ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于动态变频的滑坡GNSS变形数据实时过滤及应用

亓星, 曹汝亮, 修德皓, 周飞

亓星,曹汝亮,修德皓,等. 基于动态变频的滑坡GNSS变形数据实时过滤及应用[J]. 中国地质灾害与防治学报,2025,36(0): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.202403010
引用本文: 亓星,曹汝亮,修德皓,等. 基于动态变频的滑坡GNSS变形数据实时过滤及应用[J]. 中国地质灾害与防治学报,2025,36(0): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.202403010
QI Xing,CAO Ruliang,XIU Dehao,et al. Real-time filtering and application of landslide GNSS deformation data based on dynamic frequency conversion[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.202403010
Citation: QI Xing,CAO Ruliang,XIU Dehao,et al. Real-time filtering and application of landslide GNSS deformation data based on dynamic frequency conversion[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.202403010

基于动态变频的滑坡GNSS变形数据实时过滤及应用

基金项目: 地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2022K008)。
详细信息
    作者简介:

    亓 星(1988—),男,四川成都人,博士,副教授,研究方向为地质灾害监测预警与预测评价。E-mail:qixing2009@163.com

  • 中图分类号: P642.2

Real-time filtering and application of landslide GNSS deformation data based on dynamic frequency conversion

  • 摘要:

    GNSS变形监测设备是获取滑坡各向变形量及变形发展趋势的主要地面监测设备,由于监测过程中精度误差和偶然误差的存在,常常导致基于变形数据计算的滑坡变形速率出现明显的误差波动,造成实时监测预警的误报。本文针对现有典型GNSS变形监测数据的特点,分析了过滤数据总量与最大偏差量的三阶段关系,明确了GNSS数据过滤量可采用三阶段中缓慢降低阶段起点对应的40组数据进行,同时提出了采用数据缓冲过滤区配合动态变频监测技术实现偶然误差的及时剔除,最终基于最小二乘法和数据剔除方法实现GNSS变形数据的实时过滤,并通过两处典型边坡监测进行验证,为后续基于变形数据的滑坡实时分析预警提供技术参考。

    Abstract:

    GNSS deformation monitoring devices are crucial ground monitoring tools for capturing multi-directional landslide deformations and their development trends. However, precision and random errors during monitoring often leads to significant fluctuations in computed deformation rates, leading to false alarms in real-time monitoring and warnings. This study addresses the characteristics of typical GNSS deformation monitoring data by analyzing the relationship across three stages between the total filtered data and maximum deviation. It establishes that the filtering of GNSS data should employ forty data sets corresponding to the initial phase of the gradually decreasing stage. Furthurmore, this paper proposes utilizing a data buffer filtering area combined with dynamic frequency monitoring techniques for the prompt elimination of incidental errors. Finally, based on the least squares method and data rejection techniques, the study achieves real-time filtering of GNSS deformation data, verified through monitoring at two typical slope sites. These methods provide a technical references for subsequent real-time landslide analysis and early warning of landslides based on deformation data.

  • 2010年8月8日凌晨,舟曲县城北侧三眼峪沟和罗家峪沟同时暴发特大山洪泥石流,城区三分之一被淹,共造成1435人死亡,330人失踪,直接经济损失超过10亿元[1-2],给舟曲县城居民生命财产造成了巨大损失,也给当地生产生活带来严重困难。灾害引起了党中央、国务院、中央军委及全国人民的高度关注,启动国家二级救灾应急响应,同时批复专项资金进行治理。其中,重力式拦挡坝是舟曲泥石流治理中的最主要工程之一。

    周龙茂等[3]认为拦挡坝在泥石流治理中发挥着重要作用,但同时拦挡坝也是最易遭受破坏、失去防灾功能的泥石流防治构筑物,因此,在泥石流设计中,为了拦挡坝不被破坏,往往设计得很保守,王念秦等[4]提出这种设计容易造成两个极端现象:保守,造成资金浪费;冒进,防治工程失败。要做到既能保证拦挡坝安全,又能将投资最小化,就要求对泥石流拦挡坝抗冲击力验算方法提出新要求。传统的泥石流冲击力计算经验公式[5]只能通过大量试算表述结果,不能表述过程。而将三维有限元数值分析方法应用到泥石流拦挡坝稳定性验算中[6-7],能将过程和结果同时呈现,即通过分步加载的方法,逐步呈现拦挡坝的位移情况和抗冲击力过程中的破损情况。

    关于拦挡坝的数值模拟研究还比较少,本文将考虑损伤的混凝土本构模型与有限元计算方法相结合,对舟曲泥石流混凝土拦挡结构进行力学分析,最终确定了拦挡坝的抗冲击力合理区间,以期为泥石流治理工程的设计提供借鉴。

    杨东旭等[8]、许海亮等[9]、张睿骁等[10]认为冲击力是破坏防治工程构筑物的主要作用力之一,其大小与泥石流流量、流速、容重等有关。泥石流冲击力是泥石流防治工程设计的重要参数,分为流体整体冲击力和个别石块的冲击力两种,在设计中取两种计算结果较高者为设计依据。文章采用《泥石流灾害防治工程设计规范》(DZT 0239—2004)中的经验公式[5]作为数值计算结果的参考和验证。

    流体整体冲击力计算公式:

    $$f = K\frac{{{\gamma_C}}}{g}v_c^2$$ (1)

    式(1)中:f−冲击力/Pa;

    K−系数,取2.5;

    ${\gamma_C} $−泥石流重度/(t·m−3);

    g−重力加速度,取9.8 m·s−2

    vc−断面处泥石流流速(m·s−1)。

    个别石块的冲击力计算公式:

    $${F_b} = \sqrt {\frac{{48EJ{V^2}W}}{{g{L^3}}}} \cdot \sin \alpha $$ (2)

    式(2)中:Fb−泥石流大石块冲击力/(t·m−2);

    E−工程构件弹性模量/(t·m−2);

    J−工程构件界面中心轴的惯性矩/m4

    V−石块运动速度(m·s−1);

    W−石块重量/t;

    L−构件长度/m;

    α−石块运动方向与构件受力面的夹角/(°)。

    泥石流具体参数和计算结果见表1,编号和《甘肃省舟曲县三眼峪沟泥石流灾害设计报告》[1]中保持一致。

    表  1  泥石流冲击力计算参数及结果
    Table  1.  Debris flow impact calculation parameters and results
    编号${\gamma _c}$/(t·m−3${v_c}$/(m·s−1$L$/m$W$/t$V$/(m·s−1$\sin \alpha $$E$/(t·m−2$J$/m4$f$/(t·m−2${F_b}$/(t·m−2
    大1号坝2.096.565.516210.550.9462.8274.6322.497.14
    大2号坝2.096.602.8817.530.9462.8274.6322.767.34
    大3号坝2.036.618.6259.213.200.9462.8216.0022.1719.95
    大4号坝2.038.674.394.59.330.9462.8421.8838.1519.62
    小2号坝2.036.563.183.77.920.9462.8421.8821.844.28
    小3号坝2.139.865.8129.610.840.9462.8274.6351.778.98
    小4号坝2.135.492.875.67.530.9462.8421.8816.0514.17
    小6号坝2.138.124.7121.59.761.0002.8512.0035.1137.01
    主1号坝2.136.5311.2361.815.060.9462.8421.8822.7144.35
    主2号坝2.136.167.5234.912.320.9462.8343.0020.2112.44
    下载: 导出CSV 
    | 显示表格

    计算区域按地质资料分高程、分区域模拟。模型向上游及下游分别延伸至坝体厚度的2倍,模型高度方向自坝基向下延伸坝体垂直部分的2倍。以大2号坝为例进行数值模拟,砼坝体和地基土数值分析具体参数见表2

    分析中将泥石流流体的冲击力P简化为静力加载到坝体侧面,计算坝体的极限抗冲击能力,简化计算力学模型如图1所示。

    表  2  混凝土坝和地基碎石土参数
    Table  2.  Concrete dam and gravel soil parameter
    名称坝体沟床碎石土
    弹性模量/GPa泊松比损伤阈值拉压强度比弹性模量/MPa泊松比黏聚力/kPa内摩擦角/(°)剪胀角/(°)
    取值24.00.22×10−40.152400.25.04040
    下载: 导出CSV 
    | 显示表格
    图  1  简化力学模型示意图
    Figure  1.  Mechanical model of concrete dam

    数值模拟使用有限元软件ABAQUS进行计算分析。冯帅等[11]认为数值计算出的泥石流的极限抗冲压力大于经验公式计算出的泥石流整体冲击压力。因此,本文分别按泥石流流体高度h=H/2坝高(工况1)及h=H(工况2)两种工况进行分析,将数值计算出的抗冲击力限定在一合理区间。计算中加载每一荷载增量后均计算至收敛,并记录坝体的最大位移。加载至破坏时(计算不收敛,坝体位移不断增大)的压力P与坝体最大位移曲线由倾斜直线变为水平线,坝体所能承受的最大冲击力Pu可由压力P与坝体最大位移曲线水平段的和坐标求出。应力以拉为正,以压为负,应力的单位为Pa,长度单位为m,位移单位为mm,其他单位均采用国际单位制。具体模型边界和网格划分图2所示。

    图  2  模型边界和网格划分
    Figure  2.  Model boundary and meshing

    大坝按泥石流冲击高度h=H/2坝高计算,在拦挡坝的一侧施加泥石流冲击力,荷载增量取值100 kPa,每加一次荷载,计算至收敛,并且记录一次坝体的最大位移;一直持续加载至破坏时,即计算不收敛且坝体位移不断增大时停止计算。

    周勇等[12]采用结构动力学的方法,建立了泥石流冲击荷载与拦挡坝的动力方程,提出拦挡坝的坝顶处有最大的位移,为本次工程力学计算提供了一种思路。将泥石流冲击力与相应荷载下坝体位移进行统计,形成图3所示冲击力与坝体最大位移关系曲线,会发现坝体水平位移随着拦挡坝冲击力增大呈对数曲线递增,泥石流流体高度h=H/2工况条件下施加的最大冲击力Pu=3500 kPa(357.14 t/m2)。

    图  3  冲击力与坝体最大位移曲线(h=H/2)
    Figure  3.  Pressure and the maximum dam displacement curve(h=H/2)

    坝体损毁过程如图4所示,冲击力达到800 kPa(水平位移1 mm)时坝体开始出现初始损伤;冲击力达到1100 kPa(水平位移1.4 mm)时两侧坝肩和基础局部都出现较明显损伤;冲击力达到1400 kPa时(水平位移2 mm),泄水孔和泄水涵洞边缘出现局部损伤;冲击力达到2700 kPa(水平位移4.8 mm)时,基础出现大面积损伤,沿正面泄水涵洞和泄水孔形成纵向损伤;冲击力达到3200 kPa(水平位移7.2 mm)时,坝肩、基础及坝体正中损伤贯通,损伤区呈“W”型,坝体已基本失去功能,在工程实际应用中已达到破坏极限;冲击力达到3500 kPa时,坝体大面积损伤,超过坝体总面积的2/3,水平位移高达14 mm,整体性降低或消失,这只是一种模拟现象,在工程实际应用中泥石流物质沿坝体破坏处流通,坝体已不存在整体位移现象。

    图  4  不同泥石流冲击力下拦挡坝的损伤情况(h=H/2)
    Figure  4.  Damage of piles under different impact force of debris flow(h=H/2)

    大坝按泥石流冲击高度h=H坝高计算,荷载增量取值125 kPa,每加一次荷载,计算至收敛,同时记录一次坝体的最大位移,将泥石流冲击力与相应荷载下坝体位移进行统计,形成图5所示冲击力与坝体最大位移关系曲线,会发现坝体水平位移随着拦挡坝冲击力增大也呈对数曲线递增,泥石流流体高度h=H工况条件下施加的最大冲击力Pu=2490 kPa(254.08 t/m2)。

    图  5  冲击力与坝体最大位移曲线(h=H
    Figure  5.  Pressure and the maximum dam displacement curve(h=H

    坝体损毁过程如图6所示,冲击力达到375 kPa(水平位移1.7 mm)时坝体开始出现初始损伤;冲击力达到500 kPa(水平位移2.3 mm)时两侧坝肩和基础局部都出现较明显损伤;冲击力达到1250 kPa(水平位移6.6 mm)时,泄水孔和泄水涵洞边缘出现局部损伤;冲击力达到1500 kPa(水平位移8.4 mm)时,基础出现局部损伤,沿正面泄水涵洞和泄水孔形成纵向损伤,两侧坝肩损伤较严重;冲击力达到2000 kPa(水平位移14.8 mm)时,严重损伤区呈“W”型,坝肩、基础和坝体中心部位损伤基本贯通,坝体已基本失去功能,在工程实际应用中已达到破坏极限;冲击力达到2490 kPa时,坝体大面积损伤,超过坝体总量的2/3,水平位移高达40.4 mm,整体性降低或消失,这也只是一种模拟现象,在工程实际应用中泥石流物质沿坝体破坏处流通,坝体已不存在整体位移。

    图  6  不同泥石流冲击力下拦挡坝的损伤情况(h=H
    Figure  6.  Damage of piles under different impact force of debris flow(h=H

    同样方法计算三眼峪及各支沟泥石流重力式拦挡工程冲击力,得到表3,结合表1可以看出,泥石流经验公式计算的单宽冲击力均小于工况1数值模拟验算结果,均大于工况2数值模拟验算结果,与工况1和2的平均值接近。2012年建成至今,大部分坝体库容淤积过半,部分甚至已淤满,说明拦挡坝经受住了各种泥石流冲击破坏的考验。

    表  3  重力坝冲击力数值模拟验算结果对比表(单位:t/m2
    Table  3.  Comparison of results of numerical simulation of impact of gravity dam (unit: t/m2)
    编号经验公式
    计算冲击力
    h=H/2
    最大冲击力
    h=H
    最大冲击力
    计算平均值
    大1号坝22.4927.0017.5522.28
    大2号坝22.7627.3617.7822.57
    大3号坝22.1726.6417.3221.98
    大4号坝38.1545.8429.8037.82
    小2号坝21.8426.2817.0821.68
    小3号坝51.7762.1640.4051.28
    小4号坝16.0519.3212.5615.94
    小6号坝37.0144.5228.9436.73
    主1号坝44.3553.2834.6343.96
    主2号坝20.2124.3615.8320.10
    下载: 导出CSV 
    | 显示表格

    将2种工况进行比较,工况1的冲击力达到800 kPa时坝体开始出现初始损伤,最大冲击力为3500 kPa,而工况2的冲击力达到375 kPa时桩体开始出现初始损伤,最大冲击力为2490 kPa。说明冲击高度对坝体的影响较大,随高度增加,达到初损的冲击力荷载几乎成倍数减少,而最大冲击力也减少1000 kPa。这说明在拦挡坝设计中泄水涵洞和泄水孔的预留很重要,为减少拦挡坝的冲击破坏,应尽量选择低坝,同时在不影响坝体安全和停淤功能的基础上,应多布设泄水涵洞和泄水孔,降低坝前壅水位,最大可能避免或减少高水位过流。

    拦挡坝的损伤从两侧坝肩开始,再到拦挡坝中间部位的泄水涵洞及泄水孔边缘,然后到基础,最后坝肩、中间部位和基础形成“W”型的贯通破坏,其破损部位按先后顺序依次为“坝肩—泄水涵洞及泄水孔—基础—“W”型贯通”4个过程。设计时应重点考虑这几处薄弱环节,要相应的进行专门的加固处理。

    从安全和经济方面考虑,在拦挡坝设计中冲击力的考虑应该取工况1和工况2之间值较合理,工况1存在风险,工况2偏保守,而工况1和2的中间值接近经验公式计算冲击力。从表3中可知,三眼峪设计中的冲击力选择也是工况1和2的平均值,从而保障了拦挡坝的安全运行。

    由于真实模拟泥石流重力式拦挡坝的室内大型实验难度比较大,野外测定随机性太大,故本文采用数值模拟的方式来分析三眼峪沟拦挡坝的受力情况。结果表明数值模拟对分析问题有一定的指导意义,可以和现有的泥石流设计理论结合,为以后工程设计提供安全对比,但是不能代替物理实验和理论计算。

    (1)本文通过有限元软件ABAQUS进行拦挡坝数值模拟计算和分析,比较2种工况条件发现:随着泥石流冲击高度增加,达到初损的冲击力荷载成倍数减少,而最大冲击力也减少1000 kPa;拦挡坝的损伤从两侧坝肩开始,再到拦挡坝中间部位的泄水涵洞及泄水孔边缘,形成“W”型的贯通破坏。

    (2)通过与经验公式计算冲击力比较,发现拦挡坝设计中冲击力选择工况1和2的平均值较合理,可以为工程设计提供安全对比。

  • 图  1   常见GNSS误差特征

    Figure  1.   common GNSS error characteristics

    图  2   不同区域和不同类型的GNSS监测数据

    Figure  2.   GNSS monitoring data across various regions and types

    图  3   过滤尺度确定方法示意图

    Figure  3.   Schematic diagram of filter scale determination method

    图  4   GNSS监测数据过滤效果的偏差关系

    Figure  4.   Deviation relationship in GNSS monitoring data filtering effects

    图  5   不同频率下的GNSS监测数据过滤效果的偏差关系

    Figure  5.   Deviation relationships in GNSS monitoring data filtering effects across different frequencies

    图  6   偶然误差数据缓冲过滤方法

    Figure  6.   Data buffer method for filtering incidental errors

    图  7   四村滑坡加速阶段变形速率过滤特征

    Figure  7.   Deformation rate Filtering characteristics of deformation rate in acceleration stage of Sicun landslide

    图  8   彭州某矿山边坡匀变速阶段变形速率过滤特征

    Figure  8.   Characteristics of deformation rate filtration in the homogeneous velocity phase of a mine slope in Pengzhou

  • [1]

    CASCINI L,FORNARO G,PEDUTO D. Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2009,64(6):598 − 611. DOI: 10.1016/j.isprsjprs.2009.05.003

    [2]

    KURSAH M B,WANG Yong,BAYOH H D,et al. A comparative study on the predictive ability of archived and SBAS-InSAR inventories for landslide susceptibility using frequency ratio model in Western Area,Sierra Leone[J]. Environmental Earth Sciences,2021,80(10):387. DOI: 10.1007/s12665-021-09663-x

    [3]

    TEZA G,PESCI A,GENEVOIS R,et al. Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation[J]. Geomorphology,2008,97(3/4):424 − 437.

    [4]

    ZHANG Jieyuan,LI Haibo,YANG Xingguo,et al. Quantitative assessment of rockfall hazard in post-landslide high rock slope through terrestrial laser scanning[J]. Bulletin of Engineering Geology and the Environment,2021,80(10):7315 − 7331. DOI: 10.1007/s10064-021-02426-9

    [5]

    TEMPA K,PELJOR K,WANGDI S,et al. UAV technique to localize landslide susceptibility and mitigation proposal:A case of Rinchending Goenpa landslide in Bhutan[J]. Natural Hazards Research,2021,1(4):171 − 186. DOI: 10.1016/j.nhres.2021.09.001

    [6]

    JIAO Qisong,JIANG Wenliang,QIAN Haitao,et al. Research on characteristics and failure mechanism of Guizhou Shuicheng landslide based on InSAR and UAV data[J]. Natural Hazards Research,2022,2(1):17 − 24. DOI: 10.1016/j.nhres.2021.12.001

    [7] 许强,彭大雷,何朝阳,等. 突发型黄土滑坡监测预警理论方法研究——以甘肃黑方台为例[J]. 工程地质学报,2020,28(1):111 − 121. [XU Qiang,PENG Dalei,HE Chaoyang,et al. Theory and method of monitoring and early warning for sudden loess landslide:A case study at Heifangtai terrace[J]. Journal of Engineering Geology,2020,28(1):111 − 121. (in Chinese with English abstract)]

    XU Qiang, PENG Dalei, HE Chaoyang, et al. Theory and method of monitoring and early warning for sudden loess landslide: A case study at Heifangtai terrace[J]. Journal of Engineering Geology, 2020, 28(1): 111 − 121. (in Chinese with English abstract)

    [8]

    WANG Honghui,NIE Donglin,TUO Xianguo,et al. Research on crack monitoring at the trailing edge of landslides based on image processing[J]. Landslides,2020,17(4):985 − 1007. DOI: 10.1007/s10346-019-01335-z

    [9]

    HASTAOGLU K O,POYRAZ F,TURK T,et al. Investigation of the success of monitoring slow motion landslides using Persistent Scatterer Interferometry and GNSS methods[J]. Survey Review,2018,50(363):475 − 486. DOI: 10.1080/00396265.2017.1295631

    [10] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报,2020,28(2):360 − 374. [XU Qiang. Understanding the landslide monitoring and early warning:Consideration to practical issues[J]. Journal of Engineering Geology,2020,28(2):360 − 374. (in Chinese with English abstract)]

    XU Qiang. Understanding the landslide monitoring and early warning: Consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360 − 374. (in Chinese with English abstract)

    [11]

    PEI Huafu,ZHANG Feng,ZHANG Siqi. Development of a novel Hall element inclinometer for slope displacement monitoring[J]. Measurement,2021,181:109636. DOI: 10.1016/j.measurement.2021.109636

    [12]

    Ya Zhao,Kangni Zou,Jiayi Liu,et al. Current Status and Progress of Market Application of Engineering Technologies for Slope Monitoring and Early Warning[J]. Frontiers in Science and Engineering,DOI: 10.29556/FSE.202105_1(2).0002.

    [13] 许强,曾裕平,钱江澎,等. 一种改进的切线角及对应的滑坡预警判据[J]. 地质通报,2009,28(4):501 − 505. [XU Qiang,ZENG Yuping,QIAN Jiangpeng,et al. Study on a improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China,2009,28(4):501 − 505. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-2552.2009.04.011

    XU Qiang, ZENG Yuping, QIAN Jiangpeng, et al. Study on a improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China, 2009, 28(4): 501 − 505. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2009.04.011

    [14] 白正伟,张勤,黄观文,等. “轻终端+行业云” 的实时北斗滑坡监测技术[J]. 测绘学报,2019,48(11):1424 − 1429. [BAI Zhengwei,ZHANG Qin,HUANG Guanwen,et al. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud”[J]. Acta Geodaetica et Cartographica Sinica,2019,48(11):1424 − 1429. (in Chinese with English abstract)]

    BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud”[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424 − 1429. (in Chinese with English abstract)

    [15] 亓星. 突发型黄土滑坡监测预警研究——以甘肃黑方台黄土滑坡为例[D]. 成都:成都理工大学,2017. [QI Xing. Study on monitoring and early warning of sudden loess landslide: A case study of Heifangtai loess landslide in Gansu Province[D]. Chengdu:Chengdu University of Technology,2017. (in Chinese with English abstract)]

    QI Xing. Study on monitoring and early warning of sudden loess landslide: A case study of Heifangtai loess landslide in Gansu Province[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)

    [16]

    ACAR M,OZLUDEMIR M T,EROL S,et al. Kinematic landslide monitoring with Kalman filtering[J]. Natural Hazards and Earth System Sciences,2008,8(2):213 − 221. DOI: 10.5194/nhess-8-213-2008

    [17] 金亚兵,杨傲. 基于Kalman滤波模型的边坡灾害自动化监测预警平台[J]. 工程勘察,2021,49(8):55 − 60. [JIN Yabing,YANG Ao. Automatic monitoring and early warning platform of slope disaster based on Kalman filtering model[J]. Geotechnical Investigation & Surveying,2021,49(8):55 − 60. (in Chinese with English abstract)]

    JIN Yabing, YANG Ao. Automatic monitoring and early warning platform of slope disaster based on Kalman filtering model[J]. Geotechnical Investigation & Surveying, 2021, 49(8): 55 − 60. (in Chinese with English abstract)

    [18] 彭鹏,单治钢,董育烦,等. 基于Kalman滤波融合算法的库区滑坡动态变形监测综合信息提取[J]. 岩石力学与工程学报,2014,33(8):1520 − 1525. [PENG Peng,SHAN Zhigang,DONG Yufan,et al. Application of multi-sensor valuation in dynamic deformation for landslide monitoring based on Kalman filtration fusion theory[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(8):1520 − 1525. (in Chinese with English abstract)]

    PENG Peng, SHAN Zhigang, DONG Yufan, et al. Application of multi-sensor valuation in dynamic deformation for landslide monitoring based on Kalman filtration fusion theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1520 − 1525. (in Chinese with English abstract)

    [19] 张敏敏,吕晓军,贾新春,等. 基于GPS和神经网络的滑坡位移监测算法[J]. 计算机测量与控制,2018,26(8):51 − 54. [ZHANG Minmin,LÜ Xiaojun,JIA Xinchun,et al. Landslide displacement monitoring algorithm based on GPS and neural network[J]. Computer Measurement & Control,2018,26(8):51 − 54. (in Chinese with English abstract)]

    ZHANG Minmin, LÜ Xiaojun, JIA Xinchun, et al. Landslide displacement monitoring algorithm based on GPS and neural network[J]. Computer Measurement & Control, 2018, 26(8): 51 − 54. (in Chinese with English abstract)

    [20] 胡海洋,邹进贵,张艺航. 基于BP神经网络的自适应Kalman滤波在滑坡沉降监测中的应用研究[J]. 测绘与空间地理信息,2019,42(6):236 − 239. [HU Haiyang,ZOU Jingui,ZHANG Yihang. Application of adaptive Kalman filter based on BP neural network in landslide settlement monitoring[J]. Geomatics & Spatial Information Technology,2019,42(6):236 − 239. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-5867.2019.06.067

    HU Haiyang, ZOU Jingui, ZHANG Yihang. Application of adaptive Kalman filter based on BP neural network in landslide settlement monitoring[J]. Geomatics & Spatial Information Technology, 2019, 42(6): 236 − 239. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-5867.2019.06.067

    [21] 翟会君,翟亚锋,朱涛,等. 基于回归-ELM神经网络模型的滑坡变形及失稳预测模型[J]. 河北工业科技,2017,34(6):440 − 447. [ZHAI Huijun,ZHAI Yafeng,ZHU Tao,et al. Prediction model of landslide deformation and instability based on regression-ELM neural network model[J]. Hebei Journal of Industrial Science and Technology,2017,34(6):440 − 447. (in Chinese with English abstract)] DOI: 10.7535/hbgykj.2017yx06009

    ZHAI Huijun, ZHAI Yafeng, ZHU Tao, et al. Prediction model of landslide deformation and instability based on regression-ELM neural network model[J]. Hebei Journal of Industrial Science and Technology, 2017, 34(6): 440 − 447. (in Chinese with English abstract) DOI: 10.7535/hbgykj.2017yx06009

    [22] 董力豪,刘艳辉,黄俊宝,等. 基于卷积神经网络的福建省区域滑坡灾害预警模型[J]. 水文地质工程地质,2024,51(1):145 − 153. [DONG Lihao,LIU Yanhui,HUANG Junbao,et al. An early prediction model of regional landslide disasters in Fujian Province based on convolutional neural network[J]. Hydrogeology and Engineering Geology,2024,51(1):145 − 153. (in Chinese with English abstract)]

    DONG Lihao, LIU Yanhui, HUANG Junbao, et al. An early prediction model of regional landslide disasters in Fujian Province based on convolutional neural network[J]. Hydrogeology and Engineering Geology, 2024, 51(1): 145 − 153. (in Chinese with English abstract)

    [23] 伍琪琳. 边坡变形监测数据的小波降噪和粗糙惩罚平滑[D]. 杭州:浙江大学,2011. [WU Qilin. Wavelet denoising and rough penalty smoothing of slope deformation monitoring data[D]. Hangzhou:Zhejiang University,2011. (in Chinese with English abstract)]

    WU Qilin. Wavelet denoising and rough penalty smoothing of slope deformation monitoring data[D]. Hangzhou: Zhejiang University, 2011. (in Chinese with English abstract)

    [24]

    BNOU K,RAGHAY S,HAKIM A. A wavelet denoising approach based on unsupervised learning model[J]. EURASIP Journal on Advances in Signal Processing,2020,2020(1):36. DOI: 10.1186/s13634-020-00693-4

    [25] 周勇,焦胜宇,赵发俊. 基于S变换的不稳定斜坡GNSS数据信息提取[J]. 测绘技术装备,2021,23(3):71 − 73. [ZHOU Yong,JIAO Shengyu,ZHAO Fajun. GNSS data extraction of unstable slopes based on S transform[J]. Geomatics Technology and Equipment,2021,23(3):71 − 73. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1674-4950.2021.03.017

    ZHOU Yong, JIAO Shengyu, ZHAO Fajun. GNSS data extraction of unstable slopes based on S transform[J]. Geomatics Technology and Equipment, 2021, 23(3): 71 − 73. (in Chinese with English abstract) DOI: 10.3969/j.issn.1674-4950.2021.03.017

    [26] 郭献涛,黄腾,臧妻斌,等. 基于最小二乘三维表面匹配算法的滑坡变形测量[J]. 岩土力学,2015,36(5):1421 − 1427. [GUO Xiantao,HUANG Teng,ZANG Qibin,et al. An approach for monitoring landslide deformation using least-square matching algorithm[J]. Rock and Soil Mechanics,2015,36(5):1421 − 1427. (in Chinese with English abstract)]

    GUO Xiantao, HUANG Teng, ZANG Qibin, et al. An approach for monitoring landslide deformation using least-square matching algorithm[J]. Rock and Soil Mechanics, 2015, 36(5): 1421 − 1427. (in Chinese with English abstract)

    [27] 罗文强,冀雅楠,王淳越,等. 多监测点滑坡变形预测的似乎不相关模型研究[J]. 岩石力学与工程学报,2016,35(增刊1):3051 − 3056. [LUO Wenqiang,JI Yanan,WANG Chunyue,et al. Study on seemingly unrelated model for landslide deformation prediction at multi-monitoring points[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup 1):3051 − 3056. (in Chinese)]

    LUO Wenqiang, JI Yanan, WANG Chunyue, et al. Study on seemingly unrelated model for landslide deformation prediction at multi-monitoring points[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup 1): 3051 − 3056. (in Chinese)

    [28] 邓继辉,陈柏林. 基于时间序列分析的滑坡变形动态预测研究[J]. 长江科学院院报,2012,29(10):78 − 81. [DENG Jihui,CHEN B L. Dynamic prediction of landslide deformation based on time series analysis[J]. Journal of Yangtze River Scientific Research Institute,2012,29(10):78 − 81. (in Chinese)] DOI: 10.3969/j.issn.1001-5485.2012.10.015

    DENG Jihui, CHEN B L. Dynamic prediction of landslide deformation based on time series analysis[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(10): 78 − 81. (in Chinese) DOI: 10.3969/j.issn.1001-5485.2012.10.015

    [29] 亓星,修德皓,程关文,等. 滑坡变形监测数据的实时过滤方法及应用[J]. 水利水电技术(中英文),2022,53(7):129 − 138. [QI Xing,XIU Dehao,CHENG Guanwen,et al. Real time filtering method and application of landslide deformation monitoring data[J]. Water Resources and Hydropower Engineering,2022,53(7):129 − 138. (in Chinese)]

    QI Xing, XIU Dehao, CHENG Guanwen, et al. Real time filtering method and application of landslide deformation monitoring data[J]. Water Resources and Hydropower Engineering, 2022, 53(7): 129 − 138. (in Chinese)

  • 期刊类型引用(26)

    1. 李超然,袁广祥. 甘肃省宕昌县地质灾害易发性评价. 地质灾害与环境保护. 2025(01): 21-25 . 百度学术
    2. 兰盈盈,郭昶成,朱云福. 地质灾害易发性评价方法综述. 地质与资源. 2024(01): 65-73 . 百度学术
    3. 杨晶晶,肖玉,安泉,刘浩,公斌. 黔东北地区地质灾害时空分布规律及孕灾地质环境研究. 中国煤炭地质. 2024(02): 64-68 . 百度学术
    4. 李晓玮,刘翠娜. 基于AHP法山区公路边坡稳定性评价及危害性分析. 河北地质大学学报. 2024(02): 61-65+134 . 百度学术
    5. 南赟,翟淑花,李岩,曹颖,罗守敬,王云涛,郭学飞. 北京地区“23·7”特大暴雨型地质灾害特征及预警成效分析. 中国地质灾害与防治学报. 2024(02): 66-73 . 本站查看
    6. 曾欣,黄梦妮,胡毓灵,邓新林,谢倩雯. 株洲市地质灾害特征与降雨量的关系. 气象研究与应用. 2024(01): 83-89 . 百度学术
    7. 唐朝. 基于ArcGIS的当涂县地质灾害风险调查与评价. 现代矿业. 2024(04): 187-190+196 . 百度学术
    8. 蔡佳明. 北京东部山区地质灾害危险性评价. 地质灾害与环境保护. 2024(02): 49-55 . 百度学术
    9. 李晓玮. 北京北宫镇大灰厂路牵引式岩质滑坡勘查及防治对策. 城市地质. 2024(02): 139-148 . 百度学术
    10. 赵丹凝,焦润成,杨春. “23·7”强降雨对北京西山曹家坊泥石流隐患易发性影响. 城市地质. 2024(03): 353-364 . 百度学术
    11. 尹展,郝玉军,卜鹏,杨艳绪. 湘南中低山区滑坡孕灾因子分析及易发性评价——以江华县为例. 矿产勘查. 2024(10): 1878-1884 . 百度学术
    12. 李晓玮,郑晓钰,史昕宇. 北京西部采空区初勘及场地适宜性评价. 防灾减灾学报. 2024(04): 7-12 . 百度学术
    13. 支泽民,刘峰贵,周强,夏兴生,陈琼. 基于流域单元的地质灾害易发性评价——以西藏昌都市为例. 中国地质灾害与防治学报. 2023(01): 139-150 . 本站查看
    14. 王涛,李鹏洋,逯兴娅,苏生瑞,董永超. 陕西省韩城市地质灾害易发性评价. 甘肃科学学报. 2023(02): 55-62 . 百度学术
    15. 张群,冯辉,贾三满,张沁瑞,贾磊. 基于CF与Logistic回归模型耦合的地质灾害易发性评价——以北京市大清河流域生态涵养区为例. 城市地质. 2023(01): 17-25 . 百度学术
    16. 罗琳,刘雄,翁建,王锦阳,楼雄标. 某乡镇地质灾害风险评价. 科技通报. 2023(04): 93-102 . 百度学术
    17. 孙佩,杨良哲,康全国,张驰,尹伟,周凌云,易洁伟,王雯雯. 一般调查区地质灾害易发性评价——以咸丰县为例. 资源信息与工程. 2023(04): 95-98 . 百度学术
    18. 叶泽宇,徐尚智,刘欢欢,于家烁,翟淑花,冒建. 基于信息量与逻辑回归耦合模型的北京西山崩塌易发性评价. 城市地质. 2023(03): 9-15 . 百度学术
    19. 阳清青,余秋兵,张廷斌,易桂花,张恺. 基于GDIV模型的大渡河中游地区滑坡危险性评价与区划. 中国地质灾害与防治学报. 2023(05): 130-140 . 本站查看
    20. 王海芝,曾庆利,许冰,胡福根,于淼. 北京“7·21”特大暴雨诱发的地质灾害类型及其特征分析. 中国地质灾害与防治学报. 2022(02): 125-132 . 本站查看
    21. 焦伟之,张明,谢鑫鹏,李成文,刘涛,庞海松. 基于GIS与加权信息量模型的城镇地质灾害易发性评价——以大新镇为例. 安全与环境工程. 2022(04): 119-128 . 百度学术
    22. 简鹏,李文彦,张治家,时伟,党发宁,郭红东,李松. 基于多因素加权指数和法的区域地质灾害易发性评价研究——以麦积区为例. 甘肃地质. 2022(03): 63-72 . 百度学术
    23. 白光顺,杨雪梅,朱杰勇,张世涛,祝传兵,康晓波,孙滨,周琰嵩. 基于证据权法的昆明五华区地质灾害易发性评价. 中国地质灾害与防治学报. 2022(05): 128-138 . 本站查看
    24. 庄卓涵. 广州北部山区斜坡类地质灾害致灾机理及易发性分析——以广州从化良口—吕田一带为例. 地下水. 2022(06): 158-161 . 百度学术
    25. 王小东,罗园,付景保. 基于GIS的白龙江引水工程水源区地质灾害易发性评价. 南水北调与水利科技(中英文). 2022(06): 1231-1239 . 百度学术
    26. 郭富赟,宋晓玲,刘明霞. 黄河流域甘肃段地质灾害发育特征. 中国地质灾害与防治学报. 2021(05): 130-136 . 本站查看

    其他类型引用(6)

图(8)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  9
  • PDF下载量:  17
  • 被引次数: 32
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2024-04-18
  • 录用日期:  2025-01-01
  • 网络出版日期:  2025-01-05

目录

/

返回文章
返回