation of the 1/fnoise[J]. Physical Review Letters, 1987, 59(4):381.
      [14]
      许强, 黄润秋. 岩石破裂过程的自组织临界特征初探[J]. 地质灾害与环境保护, 1996, 7(1):25-30.

      [XU Q, HUANG R Q. Disscussion on self-organized critical characters in the course of rock failure[J]. Journal of Geological Hazards and Environment Preservation, 1996, 7(1):25-30.(in Chinese)]
      [15]
      白以龙, 汪海英, 夏蒙棼, 等. 固体的统计细观力学——连接多个耦合的时空尺度[J]. 力学进展, 2006, 36(2):286-305.

      [BAI Y L, WANG H Y, XIA M F, et al. Statistical mesomechanics of solid, linking coupled multiple space and time scales[J]. Advances in Mechanics, 2006, 36(2):286-305.(in Chinese)]
      [16]
      许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6):1104-1112.

      [XU Q, TANG M G, XU K X, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6):1104-1112.(in Chinese)]
      [17]
      GRIFFITHS D V, LANE P A. Slope stability analysis by finite elements[J]. Géotechnique, 1999, 49(3):387-403.
      [18]
      刘晓宇, 赵颖, 刘洋, 等. 土质边坡极限平衡状态及临界滑动面的判定方法[J]. 岩石力学与工程学报, 2012, 31(7):1369-1378.

      [LIU X Y, ZHAO Y, LIU Y, et al. Determination method of limit equilibrium state and critical slip surface of soil slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7):1369-1378.(in Chinese)]
      [19]
      DAWSON E M, ROTH W H, DRESCHER A. Slope stability analysis by strength reduction[J]. Géotechnique, 1999, 49(6):835-840.
      [20]
      郑颖人, 赵尚毅, 张鲁渝. 用有限元强度折减法进行边坡稳定分析[J]. 中国工程科学, 2002, 4(10):57-61.

      [ZHENG Y R, ZHAO S Y, ZHANG L Y. Slope stability analysis by strength reduction FEM[J]. Engineering Science, 2002, 4(10):57-61.(in Chinese)]
      [21]
      EBERHARDT E, STEAD D, COGGAN J S. Numerical analysis of initiation and progressive failure in natural rock slopes-the 1991 Randa rockslide[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(1):69-87.
      [22]
      PREISIG G. Forecasting the long-term activity of deep-seated landslides via groundwater flow and slope stability modelling[J]. Landslides, 2020, 17(7):1693-1702.
      [23]
      赵正平. MEMS智能传感器技术的新进展[J]. 微纳电子技术, 2019, 56(1):1-7.

      [ZHAO Z P. New progress of smart sensor technology based on MEMS[J]. Micronanoelectronic Technology, 2019, 56(1):1-7.(in Chinese)]
      [24]
      曹贯强, 赵文生. 基于MEMS加速度计的高精度倾角传感器研制[J]. 自动化仪表, 2020, 41(3):25-28.

      [CAO G Q, ZHAO W S. Development of high precision tilt sensor based on MEMS accelerometer[J]. Process Automation Instrumentation, 2020, 41(3):25-28.(in Chinese)]
      [25]
      杨贺, 王立伟, 郝圣旺. 基于倾角演化的滑坡监测及稳定过程[J]. 工程力学, 2020, 37(增刊1):193-199.[YANG H, WANG L W, HAO S W. Landslide monitoring and its stabilization process based on an in situ tilt monitoring system[J]. Engineering Mechanics, 2020, 37

      (Sup1):193-199.(in Chinese)]
    • Related Articles

      [1]Yuyuan WANG, Youyi ZHANG, Yunjun WANG. Stability of dangerous rockmasses and prediction of rockfall trajectory: A case study at Wansui Mountain in Ganzi County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 12-25. DOI: 10.16031/j.cnki.issn.1003-8035.202304020
      [2]Xirui CHEN, Hongqiang LIU, Jianhong YANG, Qikai AI, Bo ZHONG, Guojun CAI. Analysis of stability and kinematics of the dangerous rock mass in Zhangjiagou, Baoxing, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 81-89. DOI: 10.16031/j.cnki.issn.1003-8035.202209043
      [3]Zhiguo LI, Tao XU, Yongjie LIU, Lichun ZHAO, Yongchao XU, Tianhong YANG, Xiaobin ZHENG. Open-pit mine slopes stability analysis based on analytic hierarchy process-fuzzy comprehensive evaluation model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 116-123. DOI: 10.16031/j.cnki.issn.1003-8035.202207001
      [4]Shanxin HUO, Xingang WANG, Chen XUE, Youlin WANG, Qi LI, Kai LIU. Study on the stability evaluation method of fuzzy mathematical landslide improved by entropy weight method[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 19-27. DOI: 10.16031/j.cnki.issn.1003-8035.202309016
      [5]Zhongyuan CHEN, Zihang DAI, Wenbin JIAN. Cloud model for stability evaluation of recently failed soil slopes based on weight inversion of influencing factors[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 125-133. DOI: 10.16031/j.cnki.issn.1003-8035.202207010
      [6]Yonghai ZHANG, Wuping XIE, Zhongxing LUO, Shibin ZHAI. Stability evaluation and rockfall trajectory analysis of the Baimagou dangerous rock mass in Mingshan County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 37-46. DOI: 10.16031/j.cnki.issn.1003-8035.202202045
      [7]Leping HE, Shuyue LUO, Qijun HU, Qijie CAI, Yuhui LI. Stability evaluation of tunnel surrounding rock based on ideal point-extension cloud model[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 126-134. DOI: 10.16031/j.cnki.issn.1003-8035.2021.02.17
      [8]Chaohua LOU, Rongyan TIAN, Jiu WANG, Weiyu SUN, Jin LUO. Stability evaluation of sand slopes based on the Bayesian-PSO algorithm[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 53-59. DOI: 10.16031/j.cnki.issn.1003-8035.2021.02.07
      [9]Jingjing QU, Yan LU, Shuliang WU, Jian LIU, Fugang GOU. Evaluation of Xiashu loess slope stability in Zhenjiang area using different methods[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 35-42. DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.05
      [10]Xianghua XIA, Decheng LIU, Yuqian LI, Xueyuan GAO. Basic characteristics and stability evaluation of dangerous rockmasses in Yanqi Town, Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 28-34. DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.04
    • Cited by

      Periodical cited type(11)

      1. 张雪,魏云杰,杨成生,刘勇,杨佳艺. 云南昭通地区滑坡隐患InSAR广域识别与监测. 地球科学与环境学报. 2025(01): 128-142 .
      2. 王林峰,蒋辉,唐宁,黄晓明,谭国金. 无人机贴近摄影技术在高陡边坡的三维重建与结构面识别中的应用. 中国地质灾害与防治学报. 2025(01): 92-100 . 本站查看
      3. 孙成永. InSAR技术在河南信阳新县地质灾害风险调查中的应用. 城市地质. 2024(03): 383-389 .
      4. 孙琪皓,刘桂卫,王飞,张璇钰,王衍汇. 铁路地质灾害早期识别与监测预警技术及应用研究. 铁道标准设计. 2024(09): 24-31 .
      5. 臧烨祺,郭永刚,苏立彬,王国闻,吴升杰,秦得顺. 西藏东南地区滑坡易发性多模型评价方法研究. 中国地质灾害与防治学报. 2024(06): 58-69 . 本站查看
      6. 鲁魏,杨斌,杨坤. 基于时序InSAR的西南科技大学地表形变监测与分析. 中国地质灾害与防治学报. 2023(02): 61-72 . 本站查看
      7. 李凡,李素敏,杨渊,李杰,袁利伟,成睿,毛嘉骐. 基于时序InSAR的沙湾大沟滑坡型泥石流发育特征研究. 地球物理学进展. 2023(02): 532-541 .
      8. 顿佳伟,冯文凯,易小宇,张国强,吴明堂. 白鹤滩库区蓄水前活动性滑坡InSAR早期识别研究——以葫芦口镇至象鼻岭段为例. 工程地质学报. 2023(02): 479-492 .
      9. 于冰,胡云亮,刘国祥,罗小军,胡金龙. 时序InSAR反演唐山市二维地表形变时间序列. 测绘科学. 2023(06): 82-94+230 .
      10. 陈行,刘汉湖,葛宗旭. 时序SBAS-InSAR下的香格里拉市地表形变监测. 宜宾学院学报. 2022(06): 54-59 .
      11. 盖侨侨. PS-InSAR技术在北江下游沿线形变监测中的应用. 水利技术监督. 2022(10): 57-59+72 .

      Other cited types(4)

    Catalog

      Article views (404) PDF downloads (540) Cited by(15)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return