ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于证据权法的昆明五华区地质灾害易发性评价

白光顺, 杨雪梅, 朱杰勇, 张世涛, 祝传兵, 康晓波, 孙滨, 周琰嵩

白光顺,杨雪梅,朱杰勇,等. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(5): 128-138. DOI: 10.16031/j.cnki.issn.1003-8035.202203037
引用本文: 白光顺,杨雪梅,朱杰勇,等. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(5): 128-138. DOI: 10.16031/j.cnki.issn.1003-8035.202203037
BAI Guangshun, YANG Xuemei, ZHU Jieyong, et al. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 128-138. DOI: 10.16031/j.cnki.issn.1003-8035.202203037
Citation: BAI Guangshun, YANG Xuemei, ZHU Jieyong, et al. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 128-138. DOI: 10.16031/j.cnki.issn.1003-8035.202203037

基于证据权法的昆明五华区地质灾害易发性评价

详细信息
    作者简介:

    白光顺(1986-),男,山东巨野人,博士研究生,主要从事工程地质理论和应用研究。E-mail:baiguangshun@foxmail.com

    通讯作者:

    杨雪梅(1989-),女,云南丽江人,工程师,主要从事工程地质、测绘等工作和应用研究。E-mail:yangxuemeilj@foxmail.com

  • 中图分类号: P208;P694

Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method

  • 摘要: 地质灾害易发性评价是国土空间规划和区域地质灾害防灾减灾的重要依据。为探索适合云南高原低山丘陵区地质灾害易发性评价方法,论文选择云南省昆明市五华区为典型研究区,选择工程地质岩组、距断裂构造线距离、高程、坡度、坡向、坡面曲率、距公路线距离和土地利用类型等8个因素,应用基于贝叶斯理论的证据权法进行地质灾害易发性评价,通过对各因素各分级(分类)综合证据权重的近似学生化检验(Student-T)优化了各因素的分级(分类)方案。采用文中所构建模型评价得出的易发性分区结果表明,89.9%和9.1%的地灾点落入高和中易发区,对比分析显示建模结果与地质灾害发育情况吻合度高,较好地揭示了研究区地质灾害易发性特征,可为昆明市五华区及云南高原其它低山丘陵区地质灾害防治规划提供参考。
    Abstract: Geological hazard susceptibility assessment is an important basis for territorial space planning and geological hazard prevention and mitigation. In order to explore the evaluation method suitable for the geological hazard susceptibility of low hills and gullies in Yunnan plateau, Wuhua District of Kunming, Yunnan Province, China was selected as a typical study area. Eight factors including the engineering geology groups, distance from faults, elevation, slope, direction, curvature, distance from roads and land use covers were selected, and the weight evidence method based on Bayesian theory was applied to evaluate the susceptibility of geological hazards. After performing the Student-T test of the comprehensive evidence weight of each factor, the classification scheme of factors were optimized. The results of vulnerability zoning based on the evaluation of the model established in this paper showed that 89.9% and 9.1% of the geological hazard points fall into high and medium susceptibility areas. The comparative analysis showed that the modeling results are highly consistent with the geological hazards distribution, which better reveals the characteristics of geological hazards susceptibility in the study area. It can provide reference for the planning of geological hazards prevention in Wuhua District and other low hills and gullies areas of Yunnan plateau.
  • 查明与地质灾害有关的危险区域是地质灾害管理的重要工作,也是促进研究区人民生活和基础设施发展安全的重要依据[1],基于建模评价地质灾害易发性是重要而且有效的途径。

    应用经验式、数值模拟和统计方法对地质灾害易发性建模和评价,已经进行了许多研究[1-10]。其中,经验式方法基于现场观察和专家经验判断;数值模拟计算边坡的稳定性;统计方法部分基于实地观察和专家的先验知识,部分基于对地质灾害发生的权重或概率的统计计算,这类方法使用统计技术来评估诱发地质灾害的各种因素的相关作用,每个因素的重要性都是根据观察到的与地质灾害的关系来确定的。

    文中使用基于贝叶斯理论的证据权法,综合GIS技术评价研究区地质灾害易发性。证据权法是一种统计方法,最初应用于非空间、定量的医学诊断,以结合临床诊断的证据来预测疾病[11-12]。在地球科学中,该方法被广泛应用,如:矿产资源潜力评估和矿床预测[13-16],公路路基岩溶塌陷危险性评价[17]和滑坡易发性和危险性[1, 3, 18-23]

    文中选择云南高原滇中昆明盆地低山丘陵地带这一云南省地质灾害防治重点地区的典型代表,云南省省会昆明市的主要行政区之一,昆明市五华区作为研究对象,该区地质灾害易发性评价研究具有典型代表性,可向整个云南高原昆明盆地低山丘陵区和其他低山丘陵区推广,具有技术方法和社会经济意义。研究区面积381.6 km2,地势西北高东南低,昆明盆地内地形开阔低缓,北部山区地形崎岖,沟壑较发育。区域年降水量的80%以上集中在6—9月,年平均降水量608.4~887.0 mm。碳酸盐岩分布最广,约占全区面积的38.93%,其次为砂岩、泥岩、页岩,约占23.11%,岩浆岩主要为玄武岩,约占16.95%,主要分布在昆明盆地和其他小盆地的松散碎石土体约占11.36%,石英砂岩类约占7.56%,还发育一些岩脉;断裂构造较发育,以南北向构造为主[24-25]

    通过地质灾害风险普查获得了研究区地质灾害分布数据。根据调查分析,选择工程地质岩组、断裂构造、高程、坡度、坡向、坡面曲率、距公路距离和土地利用类型等8类因素纳入评价分析。地质数据收集自云南省地质局1∶20万昆明幅、武定幅区域地质调查报告和图件[24-25],12.5 m分辨率DEM(数字高程模型)收集自ASF,道路数据收集自OSM,土地利用类型数据收集自ESA(图1表1)。

    图  1  因素基础数据图
    Figure  1.  Basic data charts of factors
    表  1  数据简介
    Table  1.  Data introduction
    数据灾点及
    致灾要素
    类型来源
    地灾地灾点矢量点地质灾害风险普查
    地质工程地质岩组矢量面云南省地质局
    距断裂
    距离
    矢量线和缓冲区云南省地质局
    地形地貌高程栅格12.5 m DEM,
    https://asf.alaska.edu/
    坡度栅格根据DEM,应用ArcGIS提取
    坡向栅格根据DEM,应用ArcGIS提取
    坡面曲率栅格根据DEM,应用ArcGIS提取
    道路距公路
    距离
    矢量线缓冲区http://www.openstreetmap.org
    根据矢量线用ArcGIS制作
    土地利用
    类型
    土地利用
    类型
    栅格ESA WorldCover 10 m 2020,https://esa-worldcover.org/en
    下载: 导出CSV 
    | 显示表格

    现状发育地质灾害89处,滑坡73处,崩塌11处,泥石流4条,地面沉降1处,为小—中型,无大型,中型14处,小型75处,主要分布在研究区低山丘陵地貌区,盆地内仅发育1处(图2)。

    图  2  地质灾害分布图(底图为高程和山体阴影渲染)
    Figure  2.  Map of geological hazard distribution (The bottom was rendered by elevation and hillshade)

    选择指标“因子面积百分比A”“地灾数百分比B”和“比率(β=B/A)”表征地质灾害的空间分布特征、主控因素和成灾特征。β定义了地质灾害点在因素分级中相对于均匀分布的丰度,β>1表示相对丰度更高,β<1则相反。β>1的因素分级有(图3表2):高程1800~1850 m、1920~1950 m和1950~2000 m,坡度15°~25°、25°~35°和>35°,坡向北东、东、南东和北,坡面曲率−0.75~−0.28(凹形)、−0.28~−0.15(凹形)、−0.15~−0.05(凹形)和0.05~0.15(凸形),石英砂岩岩组和砂岩、泥岩、页岩岩组,距断层距离0~50 m、300~500 m和1000~2000 m,距主要公路距离0~50 m和50~100 m,草地和裸地/稀疏植被区域。这些因素分级内,发育了相对于均匀分布丰度更高的地质灾害,表征这些因素分级可能是研究区地质灾害的主控因素。

    图  3  各因素分级分区和地灾点数量相关性统计图
    Figure  3.  Statistical charts of correlation between the factors and the number of geological hazard points

    把研究区栅格单元化,利用条件概率计算证据因素图层所有单元对地质灾害发生的贡献权重[13-15, 26-27]。定义$ D $为已发生地质灾害的单元,$ \bar{D} $为未发生地质灾害的单元,$ B $为证据因素区内的单元,$ \bar{B} $为证据因素区外的单元。

    证据因素$ B $条件下$ D $的条件(后验)概率为:

    $$ { O}\left(D|B\right)={ O}\left(D\right)\frac{P\left(B\right|D)}{P(B|{\bar D})} $$ (1)

    式中:$ { O}\left(D\right) $—证据因素B的先验概率, ${{ O}}\left(D\right)=$ $\dfrac{\mathrm{事}\mathrm{件}\mathrm{将}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}{\mathrm{事}\mathrm{件}\mathrm{不}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}=\dfrac{P\left(D\right)}{1-P\left(D\right)}=$ $\dfrac{P\left(D\right)}{P({\bar D})} $

    $P\left(B\right|D)、 P(B|{\bar D})$——在地质灾害发生(D)和未发生 ($ \bar{D} $)时,证据因素B的条件 概率,取自然对数即是证据 权法中的正权重(证据因素 存在区的权重值)$ {W}^{+} $

    $$ {W}^+=\ln\frac{P\left(B\right|D)}{P\left(B|{\bar D}\right)} $$ (2)
    $$ P\left(B|D\right)=P\left(B\cap D\right)/P\left(D\right) $$ (3)
    $$ P(B|\bar{D})=P(B\cap \bar{D})/P(\bar{D}) $$ (4)

    $ D $$ B $的单元数N可表示为:

    $$ P\left(B|D\right)=N\left(B\cap D\right)/N\left(D\right) $$ (5)
    $$ P(B|\bar{D})=N(B\cap \bar{D})/N(\bar{D}) $$ (6)

    同式(1),在证据因素不存在的情况下($ \bar{B} $),$ D $的条件概率(后验)为:

    $$ {{ O}}(D|\bar{B})={{ O}}(D)\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (7)

    式中:$P(\bar{B}|D)/P(\bar{B}|\bar{D})$—取自然对数即是负权重(证据 因素不存在区的权重值)$ {W}^{-} $

    $$ {W}^-={\rm{ln}}\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (8)

    同式(3)—(6):

    $$ P(\bar{B}|D)=N(\bar{B}\cap D)/N(D) $$ (9)
    $$ P(\bar{B}|\bar{D})=N(\bar{B}\cap \bar{D})/N(\bar{D}) $$ (10)

    $N (B\cap D) + N (\bar{B}\cap D)=N(D)$$N (B\cap \bar{D}) + N (\bar{B}\cap \bar{D})= N(\bar{D})$,所以式(2)和式(8)可写为:

    $$ {W}^+={\rm{ln}}\left(\frac{N(B\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(B\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (11)
    $$ {W}^-={\rm{ln}}\left(\frac{N(\bar{B}\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(\bar{B}\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (12)

    根据式(11)和(12),使用ArcGIS空间分析工具执行权重$ {W}^{+} $$ {W}^{-} $计算。

    $ {W}^{+} $的大小表明证据因素的存在与地质灾害发生之间存在正相关关系。$ {W}^{-} $表示负相关,即证据因素存在抑制诱发地质灾害的作用。证据因素原始数据缺失区域的权重值取0。两个权重之间的差异$ {W}_{{\rm{f}}}={W}^{+}-{W}^{-} $,即综合权重,量化证据因素和地质灾害相关性大小。如果$ {W}_{{\rm{f}}} $为正,则证据因素对地质灾害有利,如果为负,则对滑坡不利。如果$ {W}_{{\rm{f}}} $接近于零,则表明证据因素与地质灾害的相关性不大。

    在上述权重值计算及分析的基础上,实施证据因素分类的优选,选择类间差异显著的证据因素类,归并不显著的证据因素类。选择近似学生化检验(Student-T)统计值进行显著性测试[15, 28]

    $$ {S tuden{t}}-{{T}}={W}_{{\rm{f}}}/{\sigma }_{{W}_{{\rm{f}}}}={W}_{{\rm{f}}}/\sqrt{{\sigma }_{{W}^+}^{2}+{\sigma }_{{W}^-}^{2}} $$ (13)

    式中:$ {\sigma }_{{W}^{+}}^{} $$ {\sigma }_{{W}^{-}}^{} $——分别是$ {W}^{+} $$ {W}^{-} $的标准差;

    Wf ——综合权重;

    ${\sigma }_{{W}_{{\rm{f}}}}$——综合权重标准差。

    当测试值的绝对值$|{S tuden{t}}-{ T}|$为1.96和2.326时,置信度达97.5%、99%,文中以$|{S tuden{t}}-{ T}|=2$作为阈值。先将证据因素划分为若干分级(分类),计算权重和标准差、${{S} tuden{t}}-{ T}$,将$|{S} tuden{t}-{ T} | < 2$的各分类视为显著性低并归为一类,保留$|{{S} tuden{t}}-{T}|\geqslant 2$的因素分类,然后重新计算归并后各分类的权重值。

    根据贝叶斯法则,任一单元$ K $为地质灾害的可能性,即对数后验概率可表示为[13-15, 26, 27]

    $$ F=\ln O\left(D|\sum _{i=1}^{n}{B}_{i}^{K\left(i\right)}\right)=\sum _{i=0}^{n}{W}_{i}^{K}+\ln O\left(D\right) $$ (14)

    式中:$ {B}_{i} $——第$ i $个证据因素层;

    $ K\left(i\right) $$ {W}_{i} $是第$ i $个证据因素存在或不存在的权 重,在第$ i $个证据因素层存在时是+,不存在 时是−。

    最后计算后验概率:

    $$ P=O/(1+O)=\exp\left(F\right)/\left(1+\exp\left(F\right)\right) $$ (15)

    后验概率的大小作为易发性高低的指标,值越大表示易发性越高,值越小表示易发性越低。

    证据权重计算结果(表2图4)与1.3节可相互印证。在地形高程方面,1800~1850 m、1920~1950 m和1950~2000 m段利于地质灾害发生,正权重0.5550、1.1758和0.6439。>35°和15°~25°的山体斜坡较易于地质灾害发生,正权重0.5436和0.3785。坡向因素各分级权重值均不高,表明坡向对地质灾害发生的驱动作用可能不太显著。坡面曲率结果显示,−0.75~−0.28(凹形)和−0.28~−0.15(凹形)两个凹形坡分级段较易于地质灾害发生,正权重0.5690和0.7577。工程地质岩组各岩组分类的正权重值总体不高,但砂岩、泥岩、页岩岩组的统计结果仍然表现出对地质灾害发生的较有利性,其正权重0.4474,高于排在第二位的石英砂岩岩组(正权重值为0.2947)。距断层距离和距主要公路距离因素统计结果均显示出了较明显的距离效应,即距断裂或主要公路远的地区与地质灾害发生负相关,距断裂0~50 m和距主要公路0~50 m、50~100 m易于地质灾害发生,其正权重0.7973、0.9820和0.5111。裸地或稀疏植被地区是易于地质灾害发生的区域,其正权重0.8719。

    表  2  因素证据权重计算结果表
    Table  2.  Calculation results of factor evidence weights
    因素因素分级因素面积
    百分比/%
    地灾数
    百分比/%
    正权重
    W+
    W+
    标准差${\sigma }_{{W}^{+}}^{} $
    负权重WW
    标准差${\sigma }_{{W}^{-}}^{} $
    综合权重
    $ {W}_{{\rm{f}}} $
    $ {W}_{{\rm{f}}} $的
    标准差${\sigma }_{{W}_{{\rm{f}}}} $
    StudentT分类
    归并
    归并后
    权重
    权重
    标准差
    高程/m<17350.010.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    1735~18000.360.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    1 800~1 8500.651.120.55501.0082−0.00480.10710.55981.01380.5522合并−0.27440.1607
    1 850~1 9009.5510.110.05740.3350−0.00630.11230.06360.35330.1801合并−0.27440.1607
    1 900~1 9206.814.49−0.41860.50150.02480.1090−0.44340.5133−0.8639合并−0.27440.1607
    1 920~1 9506.7321.351.17580.2329−0.17200.12001.34780.26205.144441.17580.2329
    1 950~2 00012.5023.600.64390.2202−0.13680.12180.78070.25163.103250.64390.2202
    2 000~2 10023.2511.24−0.73180.31690.14680.1131−0.87870.3365−2.611013−0.73180.3169
    2 100~2 20018.8620.220.07080.2369−0.01720.11920.08790.26520.3315合并−0.27440.1607
    2 200~2 30011.484.49−0.94360.50090.07670.1090−1.02030.5126−1.9903合并−0.27440.1607
    2 300~2 4007.023.37−0.73830.57860.03890.1084−0.77720.5887−1.3201合并−0.27440.1607
    2 400~2 5002.610.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    >2 5000.190.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    坡度/(°)<518.724.49−1.42970.50060.16200.1091−1.59160.5123−3.10685−1.42970.5006
    5~1538.3237.08−0.02880.17490.01740.1343−0.04620.2205−0.2093合并0.02210.1450
    15~2528.7241.570.37850.16550.20230.13920.58080.21632.685330.37850.1655
    25~3511.6012.360.06880.3030−0.00930.11380.07820.32370.2416合并0.02210.1450
    >352.644.490.54360.5040−0.01950.10900.56320.51571.0921合并0.02210.1450
    坡向北东9.7211.240.14600.3179−0.01710.11300.16310.33740.4833合并−0.00010.1065
    12.7715.730.21070.2688−0.03490.11600.24560.29280.8388合并−0.00010.1065
    南东16.9219.100.12220.2438−0.02680.11840.14900.27100.5496合并−0.00010.1065
    13.1611.24−0.15920.31750.02210.1130−0.18130.3370−0.5379合并−0.00010.1065
    南西10.5710.11−0.04480.33480.00520.1123−0.05000.3532−0.1415合并−0.00010.1065
    西13.456.74−0.69540.40920.07540.1103−0.77070.4238−1.8186合并−0.00010.1065
    北西14.5812.36−0.16670.30270.02590.1138−0.19260.3234−0.5955合并−0.00010.1065
    8.8213.480.42900.2908−0.05290.11450.48190.31251.5423合并−0.00010.1065
    坡面
    曲率
    −0.75~−0.28(凹形)3.205.620.56900.4509−0.02550.10960.59450.46401.2812合并0.09600.1367
    −0.28~−0.15(凹形)10.6422.470.75770.2258−0.14320.12090.90090.25623.517110.75770.2258
    −0.15~−0.05(凹形)19.6626.970.31970.2054−0.09620.12460.41590.24031.7311合并0.09600.1367
    −0.05~0.05(平坦)34.1816.85−0.71190.25880.23620.1169−0.94820.2840−3.33886−0.71190.2588
    0.05~0.15(凸形)17.5321.350.19900.2307−0.04780.12010.24680.26010.9489合并0.09600.1367
    0.15~0.28(凸形)11.005.62−0.67660.44830.05930.1097−0.73590.4615−1.5945合并0.09600.1367
    0.28~0.69(凸形)3.781.12−1.21941.00140.02750.1071−1.24691.0071−1.2381合并0.09600.1367
    工程
    地质
    岩组
    松散碎石土体13.156.74−0.67360.40920.07200.1103−0.74560.4238−1.7592合并−0.18440.1329
    石英砂岩7.5510.110.29470.3354−0.02830.11230.32300.35370.9131合并−0.18440.1329
    砂岩、泥岩、页岩23.0835.960.44740.1781−0.18440.13300.63180.22222.843030.44740.1781
    白云岩、灰岩38.8837.08−0.04910.17490.03010.1343−0.07930.2205−0.3596合并−0.18440.1329
    玄武岩16.9410.11−0.52060.33430.08000.1124−0.60050.3526−1.7029合并−0.18440.1329
    侵入岩脉0.290.000.00000.00000.00000.00000.00000.00000.0000合并−0.18440.1329
    距断层
    距离/m
    0~505.6312.360.79730.3046−0.07460.11370.87190.32522.681430.79730.3046
    50~1005.865.62−0.04290.44920.00260.1096−0.04550.4624−0.0985合并−0.07460.1137
    100~30019.8719.10−0.03970.24360.00960.1184−0.04930.2709−0.1822合并−0.07460.1137
    300~50016.1120.220.22990.2371−0.05080.11920.28060.26541.0574合并−0.07460.1137
    500~100026.1217.98−0.37640.25080.10560.1177−0.48200.2770−1.7397合并−0.07460.1137
    1000~2 00022.7524.720.08400.2143−0.02610.12270.11010.24690.4457合并−0.07460.1137
    >20003.660.000.00000.00000.00000.00000.00000.00000.0000合并−0.07460.1137
    距主要
    公路
    距离/m
    0~5011.1129.210.98200.1986−0.22960.12651.21160.23545.146930.98200.1986
    50~1008.1413.480.51110.2909−0.06050.11450.57160.31261.8284合并−0.12570.1296
    100~30020.6220.22−0.01960.23680.00500.1192−0.02470.2651−0.0931合并−0.12570.1296
    300~50012.533.37−1.31950.57810.10050.1084−1.42010.5882−2.41444−1.31950.5781
    500~100017.2116.85−0.02100.25940.00430.1168−0.02530.2845−0.0889合并−0.12570.1296
    1000~2 00016.6710.11−0.50380.33430.07650.1124−0.58030.3527−1.6455合并−0.12570.1296
    >200013.726.74−0.71530.40920.07850.1103−0.79390.4238−1.8733合并−0.12570.1296
    土地
    利用
    类型
    林地54.7028.09−0.07940.14970.08830.1515−0.16760.2130−0.7870合并−0.12870.1183
    灌木0.140.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
    草地7.398.990.19790.3556−0.01760.11160.21550.37270.5783合并−0.12870.1183
    耕地16.5410.11−0.49550.33430.07490.1124−0.57040.3527−1.6174合并−0.12870.1183
    建筑12.8211.24−0.13320.31750.01820.1130−0.15140.3370−0.4492合并−0.12870.1183
    裸地或稀疏植被8.0941.570.87190.2452−0.12870.11831.00060.27233.674640.87190.2452
    开阔水域0.320.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
    下载: 导出CSV 
    | 显示表格

    采用接受者操作特性曲线(Receiver Operating Characteristic Curve,ROC)和ROC 曲线下与坐标轴围成的面积(Area Under Curve,AUC[29-32]评估模型拟合精度。模型拟合精度越好则AUC越接近1,0.7~0.9时表示较好。文中建立的证据权法模型的AUC为80.4%,拟合精度优异(图5)。

    图  4  因素证据权重计算结果图
    Figure  4.  Calculation results charts of factor evidence weights
    图  5  模型预测性能ROC曲线图
    Figure  5.  ROC curve of model prediction performance

    综合自然间断点分级和地质灾害分布,圈定了高易发区、中易发区和低易发区(表3图6),其中高易发区188.55 km2(占研究区总面积的49.41%),中易发区152.21 km2(占研究区总面积的39.88%),89.9%和9.1%的地灾点落入高易发区和中易发区,显示易发性分区符合已发地质灾害分布,模型预测性能较好。

    表  3  地质灾害易发性分区表
    Table  3.  Form of geological hazard susceptibility zoning
    易发性
    分区
    面积/
    km2
    占总面积/
    %
    编号面积/
    km2
    占大区/
    面积%
    灾点数灾点密度/
    (个·km−2)
    地质灾害
    高易发区(Ⅰ)
    188.5549.411152.3280.79640.41
    217.939.5190.50
    316.118.5480.94
    42.191.1610.46
    地质灾害
    中易发区(Ⅱ)
    152.2139.8811.300.85
    218.8212.3620.11
    315.039.8710.07
    412.928.49
    518.5112.1620.11
    69.125.99
    744.6629.34
    812.348.1110.08
    911.737.71
    107.785.11
    低易发区(Ⅲ)47.4012.42147.4010010.02
    下载: 导出CSV 
    | 显示表格
    图  6  地质灾害易发性栅格图
    Figure  6.  Grid map of geological hazard susceptibility

    结合地质环境因素特征分析西部高易发区(图6蓝色框范围内、图7)主要位于砂岩、泥岩和页岩岩组,断裂构造较密集,以山谷斜坡地貌为主,坡度15°~25°和>35°较陡峭斜坡范围成片发育且面积较广,主要公路建于本区山谷,裸地/稀疏植被和草地连片覆盖范围较大。预测圈定的高易发区的这些分布特征,与上文分析得到的地质灾害控制因素特征吻合,预测结果符合地质灾害空间分布特征。

    图  7  典型区因素和地质灾害分布图
    Figure  7.  Factors and geological hazards in typical zone

    (1)“因子面积百分比A”“地灾数百分比B”和“比率β”,以及各因素各分类地质灾害证据权重可以定量地分析各因素与地质灾害发生的相关性。

    (2)圈定高易发区188.55 km2(占总面积的49.41%),中易发区152.21 km2(占总面积的39.88%),易发性分区图具有较好的等级区分度。

    (3)通过证据权法绘制的地质灾害易发性图可以有效地预测该区地质灾害,模型拟合精度AUC=80.4%。89.9%和9.1%的地灾点落入高和中易发区,建模结果与实际地质灾害发育情况吻合度高,较好地揭示了研究区地质灾害易发性特征。

    (4)证据权法在研究区这类云南高原低山丘陵区有效性高,方法理论清晰,较为成熟,由数据驱动,参数定义明确,易于一线工程师推广使用。同时,该方法权重的估计和模型预测性能受预测因子选择、因子数据空间分辨率、因子分级影响较大,具体工作中宜对这些问题进行深入研究和统计分析。建议通过对因子分级进行显著性测试实施优选,减小对权重的高估或低估,提高模型效能。

  • 图  1   因素基础数据图

    Figure  1.   Basic data charts of factors

    图  2   地质灾害分布图(底图为高程和山体阴影渲染)

    Figure  2.   Map of geological hazard distribution (The bottom was rendered by elevation and hillshade)

    图  3   各因素分级分区和地灾点数量相关性统计图

    Figure  3.   Statistical charts of correlation between the factors and the number of geological hazard points

    图  4   因素证据权重计算结果图

    Figure  4.   Calculation results charts of factor evidence weights

    图  5   模型预测性能ROC曲线图

    Figure  5.   ROC curve of model prediction performance

    图  6   地质灾害易发性栅格图

    Figure  6.   Grid map of geological hazard susceptibility

    图  7   典型区因素和地质灾害分布图

    Figure  7.   Factors and geological hazards in typical zone

    表  1   数据简介

    Table  1   Data introduction

    数据灾点及
    致灾要素
    类型来源
    地灾地灾点矢量点地质灾害风险普查
    地质工程地质岩组矢量面云南省地质局
    距断裂
    距离
    矢量线和缓冲区云南省地质局
    地形地貌高程栅格12.5 m DEM,
    https://asf.alaska.edu/
    坡度栅格根据DEM,应用ArcGIS提取
    坡向栅格根据DEM,应用ArcGIS提取
    坡面曲率栅格根据DEM,应用ArcGIS提取
    道路距公路
    距离
    矢量线缓冲区http://www.openstreetmap.org
    根据矢量线用ArcGIS制作
    土地利用
    类型
    土地利用
    类型
    栅格ESA WorldCover 10 m 2020,https://esa-worldcover.org/en
    下载: 导出CSV

    表  2   因素证据权重计算结果表

    Table  2   Calculation results of factor evidence weights

    因素因素分级因素面积
    百分比/%
    地灾数
    百分比/%
    正权重
    W+
    W+
    标准差${\sigma }_{{W}^{+}}^{} $
    负权重WW
    标准差${\sigma }_{{W}^{-}}^{} $
    综合权重
    $ {W}_{{\rm{f}}} $
    $ {W}_{{\rm{f}}} $的
    标准差${\sigma }_{{W}_{{\rm{f}}}} $
    StudentT分类
    归并
    归并后
    权重
    权重
    标准差
    高程/m<17350.010.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    1735~18000.360.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    1 800~1 8500.651.120.55501.0082−0.00480.10710.55981.01380.5522合并−0.27440.1607
    1 850~1 9009.5510.110.05740.3350−0.00630.11230.06360.35330.1801合并−0.27440.1607
    1 900~1 9206.814.49−0.41860.50150.02480.1090−0.44340.5133−0.8639合并−0.27440.1607
    1 920~1 9506.7321.351.17580.2329−0.17200.12001.34780.26205.144441.17580.2329
    1 950~2 00012.5023.600.64390.2202−0.13680.12180.78070.25163.103250.64390.2202
    2 000~2 10023.2511.24−0.73180.31690.14680.1131−0.87870.3365−2.611013−0.73180.3169
    2 100~2 20018.8620.220.07080.2369−0.01720.11920.08790.26520.3315合并−0.27440.1607
    2 200~2 30011.484.49−0.94360.50090.07670.1090−1.02030.5126−1.9903合并−0.27440.1607
    2 300~2 4007.023.37−0.73830.57860.03890.1084−0.77720.5887−1.3201合并−0.27440.1607
    2 400~2 5002.610.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    >2 5000.190.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    坡度/(°)<518.724.49−1.42970.50060.16200.1091−1.59160.5123−3.10685−1.42970.5006
    5~1538.3237.08−0.02880.17490.01740.1343−0.04620.2205−0.2093合并0.02210.1450
    15~2528.7241.570.37850.16550.20230.13920.58080.21632.685330.37850.1655
    25~3511.6012.360.06880.3030−0.00930.11380.07820.32370.2416合并0.02210.1450
    >352.644.490.54360.5040−0.01950.10900.56320.51571.0921合并0.02210.1450
    坡向北东9.7211.240.14600.3179−0.01710.11300.16310.33740.4833合并−0.00010.1065
    12.7715.730.21070.2688−0.03490.11600.24560.29280.8388合并−0.00010.1065
    南东16.9219.100.12220.2438−0.02680.11840.14900.27100.5496合并−0.00010.1065
    13.1611.24−0.15920.31750.02210.1130−0.18130.3370−0.5379合并−0.00010.1065
    南西10.5710.11−0.04480.33480.00520.1123−0.05000.3532−0.1415合并−0.00010.1065
    西13.456.74−0.69540.40920.07540.1103−0.77070.4238−1.8186合并−0.00010.1065
    北西14.5812.36−0.16670.30270.02590.1138−0.19260.3234−0.5955合并−0.00010.1065
    8.8213.480.42900.2908−0.05290.11450.48190.31251.5423合并−0.00010.1065
    坡面
    曲率
    −0.75~−0.28(凹形)3.205.620.56900.4509−0.02550.10960.59450.46401.2812合并0.09600.1367
    −0.28~−0.15(凹形)10.6422.470.75770.2258−0.14320.12090.90090.25623.517110.75770.2258
    −0.15~−0.05(凹形)19.6626.970.31970.2054−0.09620.12460.41590.24031.7311合并0.09600.1367
    −0.05~0.05(平坦)34.1816.85−0.71190.25880.23620.1169−0.94820.2840−3.33886−0.71190.2588
    0.05~0.15(凸形)17.5321.350.19900.2307−0.04780.12010.24680.26010.9489合并0.09600.1367
    0.15~0.28(凸形)11.005.62−0.67660.44830.05930.1097−0.73590.4615−1.5945合并0.09600.1367
    0.28~0.69(凸形)3.781.12−1.21941.00140.02750.1071−1.24691.0071−1.2381合并0.09600.1367
    工程
    地质
    岩组
    松散碎石土体13.156.74−0.67360.40920.07200.1103−0.74560.4238−1.7592合并−0.18440.1329
    石英砂岩7.5510.110.29470.3354−0.02830.11230.32300.35370.9131合并−0.18440.1329
    砂岩、泥岩、页岩23.0835.960.44740.1781−0.18440.13300.63180.22222.843030.44740.1781
    白云岩、灰岩38.8837.08−0.04910.17490.03010.1343−0.07930.2205−0.3596合并−0.18440.1329
    玄武岩16.9410.11−0.52060.33430.08000.1124−0.60050.3526−1.7029合并−0.18440.1329
    侵入岩脉0.290.000.00000.00000.00000.00000.00000.00000.0000合并−0.18440.1329
    距断层
    距离/m
    0~505.6312.360.79730.3046−0.07460.11370.87190.32522.681430.79730.3046
    50~1005.865.62−0.04290.44920.00260.1096−0.04550.4624−0.0985合并−0.07460.1137
    100~30019.8719.10−0.03970.24360.00960.1184−0.04930.2709−0.1822合并−0.07460.1137
    300~50016.1120.220.22990.2371−0.05080.11920.28060.26541.0574合并−0.07460.1137
    500~100026.1217.98−0.37640.25080.10560.1177−0.48200.2770−1.7397合并−0.07460.1137
    1000~2 00022.7524.720.08400.2143−0.02610.12270.11010.24690.4457合并−0.07460.1137
    >20003.660.000.00000.00000.00000.00000.00000.00000.0000合并−0.07460.1137
    距主要
    公路
    距离/m
    0~5011.1129.210.98200.1986−0.22960.12651.21160.23545.146930.98200.1986
    50~1008.1413.480.51110.2909−0.06050.11450.57160.31261.8284合并−0.12570.1296
    100~30020.6220.22−0.01960.23680.00500.1192−0.02470.2651−0.0931合并−0.12570.1296
    300~50012.533.37−1.31950.57810.10050.1084−1.42010.5882−2.41444−1.31950.5781
    500~100017.2116.85−0.02100.25940.00430.1168−0.02530.2845−0.0889合并−0.12570.1296
    1000~2 00016.6710.11−0.50380.33430.07650.1124−0.58030.3527−1.6455合并−0.12570.1296
    >200013.726.74−0.71530.40920.07850.1103−0.79390.4238−1.8733合并−0.12570.1296
    土地
    利用
    类型
    林地54.7028.09−0.07940.14970.08830.1515−0.16760.2130−0.7870合并−0.12870.1183
    灌木0.140.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
    草地7.398.990.19790.3556−0.01760.11160.21550.37270.5783合并−0.12870.1183
    耕地16.5410.11−0.49550.33430.07490.1124−0.57040.3527−1.6174合并−0.12870.1183
    建筑12.8211.24−0.13320.31750.01820.1130−0.15140.3370−0.4492合并−0.12870.1183
    裸地或稀疏植被8.0941.570.87190.2452−0.12870.11831.00060.27233.674640.87190.2452
    开阔水域0.320.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
    下载: 导出CSV

    表  3   地质灾害易发性分区表

    Table  3   Form of geological hazard susceptibility zoning

    易发性
    分区
    面积/
    km2
    占总面积/
    %
    编号面积/
    km2
    占大区/
    面积%
    灾点数灾点密度/
    (个·km−2)
    地质灾害
    高易发区(Ⅰ)
    188.5549.411152.3280.79640.41
    217.939.5190.50
    316.118.5480.94
    42.191.1610.46
    地质灾害
    中易发区(Ⅱ)
    152.2139.8811.300.85
    218.8212.3620.11
    315.039.8710.07
    412.928.49
    518.5112.1620.11
    69.125.99
    744.6629.34
    812.348.1110.08
    911.737.71
    107.785.11
    低易发区(Ⅲ)47.4012.42147.4010010.02
    下载: 导出CSV
  • [1]

    REGMI N R,GIARDINO J R,VITEK J D. Modeling susceptibility to landslides using the weight of evidence approach:western Colorado,USA[J]. Geomorphology,2010,115(1/2):172 − 187. DOI: 10.1016/j.geomorph.2009.10.002

    [2]

    DU J,GLADE T,WOLDAI T,et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley,Tibet,Chinese Himalayas[J]. Engineering Geology,2020,270:105572. DOI: 10.1016/j.enggeo.2020.105572

    [3]

    GOYES-PEÑAFIEL P,HERNANDEZ-ROJAS A. Landslide susceptibility index based on the integration of logistic regression and weights of evidence:A case study in Popayan,Colombia[J]. Engineering Geology,2021,280:105958. DOI: 10.1016/j.enggeo.2020.105958

    [4]

    BĂLTEANU D,MICU Mihai,JURCHESCU M,et al. National-scale landslide susceptibility map of Romania in a European methodological framework[J]. Geomorphology,2020,371:107432. DOI: 10.1016/j.geomorph.2020.107432

    [5]

    SMITH H G,SPIEKERMANN R,BETTS H,et al. Comparing methods of landslide data acquisition and susceptibility modelling:examples from New Zealand[J]. Geomorphology,2021,381:107660. DOI: 10.1016/j.geomorph.2021.107660

    [6] 黄立鑫,郝君明,李旺平,等. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价—以甘肃岷县为例[J]. 中国地质灾害与防治学报,2021,32(6):116 − 126. [HUANG Lixin,HAO Junming,LI Wangping,et al. Landslide susceptibility assessment by the coupling method of RBF neural network and information value:A case study in Min Xian,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):116 − 126. (in Chinese with English abstract)
    [7] 廖小平,徐风光,蔡旭东,等. 香丽高速公路边坡地质灾害发育特征与易发性区划[J]. 中国地质灾害与防治学报,2021,32(5):121 − 129. [LIAO Xiaoping,XU Fengguang,CAI Xudong,et al. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):121 − 129. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-15
    [8] 罗守敬,王珊珊,付德荃. 北京山区突发性地质灾害易发性评价[J]. 中国地质灾害与防治学报,2021,32(4):126 − 133. [LUO Shoujing,WANG Shanshan,FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):126 − 133. (in Chinese with English abstract)
    [9] 吴赛男,田毅. 我国单体滑坡模拟和区域滑坡易发性评价研究进展[J]. 中国地质灾害与防治学报,2019,30(3):113 − 119. [WU Sainan,TIAN Yi. Review on progress of individual landslide simulation and assessment of reginal landslide susceptibility in China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):113 − 119. (in Chinese with English abstract)
    [10] 闫怡秋,杨志华,张绪教,等. 基于加权证据权模型的青藏高原东部巴塘断裂带滑坡易发性评价[J]. 现代地质,2021,35(1):26 − 37. [YAN Yiqiu,YANG Zhihua,ZHANG Xujiao,et al. Landslide susceptibility assessment based on weight-of-evidence modeling of the Batang fault zone,eastern Tibetan Plateau[J]. Geoscience,2021,35(1):26 − 37. (in Chinese with English abstract)
    [11]

    LUSTED L B. An introduction to medical decision making[J]. American Journal of Physical Medicine & Rehabilitation,1970,49(5):322.

    [12]

    SPIEGELHALTER D J,KNILL-JONES R P. Statistical and knowledge-based approaches to clinical decision-support systems,with an application in gastroenterology[J]. Journal of the Royal Statistical Society Series A (General),1984,147(1):35. DOI: 10.2307/2981737

    [13]

    BONHAM-CARTER G F, AGTERBERG F P, WRIGHT D F. Weights of evidence modelling: A new approach to mapping mineral potential[R]. Natural Resources Canada/CMSS/Information Management, 1990.

    [14]

    AGTERBERG F P. Combining indicator patterns in weights of evidence modeling for resource evaluation[J]. Nonrenewable Resources,1992,1(1):39 − 50. DOI: 10.1007/BF01782111

    [15]

    AGTERBERG F P, BONHARN-CARTER G F. Weights of evidence modeling and weighted logistic regression for mineral potential mapping[M]. Computers in Geology - 25 Years of Progress. 13 − 32: Oxford University Press, 1994.

    [16]

    CARRANZA E,HALE M. Spatial association of mineral occurrences and curvilinear geological features[J]. Mathematical Geology,2002,34:203 − 221. DOI: 10.1023/A%3A1014416319335

    [17] 孙琳,任娜娜,李云安,等. 基于证据权法的公路路基岩溶塌陷危险性评价[J]. 中国地质灾害与防治学报,2019,30(3):94 − 100. [SUN Lin,REN Nana,LI Yunan,et al. Risk assessment on karst collapse of the highway subgrade based on weights of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):94 − 100. (in Chinese with English abstract)
    [18] 刘璐瑶, 高惠瑛. 基于证据权与Logistic回归模型耦合的滑坡易发性评价[J/OL]. 工程地质学报. https://doi.org/10.13544/j.cnki.jeg.2020-482.

    LIU Luyao, GAO Huiying. Landslide susceptibility assessment based on coupling of woe model and logistic regression model[J/OL]. Journal of Engineering Geology. https://doi.org/10.13544/j.cnki.jeg.2020-482. (in Chinese with English abstract)

    [19]

    CHEN L F,GUO H X,GONG P S,et al. Landslide susceptibility assessment using weights-of-evidence model and cluster analysis along the highways in the Hubei section of the Three Gorges Reservoir Area[J]. Computers & Geosciences,2021,156:104899. DOI: 10.1016/j.cageo.2021.104899

    [20]

    ALSABHAN A H,SINGH K,SHARMA A,et al. Landslide susceptibility assessment in the Himalayan range based along Kasauli - Parwanoo Road corridor using weight of evidence,information value,and frequency ratio[J]. Journal of King Saud University - Science,2022,34(2):101759. DOI: 10.1016/j.jksus.2021.101759

    [21]

    SAHA A,SAHA S. Comparing the efficiency of weight of evidence,support vector machine and their ensemble approaches in landslide susceptibility modelling:a study on Kurseong region of Darjeeling Himalaya,India[J]. Remote Sensing Applications:Society and Environment,2020,19:100323. DOI: 10.1016/j.rsase.2020.100323

    [22] 黄发明,石雨,欧阳慰平,等. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测[J]. 土木与环境工程学报(中英文),2022,44(5):1 − 15. [HUANG Faming,SHI Yu,OUYANG Weiping,et al. Landslide susceptibility prediction modeling based on weight of evidence and Chi-square automatic interactive detection[J]. Journal of Civil and Environmental Engineering,2022,44(5):1 − 15. (in Chinese with English abstract)
    [23] 杨华阳,许向宁,杨鸿发. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报,2020,31(3):20 − 29. [YANG Huayang,XU Xiangning,YANG Hongfa. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):20 − 29. (in Chinese with English abstract)
    [24] 云南省地质局第二区测队. 昆明幅G-48-25 1/20万地质调查报告[R]. 昆明: 云南省地质局, 1971

    The Second Regional Survey Bureau. Kunming G-48-25 1/200000 Geological survey report[R]. Kunming: Yunnan Geological Bureau, 1971. (in Chinese with English abstract)

    [25] 云南省地质局第二区测大队. 武定幅G-48-19 1/20万地质图, 矿产图及其说明书[R]. 昆明: 云南省地质局, 1969

    The Second Regional Survey Bureau. Wuding G-48-19 1/200000 geological map, mineral map and description[R]. Kunming: Yunnan Geological Bureau, 1969. (in Chinese)

    [26]

    BONHAM-CARTER G F. Geographic information systems for geoscientists: Modelling with GIS[M]. Canada: Pergamon, 1994.

    [27]

    CARTER GF B,AGTERBERG F P,WRIGHT D F. Integration of geological datasets for gold exploration in Nova Scotia[J]. photogrammetric Engineering & Remote Sensing,1990,54(11):1585 − 1592.

    [28]

    AGTERBERG F P, BONHAM-CARTER G F, WRIGHT D F. Statistical pattern integration for mineral exploration[M].Computer Applications in Resource Estimation Amsterdam: Elsevier, 1990: 1 − 21.

    [29]

    HOYER A,KUSS O. Meta-analysis of full ROC curves with flexible parametric distributions of diagnostic test values[J]. Research Synthesis Methods,2020,11(2):301 − 313. DOI: 10.1002/jrsm.1395

    [30]

    WALKER S P. The ROC curve redefined - optimizing sensitivity (and specificity) to the lived reality of cancer[J]. The New England Journal of Medicine,2019,380(17):1594 − 1595. DOI: 10.1056/NEJMp1814951

    [31]

    OMAR L,IVRISSIMTZIS I. Using theoretical ROC curves for analysing machine learning binary classifiers[J]. Pattern Recognition Letters,2019,128:447 − 451. DOI: 10.1016/j.patrec.2019.10.004

    [32] 王高峰, 郭宁, 邓兵, 等. 不同组合模型区域滑坡易发性及精度分析[J]. 西北地质,2021,54(2):259 − 272. [WANG Gaofeng, GUO Ning, DENG Bing, et al. Analysis of landslide susceptibility and accuracy in different combination models[J]. Northwestern Geology,2021,54(2):259 − 272. (in Chinese with English abstract)
  • 期刊类型引用(23)

    1. 马明明,伍尚前,谢猛,童鹏,袁晓波. 决策树分类在铁路沿线桉树提取及滑坡隐患识别中的应用——以贵广高铁广西段为例. 中国地质灾害与防治学报. 2025(01): 37-45 . 本站查看
    2. 刘亚静,刘红健. 基于信息量-随机森林模型的地震带地质灾害易发性评价:以松潘-较场地震带为例. 科学技术与工程. 2024(01): 143-154 . 百度学术
    3. 黄海,江思义,李海良,李春玲,吴秋菊. 岩溶地区危岩和岩质崩塌易发性评价研究——以广西贺州市平桂区为例. 成都理工大学学报(自然科学版). 2024(01): 137-151 . 百度学术
    4. 刘玥,申玉松,李旭,张迪. 基于不同耦合模型的区域地质灾害易发性评价——以河南商城县为例. 中国地质调查. 2024(01): 83-92 . 百度学术
    5. 高茂宁,魏冠军,雷传金,张沛. 顾及时序InSAR的海东市辖区滑坡敏感性评价. 地理空间信息. 2024(05): 97-101 . 百度学术
    6. 石文君,王宇栋,解晋航,李章杰,梁形形. 基于多种模型对比的寻甸县地质灾害易发性分析. 矿产勘查. 2024(06): 1092-1102 . 百度学术
    7. 寸得欣,令狐昌卫,马一奇,尹林虎,陈庆松,刘振南,涂春霖. 基于GIS和加权信息量模型的富源县地质灾害易发性评价. 科学技术与工程. 2024(18): 7563-7573 . 百度学术
    8. 冯振,陈亮,王立朝,侯圣山,田怡帆,刘明学. 区域地质灾害易发性评价的证据权法原理与实践. 地质通报. 2024(07): 1255-1265 . 百度学术
    9. 张宇,简季,郝利娜,杨鑫. 基于IV-MLP耦合模型的龙陵县滑坡易发性评价. 物探化探计算技术. 2024(05): 618-626 . 百度学术
    10. 桂富羽,史正涛,喜文飞,付尧,郭峻杞. 基于证据权模型的滑坡灾害易发性评价研究——以普洱市为例. 城市勘测. 2024(05): 188-193+198 . 百度学术
    11. 梁峰,江攀和. 基于IVM-CF耦合模型的贵定县滑坡地质灾害易发性评价. 水利水电技术(中英文). 2024(S2): 669-677 . 百度学术
    12. 裴鹏程,黄帅,袁静,张智康. 走滑断层作用下上覆土层的变形破坏机理. 中国地质灾害与防治学报. 2024(06): 115-127 . 本站查看
    13. 赖波,赵风顺,江金进,江山,江宁,李俊生. 基于AHP-信息量法的珠海市地质灾害风险评价. 华南地质. 2023(01): 147-156 . 百度学术
    14. 阮征,周少伟,姚胜,田垚. 黄土高原腹地地质灾害致灾因素分析及易发性评价. 科技导报. 2023(10): 115-124 . 百度学术
    15. 王伟中,李树兴,杨成,许涛,宋飞,曹小红,李浩然,王伟华. 基于GIS和证据权模型的山阳县地质灾害易发性评价. 新疆地质. 2023(02): 262-269 . 百度学术
    16. 黄鑫,吴珍云,丁德建,李希星,石祖峰,祝民强,孙彬涵. 基于信息量-逻辑回归模型的江西省婺源县地质灾害易发性评价. 东华理工大学学报(自然科学版). 2023(03): 259-268 . 百度学术
    17. 曾斌,吕权儒,寇磊,艾东,许汇源,袁晶晶. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价. 中国地质灾害与防治学报. 2023(04): 105-113 . 本站查看
    18. 胡杨,张紫昭,林世河. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价. 工程地质学报. 2023(04): 1350-1363 . 百度学术
    19. 张潇远,苏巧梅,赵财胜,朱月琴,李凯新,范锦龙,白东升. 一种利用贝叶斯算法优化XGBoost的滑坡易发性评价方法. 测绘科学. 2023(06): 140-150 . 百度学术
    20. 张华湘,孙乾征,樊善兴,杨子林. 滑坡易发性评价方法和精度比较——以贵州省大方县为例. 贵州地质. 2023(03): 302-309+295 . 百度学术
    21. 龚芯磊,张斌,高金利,杨洪森. 基于斜坡单元尺度AHP-信息量模型的重点区域地质灾害风险评价——以贵州省紫云县中部重点区为例. 贵州地质. 2023(03): 310-320 . 百度学术
    22. 谭燕,崔雨,金华丽,方龙建,葛鹏,付乐意. 基于信息量模型及层次分析法的镇江丹徒区滑坡崩塌地质灾害易发性评价. 昆明冶金高等专科学校学报. 2023(04): 7-15 . 百度学术
    23. 董凯,王永卿,蒲秀勇,梁凯丽. 基于信息量法的广西南宁市武鸣区地质灾害易发性评价. 农业灾害研究. 2023(09): 300-303 . 百度学术

    其他类型引用(8)

图(7)  /  表(3)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  217
  • PDF下载量:  186
  • 被引次数: 31
出版历程
  • 收稿日期:  2022-03-23
  • 修回日期:  2022-05-11
  • 录用日期:  2022-05-12
  • 网络出版日期:  2022-08-24
  • 刊出日期:  2022-10-19

目录

/

返回文章
返回