ISSN 1003-8035 CN 11-2852/P

    基于GDIV模型的大渡河中游地区滑坡危险性评价与区划

    阳清青, 余秋兵, 张廷斌, 易桂花, 张恺

    阳清青,余秋兵,张廷斌,等. 基于GDIV模型的大渡河中游地区滑坡危险性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5): 130-140. DOI: 10.16031/j.cnki.issn.1003-8035.202208014
    引用本文: 阳清青,余秋兵,张廷斌,等. 基于GDIV模型的大渡河中游地区滑坡危险性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5): 130-140. DOI: 10.16031/j.cnki.issn.1003-8035.202208014
    YANG Qingqing,YU Qiubing,ZHANG Tingbin,et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 130-140. DOI: 10.16031/j.cnki.issn.1003-8035.202208014
    Citation: YANG Qingqing,YU Qiubing,ZHANG Tingbin,et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 130-140. DOI: 10.16031/j.cnki.issn.1003-8035.202208014

    基于GDIV模型的大渡河中游地区滑坡危险性评价与区划

    基金项目: 国家自然科学基金项目(41801099)
    详细信息
      作者简介:

      阳清青(1997-),女,四川南充人,硕士研究生,主要从事环境遥感研究。E-mail:2020050063@stu.cdut.edu.cn

      通讯作者:

      余秋兵(1989-),男,四川南充人,硕士,工程师,主要从事地质构造与地质调查研究工作。E-mail:yu8ye4@yeah.net

    • 中图分类号: P642.22

    Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model

    • 摘要: 区域地质灾害评价是减灾防治的重要非工程手段,构建区域滑坡危险性评价模型,对提高地质灾害评价精度和防治效率具有重要意义。文章以滑坡频发的大渡河中游地区为研究区,初选高程、坡度、坡向、地震动参数、土壤类型、工程地质岩组、年平均降雨量和地形湿度指数(TWI)等13个因子,建立滑坡危险性初级评价指标体系。考虑各因子对滑坡形成贡献程度的不同和目前常权栅格叠加方式对滑坡危险性评价结果精度的影响,引入了地理探测器和变权栅格叠加,构建了地理探测器、信息量法和变权栅格叠加的组合模型(GDIV模型)。基于2021年四川省1∶50 000地质灾害风险调查中313处滑坡地质灾害隐患点,开展基于GDIV模型的大渡河中游地区滑坡危险性评价,并与逻辑回归模型和信息量模型的组合模型(LRI模型)评价结果进行对比分析。结果表明:研究区以中危险及以下危险区为主,占总面积的78.3%,极高和高危险区主要分布在大渡河、革什扎河和东谷河两岸的低海拔地区;与LRI模型相比,基于GDIV模型的评价结果精度更高,其受试者工作特征(ROC)曲线的线下面积(AUC)值为0.917。文章提出的GDIV模型提高了区域滑坡危险性评价精度,可为类似地区地质灾害评价提供方法参考。
      Abstract: Regional geological hazard assessment is an important non-engineering approach for disaster reduction and prevention. Constructing a regional landslide hazard assessment model is of great significance in improving the accuracy of geological hazard evaluation and the efficiency of prevention. This study focuses on the frequent landslide occurrence in the middle reach area of the Dadu River and selects 13 primary factors, including elevation, slope, aspect, seismic parameters, soil type, engineering geological lithology, annual average rainfall, and topographic wetness index (TWI), to establish a primary evaluation index system for landslide hazard. Considering the varying contributions of each factor to landslide formation and the impact of the commonly used weighted raster superposition methods on assessment accuracy, the geographic detector and variable weight raster overlay techniques are introduced, leading to the development of the GDIV model. Using data from 313 landslide hazard points identified in the 2021 geological hazard risk survey at a scale of 1∶50,000 in Sichuan Province, the landslide hazard assessment in the middle reach area of the Dadu River basin is conducted based on the GDIV model, and the evaluation results are compared with those of the LRI model. The results show that the study area is predominantly characterized by middle and lower risk areas, accounting for 78.3% of the total area. The extremely high and high-risk areas are primarily located in the low-elevation regions along the banks of Dadu River, Geshizha River, and Donggu River. Compared to the LRI model, the evaluation results based on the GDIV model exhibit higher accuracy, with an area under the receiver operating characteristics (ROC) curve of 0.917. The GDIV model proposed in this paper improves the accuracy of regional Landslide hazards assessment, and serves as a valuable reference for similar geological disaster evaluations in other areas.
    • 查明与地质灾害有关的危险区域是地质灾害管理的重要工作,也是促进研究区人民生活和基础设施发展安全的重要依据[1],基于建模评价地质灾害易发性是重要而且有效的途径。

      应用经验式、数值模拟和统计方法对地质灾害易发性建模和评价,已经进行了许多研究[1-10]。其中,经验式方法基于现场观察和专家经验判断;数值模拟计算边坡的稳定性;统计方法部分基于实地观察和专家的先验知识,部分基于对地质灾害发生的权重或概率的统计计算,这类方法使用统计技术来评估诱发地质灾害的各种因素的相关作用,每个因素的重要性都是根据观察到的与地质灾害的关系来确定的。

      文中使用基于贝叶斯理论的证据权法,综合GIS技术评价研究区地质灾害易发性。证据权法是一种统计方法,最初应用于非空间、定量的医学诊断,以结合临床诊断的证据来预测疾病[11-12]。在地球科学中,该方法被广泛应用,如:矿产资源潜力评估和矿床预测[13-16],公路路基岩溶塌陷危险性评价[17]和滑坡易发性和危险性[1, 3, 18-23]

      文中选择云南高原滇中昆明盆地低山丘陵地带这一云南省地质灾害防治重点地区的典型代表,云南省省会昆明市的主要行政区之一,昆明市五华区作为研究对象,该区地质灾害易发性评价研究具有典型代表性,可向整个云南高原昆明盆地低山丘陵区和其他低山丘陵区推广,具有技术方法和社会经济意义。研究区面积381.6 km2,地势西北高东南低,昆明盆地内地形开阔低缓,北部山区地形崎岖,沟壑较发育。区域年降水量的80%以上集中在6—9月,年平均降水量608.4~887.0 mm。碳酸盐岩分布最广,约占全区面积的38.93%,其次为砂岩、泥岩、页岩,约占23.11%,岩浆岩主要为玄武岩,约占16.95%,主要分布在昆明盆地和其他小盆地的松散碎石土体约占11.36%,石英砂岩类约占7.56%,还发育一些岩脉;断裂构造较发育,以南北向构造为主[24-25]

      通过地质灾害风险普查获得了研究区地质灾害分布数据。根据调查分析,选择工程地质岩组、断裂构造、高程、坡度、坡向、坡面曲率、距公路距离和土地利用类型等8类因素纳入评价分析。地质数据收集自云南省地质局1∶20万昆明幅、武定幅区域地质调查报告和图件[24-25],12.5 m分辨率DEM(数字高程模型)收集自ASF,道路数据收集自OSM,土地利用类型数据收集自ESA(图1表1)。

      图  1  因素基础数据图
      Figure  1.  Basic data charts of factors
      表  1  数据简介
      Table  1.  Data introduction
      数据灾点及
      致灾要素
      类型来源
      地灾地灾点矢量点地质灾害风险普查
      地质工程地质岩组矢量面云南省地质局
      距断裂
      距离
      矢量线和缓冲区云南省地质局
      地形地貌高程栅格12.5 m DEM,
      https://asf.alaska.edu/
      坡度栅格根据DEM,应用ArcGIS提取
      坡向栅格根据DEM,应用ArcGIS提取
      坡面曲率栅格根据DEM,应用ArcGIS提取
      道路距公路
      距离
      矢量线缓冲区http://www.openstreetmap.org
      根据矢量线用ArcGIS制作
      土地利用
      类型
      土地利用
      类型
      栅格ESA WorldCover 10 m 2020,https://esa-worldcover.org/en
      下载: 导出CSV 
      | 显示表格

      现状发育地质灾害89处,滑坡73处,崩塌11处,泥石流4条,地面沉降1处,为小—中型,无大型,中型14处,小型75处,主要分布在研究区低山丘陵地貌区,盆地内仅发育1处(图2)。

      图  2  地质灾害分布图(底图为高程和山体阴影渲染)
      Figure  2.  Map of geological hazard distribution (The bottom was rendered by elevation and hillshade)

      选择指标“因子面积百分比A”“地灾数百分比B”和“比率(β=B/A)”表征地质灾害的空间分布特征、主控因素和成灾特征。β定义了地质灾害点在因素分级中相对于均匀分布的丰度,β>1表示相对丰度更高,β<1则相反。β>1的因素分级有(图3表2):高程1800~1850 m、1920~1950 m和1950~2000 m,坡度15°~25°、25°~35°和>35°,坡向北东、东、南东和北,坡面曲率−0.75~−0.28(凹形)、−0.28~−0.15(凹形)、−0.15~−0.05(凹形)和0.05~0.15(凸形),石英砂岩岩组和砂岩、泥岩、页岩岩组,距断层距离0~50 m、300~500 m和1000~2000 m,距主要公路距离0~50 m和50~100 m,草地和裸地/稀疏植被区域。这些因素分级内,发育了相对于均匀分布丰度更高的地质灾害,表征这些因素分级可能是研究区地质灾害的主控因素。

      图  3  各因素分级分区和地灾点数量相关性统计图
      Figure  3.  Statistical charts of correlation between the factors and the number of geological hazard points

      把研究区栅格单元化,利用条件概率计算证据因素图层所有单元对地质灾害发生的贡献权重[13-15, 26-27]。定义$ D $为已发生地质灾害的单元,$ \bar{D} $为未发生地质灾害的单元,$ B $为证据因素区内的单元,$ \bar{B} $为证据因素区外的单元。

      证据因素$ B $条件下$ D $的条件(后验)概率为:

      $$ { O}\left(D|B\right)={ O}\left(D\right)\frac{P\left(B\right|D)}{P(B|{\bar D})} $$ (1)

      式中:$ { O}\left(D\right) $—证据因素B的先验概率, ${{ O}}\left(D\right)=$ $\dfrac{\mathrm{事}\mathrm{件}\mathrm{将}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}{\mathrm{事}\mathrm{件}\mathrm{不}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}=\dfrac{P\left(D\right)}{1-P\left(D\right)}=$ $\dfrac{P\left(D\right)}{P({\bar D})} $

      $P\left(B\right|D)、 P(B|{\bar D})$——在地质灾害发生(D)和未发生 ($ \bar{D} $)时,证据因素B的条件 概率,取自然对数即是证据 权法中的正权重(证据因素 存在区的权重值)$ {W}^{+} $

      $$ {W}^+=\ln\frac{P\left(B\right|D)}{P\left(B|{\bar D}\right)} $$ (2)
      $$ P\left(B|D\right)=P\left(B\cap D\right)/P\left(D\right) $$ (3)
      $$ P(B|\bar{D})=P(B\cap \bar{D})/P(\bar{D}) $$ (4)

      $ D $$ B $的单元数N可表示为:

      $$ P\left(B|D\right)=N\left(B\cap D\right)/N\left(D\right) $$ (5)
      $$ P(B|\bar{D})=N(B\cap \bar{D})/N(\bar{D}) $$ (6)

      同式(1),在证据因素不存在的情况下($ \bar{B} $),$ D $的条件概率(后验)为:

      $$ {{ O}}(D|\bar{B})={{ O}}(D)\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (7)

      式中:$P(\bar{B}|D)/P(\bar{B}|\bar{D})$—取自然对数即是负权重(证据 因素不存在区的权重值)$ {W}^{-} $

      $$ {W}^-={\rm{ln}}\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (8)

      同式(3)—(6):

      $$ P(\bar{B}|D)=N(\bar{B}\cap D)/N(D) $$ (9)
      $$ P(\bar{B}|\bar{D})=N(\bar{B}\cap \bar{D})/N(\bar{D}) $$ (10)

      $N (B\cap D) + N (\bar{B}\cap D)=N(D)$$N (B\cap \bar{D}) + N (\bar{B}\cap \bar{D})= N(\bar{D})$,所以式(2)和式(8)可写为:

      $$ {W}^+={\rm{ln}}\left(\frac{N(B\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(B\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (11)
      $$ {W}^-={\rm{ln}}\left(\frac{N(\bar{B}\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(\bar{B}\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (12)

      根据式(11)和(12),使用ArcGIS空间分析工具执行权重$ {W}^{+} $$ {W}^{-} $计算。

      $ {W}^{+} $的大小表明证据因素的存在与地质灾害发生之间存在正相关关系。$ {W}^{-} $表示负相关,即证据因素存在抑制诱发地质灾害的作用。证据因素原始数据缺失区域的权重值取0。两个权重之间的差异$ {W}_{{\rm{f}}}={W}^{+}-{W}^{-} $,即综合权重,量化证据因素和地质灾害相关性大小。如果$ {W}_{{\rm{f}}} $为正,则证据因素对地质灾害有利,如果为负,则对滑坡不利。如果$ {W}_{{\rm{f}}} $接近于零,则表明证据因素与地质灾害的相关性不大。

      在上述权重值计算及分析的基础上,实施证据因素分类的优选,选择类间差异显著的证据因素类,归并不显著的证据因素类。选择近似学生化检验(Student-T)统计值进行显著性测试[15, 28]

      $$ {S tuden{t}}-{{T}}={W}_{{\rm{f}}}/{\sigma }_{{W}_{{\rm{f}}}}={W}_{{\rm{f}}}/\sqrt{{\sigma }_{{W}^+}^{2}+{\sigma }_{{W}^-}^{2}} $$ (13)

      式中:$ {\sigma }_{{W}^{+}}^{} $$ {\sigma }_{{W}^{-}}^{} $——分别是$ {W}^{+} $$ {W}^{-} $的标准差;

      Wf ——综合权重;

      ${\sigma }_{{W}_{{\rm{f}}}}$——综合权重标准差。

      当测试值的绝对值$|{S tuden{t}}-{ T}|$为1.96和2.326时,置信度达97.5%、99%,文中以$|{S tuden{t}}-{ T}|=2$作为阈值。先将证据因素划分为若干分级(分类),计算权重和标准差、${{S} tuden{t}}-{ T}$,将$|{S} tuden{t}-{ T} | < 2$的各分类视为显著性低并归为一类,保留$|{{S} tuden{t}}-{T}|\geqslant 2$的因素分类,然后重新计算归并后各分类的权重值。

      根据贝叶斯法则,任一单元$ K $为地质灾害的可能性,即对数后验概率可表示为[13-15, 26, 27]

      $$ F=\ln O\left(D|\sum _{i=1}^{n}{B}_{i}^{K\left(i\right)}\right)=\sum _{i=0}^{n}{W}_{i}^{K}+\ln O\left(D\right) $$ (14)

      式中:$ {B}_{i} $——第$ i $个证据因素层;

      $ K\left(i\right) $$ {W}_{i} $是第$ i $个证据因素存在或不存在的权 重,在第$ i $个证据因素层存在时是+,不存在 时是−。

      最后计算后验概率:

      $$ P=O/(1+O)=\exp\left(F\right)/\left(1+\exp\left(F\right)\right) $$ (15)

      后验概率的大小作为易发性高低的指标,值越大表示易发性越高,值越小表示易发性越低。

      证据权重计算结果(表2图4)与1.3节可相互印证。在地形高程方面,1800~1850 m、1920~1950 m和1950~2000 m段利于地质灾害发生,正权重0.5550、1.1758和0.6439。>35°和15°~25°的山体斜坡较易于地质灾害发生,正权重0.5436和0.3785。坡向因素各分级权重值均不高,表明坡向对地质灾害发生的驱动作用可能不太显著。坡面曲率结果显示,−0.75~−0.28(凹形)和−0.28~−0.15(凹形)两个凹形坡分级段较易于地质灾害发生,正权重0.5690和0.7577。工程地质岩组各岩组分类的正权重值总体不高,但砂岩、泥岩、页岩岩组的统计结果仍然表现出对地质灾害发生的较有利性,其正权重0.4474,高于排在第二位的石英砂岩岩组(正权重值为0.2947)。距断层距离和距主要公路距离因素统计结果均显示出了较明显的距离效应,即距断裂或主要公路远的地区与地质灾害发生负相关,距断裂0~50 m和距主要公路0~50 m、50~100 m易于地质灾害发生,其正权重0.7973、0.9820和0.5111。裸地或稀疏植被地区是易于地质灾害发生的区域,其正权重0.8719。

      表  2  因素证据权重计算结果表
      Table  2.  Calculation results of factor evidence weights
      因素因素分级因素面积
      百分比/%
      地灾数
      百分比/%
      正权重
      W+
      W+
      标准差${\sigma }_{{W}^{+}}^{} $
      负权重WW
      标准差${\sigma }_{{W}^{-}}^{} $
      综合权重
      $ {W}_{{\rm{f}}} $
      $ {W}_{{\rm{f}}} $的
      标准差${\sigma }_{{W}_{{\rm{f}}}} $
      StudentT分类
      归并
      归并后
      权重
      权重
      标准差
      高程/m<17350.010.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      1735~18000.360.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      1 800~1 8500.651.120.55501.0082−0.00480.10710.55981.01380.5522合并−0.27440.1607
      1 850~1 9009.5510.110.05740.3350−0.00630.11230.06360.35330.1801合并−0.27440.1607
      1 900~1 9206.814.49−0.41860.50150.02480.1090−0.44340.5133−0.8639合并−0.27440.1607
      1 920~1 9506.7321.351.17580.2329−0.17200.12001.34780.26205.144441.17580.2329
      1 950~2 00012.5023.600.64390.2202−0.13680.12180.78070.25163.103250.64390.2202
      2 000~2 10023.2511.24−0.73180.31690.14680.1131−0.87870.3365−2.611013−0.73180.3169
      2 100~2 20018.8620.220.07080.2369−0.01720.11920.08790.26520.3315合并−0.27440.1607
      2 200~2 30011.484.49−0.94360.50090.07670.1090−1.02030.5126−1.9903合并−0.27440.1607
      2 300~2 4007.023.37−0.73830.57860.03890.1084−0.77720.5887−1.3201合并−0.27440.1607
      2 400~2 5002.610.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      >2 5000.190.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      坡度/(°)<518.724.49−1.42970.50060.16200.1091−1.59160.5123−3.10685−1.42970.5006
      5~1538.3237.08−0.02880.17490.01740.1343−0.04620.2205−0.2093合并0.02210.1450
      15~2528.7241.570.37850.16550.20230.13920.58080.21632.685330.37850.1655
      25~3511.6012.360.06880.3030−0.00930.11380.07820.32370.2416合并0.02210.1450
      >352.644.490.54360.5040−0.01950.10900.56320.51571.0921合并0.02210.1450
      坡向北东9.7211.240.14600.3179−0.01710.11300.16310.33740.4833合并−0.00010.1065
      12.7715.730.21070.2688−0.03490.11600.24560.29280.8388合并−0.00010.1065
      南东16.9219.100.12220.2438−0.02680.11840.14900.27100.5496合并−0.00010.1065
      13.1611.24−0.15920.31750.02210.1130−0.18130.3370−0.5379合并−0.00010.1065
      南西10.5710.11−0.04480.33480.00520.1123−0.05000.3532−0.1415合并−0.00010.1065
      西13.456.74−0.69540.40920.07540.1103−0.77070.4238−1.8186合并−0.00010.1065
      北西14.5812.36−0.16670.30270.02590.1138−0.19260.3234−0.5955合并−0.00010.1065
      8.8213.480.42900.2908−0.05290.11450.48190.31251.5423合并−0.00010.1065
      坡面
      曲率
      −0.75~−0.28(凹形)3.205.620.56900.4509−0.02550.10960.59450.46401.2812合并0.09600.1367
      −0.28~−0.15(凹形)10.6422.470.75770.2258−0.14320.12090.90090.25623.517110.75770.2258
      −0.15~−0.05(凹形)19.6626.970.31970.2054−0.09620.12460.41590.24031.7311合并0.09600.1367
      −0.05~0.05(平坦)34.1816.85−0.71190.25880.23620.1169−0.94820.2840−3.33886−0.71190.2588
      0.05~0.15(凸形)17.5321.350.19900.2307−0.04780.12010.24680.26010.9489合并0.09600.1367
      0.15~0.28(凸形)11.005.62−0.67660.44830.05930.1097−0.73590.4615−1.5945合并0.09600.1367
      0.28~0.69(凸形)3.781.12−1.21941.00140.02750.1071−1.24691.0071−1.2381合并0.09600.1367
      工程
      地质
      岩组
      松散碎石土体13.156.74−0.67360.40920.07200.1103−0.74560.4238−1.7592合并−0.18440.1329
      石英砂岩7.5510.110.29470.3354−0.02830.11230.32300.35370.9131合并−0.18440.1329
      砂岩、泥岩、页岩23.0835.960.44740.1781−0.18440.13300.63180.22222.843030.44740.1781
      白云岩、灰岩38.8837.08−0.04910.17490.03010.1343−0.07930.2205−0.3596合并−0.18440.1329
      玄武岩16.9410.11−0.52060.33430.08000.1124−0.60050.3526−1.7029合并−0.18440.1329
      侵入岩脉0.290.000.00000.00000.00000.00000.00000.00000.0000合并−0.18440.1329
      距断层
      距离/m
      0~505.6312.360.79730.3046−0.07460.11370.87190.32522.681430.79730.3046
      50~1005.865.62−0.04290.44920.00260.1096−0.04550.4624−0.0985合并−0.07460.1137
      100~30019.8719.10−0.03970.24360.00960.1184−0.04930.2709−0.1822合并−0.07460.1137
      300~50016.1120.220.22990.2371−0.05080.11920.28060.26541.0574合并−0.07460.1137
      500~100026.1217.98−0.37640.25080.10560.1177−0.48200.2770−1.7397合并−0.07460.1137
      1000~2 00022.7524.720.08400.2143−0.02610.12270.11010.24690.4457合并−0.07460.1137
      >20003.660.000.00000.00000.00000.00000.00000.00000.0000合并−0.07460.1137
      距主要
      公路
      距离/m
      0~5011.1129.210.98200.1986−0.22960.12651.21160.23545.146930.98200.1986
      50~1008.1413.480.51110.2909−0.06050.11450.57160.31261.8284合并−0.12570.1296
      100~30020.6220.22−0.01960.23680.00500.1192−0.02470.2651−0.0931合并−0.12570.1296
      300~50012.533.37−1.31950.57810.10050.1084−1.42010.5882−2.41444−1.31950.5781
      500~100017.2116.85−0.02100.25940.00430.1168−0.02530.2845−0.0889合并−0.12570.1296
      1000~2 00016.6710.11−0.50380.33430.07650.1124−0.58030.3527−1.6455合并−0.12570.1296
      >200013.726.74−0.71530.40920.07850.1103−0.79390.4238−1.8733合并−0.12570.1296
      土地
      利用
      类型
      林地54.7028.09−0.07940.14970.08830.1515−0.16760.2130−0.7870合并−0.12870.1183
      灌木0.140.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
      草地7.398.990.19790.3556−0.01760.11160.21550.37270.5783合并−0.12870.1183
      耕地16.5410.11−0.49550.33430.07490.1124−0.57040.3527−1.6174合并−0.12870.1183
      建筑12.8211.24−0.13320.31750.01820.1130−0.15140.3370−0.4492合并−0.12870.1183
      裸地或稀疏植被8.0941.570.87190.2452−0.12870.11831.00060.27233.674640.87190.2452
      开阔水域0.320.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
      下载: 导出CSV 
      | 显示表格

      采用接受者操作特性曲线(Receiver Operating Characteristic Curve,ROC)和ROC 曲线下与坐标轴围成的面积(Area Under Curve,AUC[29-32]评估模型拟合精度。模型拟合精度越好则AUC越接近1,0.7~0.9时表示较好。文中建立的证据权法模型的AUC为80.4%,拟合精度优异(图5)。

      图  4  因素证据权重计算结果图
      Figure  4.  Calculation results charts of factor evidence weights
      图  5  模型预测性能ROC曲线图
      Figure  5.  ROC curve of model prediction performance

      综合自然间断点分级和地质灾害分布,圈定了高易发区、中易发区和低易发区(表3图6),其中高易发区188.55 km2(占研究区总面积的49.41%),中易发区152.21 km2(占研究区总面积的39.88%),89.9%和9.1%的地灾点落入高易发区和中易发区,显示易发性分区符合已发地质灾害分布,模型预测性能较好。

      表  3  地质灾害易发性分区表
      Table  3.  Form of geological hazard susceptibility zoning
      易发性
      分区
      面积/
      km2
      占总面积/
      %
      编号面积/
      km2
      占大区/
      面积%
      灾点数灾点密度/
      (个·km−2)
      地质灾害
      高易发区(Ⅰ)
      188.5549.411152.3280.79640.41
      217.939.5190.50
      316.118.5480.94
      42.191.1610.46
      地质灾害
      中易发区(Ⅱ)
      152.2139.8811.300.85
      218.8212.3620.11
      315.039.8710.07
      412.928.49
      518.5112.1620.11
      69.125.99
      744.6629.34
      812.348.1110.08
      911.737.71
      107.785.11
      低易发区(Ⅲ)47.4012.42147.4010010.02
      下载: 导出CSV 
      | 显示表格
      图  6  地质灾害易发性栅格图
      Figure  6.  Grid map of geological hazard susceptibility

      结合地质环境因素特征分析西部高易发区(图6蓝色框范围内、图7)主要位于砂岩、泥岩和页岩岩组,断裂构造较密集,以山谷斜坡地貌为主,坡度15°~25°和>35°较陡峭斜坡范围成片发育且面积较广,主要公路建于本区山谷,裸地/稀疏植被和草地连片覆盖范围较大。预测圈定的高易发区的这些分布特征,与上文分析得到的地质灾害控制因素特征吻合,预测结果符合地质灾害空间分布特征。

      图  7  典型区因素和地质灾害分布图
      Figure  7.  Factors and geological hazards in typical zone

      (1)“因子面积百分比A”“地灾数百分比B”和“比率β”,以及各因素各分类地质灾害证据权重可以定量地分析各因素与地质灾害发生的相关性。

      (2)圈定高易发区188.55 km2(占总面积的49.41%),中易发区152.21 km2(占总面积的39.88%),易发性分区图具有较好的等级区分度。

      (3)通过证据权法绘制的地质灾害易发性图可以有效地预测该区地质灾害,模型拟合精度AUC=80.4%。89.9%和9.1%的地灾点落入高和中易发区,建模结果与实际地质灾害发育情况吻合度高,较好地揭示了研究区地质灾害易发性特征。

      (4)证据权法在研究区这类云南高原低山丘陵区有效性高,方法理论清晰,较为成熟,由数据驱动,参数定义明确,易于一线工程师推广使用。同时,该方法权重的估计和模型预测性能受预测因子选择、因子数据空间分辨率、因子分级影响较大,具体工作中宜对这些问题进行深入研究和统计分析。建议通过对因子分级进行显著性测试实施优选,减小对权重的高估或低估,提高模型效能。

    • 图  1   大渡河中游地区滑坡分布图和地质条件背景图

      Figure  1.   Map of landslide distribution and geological conditions in the middle reach area of Dadu River

      图  2   大渡河中游地区滑坡危险性初级评价指标体系分级图

      Figure  2.   Grading chart of the primary hazard assessment index system for landslides in the middle reach area of Dadu River Basin

      图  3   变权栅格叠加过程

      Figure  3.   The variational raster overlay process

      图  4   GDIV模型计算流程图

      Figure  4.   The flowchart of GDIV model calculation process

      图  5   滑坡危险性区划图

      Figure  5.   Landslide hazard zoning map

      图  6   滑坡危险性评价结果ROC曲线

      Figure  6.   ROC curve of landslide hazard evaluation results

      表  1   交互作用探测器因子关系

      Table  1   Factor relationships of interaction detectors

      因子关系交互作用
      q(X1X2)<Min(q(X1), q(X2))非线性减弱
      Min(q(X1), q(X2))< q(X1X2)< Max (q(X1), q(X2))单因子非线性减弱
      q(X1X2)> Max (q(X1), q(X2))双因子增强
      q(X1X2)= q(X1)+q(X2)独立
      q(X1X2)> q(X1)+q(X2)非线性增强
      下载: 导出CSV

      表  2   滑坡初级评价指标q值统计

      Table  2   Statistical analysis of primary evaluation index q-values for landslides

      类别指标qp
      地质特征工程地质岩组(X10.1560.000
      与断层距离(X20.0870.000
      地震地震动参数(X30.1640.000
      地形地貌高程(X40.5830.000
      坡度(X50.0210.023
      坡向(X60.0380.003
      地形湿度指数(X70.0170.297
      归一化植被指数(X80.0720.000
      土壤类型(X90.4150.000
      地表水系与河流距离(X100.1580.000
      径流强度指数(X110.0320.015
      降雨年平均降雨量(X120.1820.000
      人类活动与道路距离(X130.1150.000
      下载: 导出CSV

      表  3   部分滑坡初级评价指标交互作用

      Table  3   Interactions of primary evaluation indicators for landslides

      Xi∩Xjq(Xi)q(Xj)q(Xi∩Xj)q(Xi)+q(Xj)交互类型
      X4∩X10.5830.1560.7360.739双因子增强
      X3∩X40.1640.5830.6760.747双因子增强
      X9∩X40.4150.5830.5960.998双因子增强
      X10∩X40.1580.5830.6030.741双因子增强
      X13∩X40.1150.5830.5970.698双因子增强
      X12∩X40.1820.5830.6720.765双因子增强
      X9∩X30.4150.1640.5370.579双因子增强
      X9∩X10.4150.1560.5550.571双因子增强
      X9∩X100.4150.1580.4340.573双因子增强
      X9∩X130.4150.1150.4280.53双因子增强
      X9∩X120.4150.1820.5270.597双因子增强
      X10∩X30.1580.1640.3120.322双因子增强
      X10∩X10.1580.1560.3440.314非线性增强
      X13∩X30.1150.1640.2760.279双因子增强
      X13∩X10.1150.1560.2780.271非线性增强
      X3∩X10.1640.1560.3290.320非线性增强
      X13∩X100.1150.1580.2260.273双因子增强
      X10∩X120.1580.1820.3430.340非线性增强
      X13∩X120.1150.1820.2920.297双因子增强
      X3∩X120.1640.1820.2690.346双因子增强
      X12∩X10.1820.1560.3480.338非线性增强
      下载: 导出CSV

      表  4   危险性评价因子分级与信息量值

      Table  4   Grading and information value of hazard evaluation factors

      评价因子分级信息量值评价因子分级信息量值
      高程/m<2 7002.058年平均
      降雨量/mm
      <750−0.557
      2 700~3 2001.308750~7750.438
      3 200~3 600−1.37775~800−1.014
      3 600~4 000−2.445800~840−0.055
      4 000~4 400−3.76840~880−0.404
      > 4400>880−0.231
      土壤类型淋溶土1.685地震动
      参数
      <0.10.151
      半淋溶土0.1~0.150.464
      初育土−3.9210.15~0.2−1.059
      高山土0.1070.2~0.3
      人为土1.429与道路
      距离/m
      <1001.500
      铁铝土0.890100~2001.227
      与河流
      距离/m
      <400−1.204200~3001.148
      400~800−0.826300~4001.053
      800~1 200−0.025400~5000.789
      1 200~1 6000.004>500−0.335
      1 600~2 0000.577
      >2 0001.038
      工程地质
      岩组
      坚硬岩0.023
      较坚硬岩0.443
      较软岩1.878
      松散土类−1.086
      下载: 导出CSV

      表  5   滑坡危险性评价因子逻辑回归分析结果

      Table  5   Results of logistic regression analysis for landslide hazard evaluation factors

      评价因子BSEWalddfsigExp(B)
      高程4.9920.55182.21010.000147.24
      土壤类型3.0010.55029.78510.00020.110
      工程地质岩组1.6060.8373.38710.0004.666
      年平均降雨量1.1030.3798.46810.0003.013
      与道路距离0.9950.3962.57310.0002.435
      地震动参数0.8020.4691.65710.0001.830
      与河流距离0.1480.3985.25910.0010.739
      常数−7.1320.696104.81510.0000.001
        注:B为模型中各变量的回归系数、SE是标准差、Wald是卡方统计、Sig为显著性水平,dfExp(B)为逻辑回归的结果参数。
      下载: 导出CSV

      表  6   滑坡危险性评价因子权重值

      Table  6   Weight values of landslide hazard assessment factors

      因子q权重
      高程0.5830.329
      土壤类型0.4150.234
      年平均降雨量0.1820.103
      地震动参数0.1640.092
      与河流距离0.1580.089
      工程地质岩组0.1560.088
      与道路距离0.1150.065
      下载: 导出CSV
    • [1] 赵东亮,兰措卓玛,侯光良,等. 青海省河湟谷地地质灾害易发性评价[J]. 地质力学学报,2021,27(1):83 − 95. [ZHAO Dongliang,LAN C,HOU Guangliang,et al. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province[J]. Journal of Geomechanics,2021,27(1):83 − 95. (in Chinese with English abstract)

      ZHAO Dongliang, LAN C, HOU Guangliang, et al. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province[J]. Journal of Geomechanics, 2021, 27(1): 83-95. (in Chinese with English abstract)

      [2]

      CENGIZ L D,ERCANOGLU M. A novel data-driven approach to pairwise comparisons in AHP using fuzzy relations and matrices for landslide susceptibility assessments[J]. Environmental Earth Sciences,2022,81(7):1 − 23.

      [3]

      WANG Di,HAO Mengmeng,CHEN Shuai,et al. Assessment of landslide susceptibility and risk factors in China[J]. Natural Hazards,2021,108(3):3045 − 3059. DOI: 10.1007/s11069-021-04812-8

      [4]

      TAN Qulin,BAI Minzhou,ZHOU Pinggen,et al. Geological hazard risk assessment of line landslide based on remotely sensed data and GIS[J]. Measurement,2021,169:108370. DOI: 10.1016/j.measurement.2020.108370

      [5]

      BIÇER Ç T,ERCANOGLU M. A semi-quantitative landslide risk assessment of central Kahramanmaraş City in the Eastern Mediterranean region of Turkey[J]. Arabian Journal of Geosciences,2020,13(15):732. DOI: 10.1007/s12517-020-05697-w

      [6]

      SCIARRA M,COCO L,URBANO T. Assessment and validation of GIS-based landslide susceptibility maps:A case study from Feltrino stream basin (Central Italy)[J]. Bulletin of Engineering Geology and the Environment,2017,76(2):437 − 456. DOI: 10.1007/s10064-016-0954-7

      [7] 罗守敬,王珊珊,付德荃. 北京山区突发性地质灾害易发性评价[J]. 中国地质灾害与防治学报,2021,32(4):126 − 133. [LUO Shoujing,WANG Shanshan,FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):126 − 133. (in Chinese with English abstract)

      LUO Shoujing, WANG Shanshan, FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 126-133. (in Chinese with English abstract)

      [8]

      ZHAO Fumeng,MENG Xingmin,ZHANG Yi,et al. Landslide susceptibility mapping of Karakorum highway combined with the application of SBAS-InSAR technology[J]. Sensors,2019,19(12):2685. DOI: 10.3390/s19122685

      [9] 王世宝,庄建琦,樊宏宇,等. 基于频率比与集成学习的滑坡易发性评价—以金沙江上游巴塘—德格河段为例[J]. 工程地质学报,2022,30(3):817 − 828. [WANG Shibao,ZHUANG Jianqi,FAN Hongyu,et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning:Taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology,2022,30(3):817 − 828. (in Chinese with English abstract)

      WANG Shibao, ZHUANG Jianqi, FAN Hongyu, et al. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning—taking the Batang-Dege section in the upstream of Jinsha River as an example[J]. Journal of Engineering Geology, 2022, 30(3): 817-828. (in Chinese with English abstract)

      [10] 屠水云,张钟远,付弘流,等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract)

      TU Shuiyun, ZHANG Zhongyuan, FU Hongliu, et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 96-104. (in Chinese with English abstract)

      [11]

      JIAO Yuanmei,ZHAO Dongmei,DING Yinping,et al. Performance evaluation for four GIS-based models purposed to predict and map landslide susceptibility:A case study at a World Heritage site in Southwest China[J]. CATENA,2019,183:104221. DOI: 10.1016/j.catena.2019.104221

      [12] 罗路广,裴向军,谷虎,等. 基于GIS的 “8·8” 九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报,2020,29(3):193 − 202. [LUO Luguang,PEI Xiangjun,GU Hu,et al. Risk assessment of geohazards induced by “8·8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters,2020,29(3):193 − 202. (in Chinese with English abstract)

      LUO Luguang, PEI Xiangjun, GU Hu, et al. Risk assessment of geohazards induced by “8.8” earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 2020, 29(3)193-202(in Chinese with English abstract)

      [13] 付树林,梁丽萍,刘延国. 基于CF-Logistic模型的雅砻江新龙段地质灾害易发性评价[J]. 水土保持研究,2021,28(4):404 − 410. [FU Shulin,LIANG Liping,LIU Yanguo. Assessment on geohazard susceptibility in Xinlong section of Yalong River based on CF-logistic model[J]. Research of Soil and Water Conservation,2021,28(4):404 − 410. (in Chinese with English abstract)

      FU Shulin, LIANG Liping, LIU Yanguo. Assessment on geohazard susceptibility in Xinlong section of yalong river based on CF-logistic model[J]. Research of Soil and Water Conservation, 2021, 28(4)404-410(in Chinese with English abstract)

      [14]

      DUMAN T Y,CAN T,GOKCEOGLU C,et al. Application of logistic regression for landslide susceptibility zoning of Cekmece Area,Istanbul,Turkey[J]. Environmental Geology,2006,51(2):241 − 256. DOI: 10.1007/s00254-006-0322-1

      [15] 胡涛,樊鑫,王硕,等. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J]. 地质科技通报,2020(2):113 − 121. [HU Tao,FAN Xin,WANG Shuo,et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Information,2020(2):113 − 121. (in Chinese with English abstract)

      HU Tao, FAN Xin, WANG Shuo, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Geological Science and Technology Information, 2020(2): 113-121. (in Chinese with English abstract)

      [16] 田春山,刘希林,汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质,2016,43(6):154 − 161. [TIAN Chunshan,LIU Xilin,WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology,2016,43(6):154 − 161. (in Chinese with English abstract)

      TIAN Chunshan, LIU Xilin, WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology and Engineering Geology, 2016, 43(6)154-161(in Chinese with English abstract)

      [17] 饶品增,曹冉,蒋卫国. 基于地理加权回归模型的云南省地质灾害易发性评价[J]. 自然灾害学报,2017,26(2):134 − 143. [RAO Pinzeng,CAO Ran,JIANG Weiguo. Susceptibility evaluation of geological disasters in Yunnan Province based on geographically weighted regression model[J]. Journal of Natural Disasters,2017,26(2):134 − 143. (in Chinese with English abstract)

      Rao Pinzeng, Cao Ran, Jiang Weiguo. Susceptibility evaluation of geological disasters in Yunnan Province based on geographically weighted regression model[J]. Journal of Natural Disasters, 2017, 26(2): 134-143. (in Chinese with English abstract)

      [18] 王丽丽,苏程,冯存均,等. 数据驱动自适应更新的斜坡地质灾害易发性评价系统[J]. 岩石力学与工程学报,2016,35(S1):3076 − 3083. [WANG Lili,SU Cheng,FENG Cunjun,et al. A data driven self-adaptive update landslide susceptibility assessment system[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):3076 − 3083. (in Chinese with English abstract)

      WANG Lili, SU Cheng, FENG Cunjun, et al. A data driven self-adaptive update landslide susceptibility assessment system[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3076-3083. (in Chinese with English abstract)

      [19] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):12 − 167. [HUANG Faming,YIN Kunlong,JIANG Shuihua,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):12 − 167. (in Chinese with English abstract)

      Huang Faming, Yin Kunlong, Jiang Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 12. (in Chinese with English abstract)

      [20] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价—以三峡库区湖北段为例[J]. 地球科学,2021(1):321 − 330. [WU Runze,HU Xudong,MEI Hongbo,et al. Spatial susceptibility assessment of landslides based on random forest:A case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science,2021(1):321 − 330. (in Chinese with English abstract)

      WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: a case study from Hubei section in the Three Gorges Reservoir area[J]. Earth Science, 2021(1): 321-330. (in Chinese with English abstract)

      [21] 丁茜,赵晓东,吴鑫俊,等. 基于RBF核的多分类SVM滑塌易发性评价模型[J]. 中国安全科学学报,2022,32(3):194 − 200. [DING Xi,ZHAO Xiaodong,WU Xinjun,et al. Landslide susceptibility assessment model based on multi-class SVM with RBF kernel[J]. China Safety Science Journal,2022,32(3):194 − 200. (in Chinese with English abstract)

      DING Xi, ZHAO Xiaodong, WU Xinjun, et al. Landslide susceptibility assessment model based on multi-class SVM with RBF kernel[J]. China Safety Science Journal, 2022, 32(3): 194-200. (in Chinese with English abstract)

      [22] 唐川,马国超. 基于地貌单元的小区域地质灾害易发性分区方法研究[J]. 地理科学,2015(1):91 − 98. [TANG Chuan,MA Guochao. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica,2015(1):91 − 98. (in Chinese with English abstract)

      Tang Chuan, Ma Guochao. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica, 2015(1): 91-98. (in Chinese with English abstract)

      [23]

      WANG Fei,XU Peihua,WANG Changming,et al. Application of a GIS-based slope unit method for landslide susceptibility mapping along the Longzi River,southeastern Tibetan Plateau,China[J]. ISPRS International Journal of Geo-Information,2017,6(6):172. DOI: 10.3390/ijgi6060172

      [24] 陈前,晏鄂川,黄少平,等. 基于样本与因子优化的黄冈南部地区地质灾害易发性评价[J]. 地质科技通报,2020(2):175 − 185. [CHEN Qian,YAN Echuan,HUANG Shaoping,et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Geological Science and Technology Information,2020(2):175 − 185. (in Chinese with English abstract)

      CHEN Qian, YAN Echuan, HUANG Shaoping, et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Geological Science and Technology Information, 2020(2): 175-185. (in Chinese with English abstract)

      [25] 陈绪钰,倪化勇,李明辉,等. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学,2021,36(2):71 − 78. [CHEN Xuyu,NI Huayong,LI Minghui,et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology,2021,36(2):71 − 78. (in Chinese with English abstract)

      CHEN Xuyu, NI Huayong, LI Minghui, et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology, 2021, 36(2): 71-78. (in Chinese with English abstract)

      [26] 牛强,揭巧,李县. 变权栅格叠加方法研究—以生态敏感性评价为例[J]. 地理信息世界,2017,24(5):27 − 34. [NIU Qiang, JIE Qiao,LI Xian. Research on variable weight raster overlay-taking ecological sensitivity evaluation as an example[J]. Geomatics World,2017,24(5):27 − 34. (in Chinese with English abstract)

      QIANG niu, QIAO Jie, XIAN Li. Research on variable weight raster overlay-taking ecological sensitivity evaluation as an example[J]. Geomatics World, 2017, 24(5): 27-34. (in Chinese with English abstract)

      [27] 韩用顺,孙湘艳,刘通,等. 基于证据权-投影寻踪模型的藏东南地质灾害易发性评价[J]. 山地学报,2021,39(5):672 − 686. [HAN Yongshun,SUN Xiangyan,LIU Tong,et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet,China[J]. Mountain Research,2021,39(5):672 − 686. (in Chinese with English abstract)

      HAN Yongshun, SUN Xiangyan, LIU Tong, et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet, China[J]. Mountain Research, 2021, 39(5): 672-686. (in Chinese with English abstract)

      [28] 支泽民, 刘峰贵, 周强, 等. 基于流域单元的地质灾害易发性评价—以西藏昌都市为例[J]. 中国地质灾害与防治学报,2023,34(1):139 − 150. [ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):139 − 150. (in Chinese with English abstract)

      ZHI Zemin, LIU Fenggui, ZHOU Qiang, et al. Evaluation of geological hazards susceptibility based on watershed units: a case study of the Changdu City, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 139-150.(in Chinese with English abstract)

      [29]

      YANG Yanguo,YU Jiaqi,FU Yubin,et al. Research on geological hazard risk assessment based on the cloud fuzzy clustering algorithm[J]. Journal of Intelligent & Fuzzy Systems,2019,37(4):4763 − 4770.

      [30] 孙滨, 祝传兵, 康晓波, 等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese with English abstract)

      SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5)119-127(in Chinese with English abstract)

      [31] 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116 − 134. [WANG Jinfeng,XU Chengdong. Geodetector:Principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116 − 134. (in Chinese with English abstract)

      WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1)116-134(in Chinese with English abstract)

      [32]

      LUO Wei,LIU C C. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods[J]. Landslides,2018,15(3):465 − 474. DOI: 10.1007/s10346-017-0893-9

      [33] 韩继冲,张朝,曹娟. 基于逻辑回归的地震滑坡易发性评价—以汶川地震、鲁甸地震为例[J]. 灾害学,2021,36(2):193 − 199. [HAN Jichong,ZHANG Hao,CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology,2021,36(2):193 − 199. (in Chinese with English abstract)

      HAN Jichong, ZHANG Hao, CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology, 2021, 36(2): 193-199. (in Chinese with English abstract)

    • 期刊类型引用(23)

      1. 马明明,伍尚前,谢猛,童鹏,袁晓波. 决策树分类在铁路沿线桉树提取及滑坡隐患识别中的应用——以贵广高铁广西段为例. 中国地质灾害与防治学报. 2025(01): 37-45 . 本站查看
      2. 刘亚静,刘红健. 基于信息量-随机森林模型的地震带地质灾害易发性评价:以松潘-较场地震带为例. 科学技术与工程. 2024(01): 143-154 . 百度学术
      3. 黄海,江思义,李海良,李春玲,吴秋菊. 岩溶地区危岩和岩质崩塌易发性评价研究——以广西贺州市平桂区为例. 成都理工大学学报(自然科学版). 2024(01): 137-151 . 百度学术
      4. 刘玥,申玉松,李旭,张迪. 基于不同耦合模型的区域地质灾害易发性评价——以河南商城县为例. 中国地质调查. 2024(01): 83-92 . 百度学术
      5. 高茂宁,魏冠军,雷传金,张沛. 顾及时序InSAR的海东市辖区滑坡敏感性评价. 地理空间信息. 2024(05): 97-101 . 百度学术
      6. 石文君,王宇栋,解晋航,李章杰,梁形形. 基于多种模型对比的寻甸县地质灾害易发性分析. 矿产勘查. 2024(06): 1092-1102 . 百度学术
      7. 寸得欣,令狐昌卫,马一奇,尹林虎,陈庆松,刘振南,涂春霖. 基于GIS和加权信息量模型的富源县地质灾害易发性评价. 科学技术与工程. 2024(18): 7563-7573 . 百度学术
      8. 冯振,陈亮,王立朝,侯圣山,田怡帆,刘明学. 区域地质灾害易发性评价的证据权法原理与实践. 地质通报. 2024(07): 1255-1265 . 百度学术
      9. 张宇,简季,郝利娜,杨鑫. 基于IV-MLP耦合模型的龙陵县滑坡易发性评价. 物探化探计算技术. 2024(05): 618-626 . 百度学术
      10. 桂富羽,史正涛,喜文飞,付尧,郭峻杞. 基于证据权模型的滑坡灾害易发性评价研究——以普洱市为例. 城市勘测. 2024(05): 188-193+198 . 百度学术
      11. 梁峰,江攀和. 基于IVM-CF耦合模型的贵定县滑坡地质灾害易发性评价. 水利水电技术(中英文). 2024(S2): 669-677 . 百度学术
      12. 裴鹏程,黄帅,袁静,张智康. 走滑断层作用下上覆土层的变形破坏机理. 中国地质灾害与防治学报. 2024(06): 115-127 . 本站查看
      13. 赖波,赵风顺,江金进,江山,江宁,李俊生. 基于AHP-信息量法的珠海市地质灾害风险评价. 华南地质. 2023(01): 147-156 . 百度学术
      14. 阮征,周少伟,姚胜,田垚. 黄土高原腹地地质灾害致灾因素分析及易发性评价. 科技导报. 2023(10): 115-124 . 百度学术
      15. 王伟中,李树兴,杨成,许涛,宋飞,曹小红,李浩然,王伟华. 基于GIS和证据权模型的山阳县地质灾害易发性评价. 新疆地质. 2023(02): 262-269 . 百度学术
      16. 黄鑫,吴珍云,丁德建,李希星,石祖峰,祝民强,孙彬涵. 基于信息量-逻辑回归模型的江西省婺源县地质灾害易发性评价. 东华理工大学学报(自然科学版). 2023(03): 259-268 . 百度学术
      17. 曾斌,吕权儒,寇磊,艾东,许汇源,袁晶晶. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价. 中国地质灾害与防治学报. 2023(04): 105-113 . 本站查看
      18. 胡杨,张紫昭,林世河. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价. 工程地质学报. 2023(04): 1350-1363 . 百度学术
      19. 张潇远,苏巧梅,赵财胜,朱月琴,李凯新,范锦龙,白东升. 一种利用贝叶斯算法优化XGBoost的滑坡易发性评价方法. 测绘科学. 2023(06): 140-150 . 百度学术
      20. 张华湘,孙乾征,樊善兴,杨子林. 滑坡易发性评价方法和精度比较——以贵州省大方县为例. 贵州地质. 2023(03): 302-309+295 . 百度学术
      21. 龚芯磊,张斌,高金利,杨洪森. 基于斜坡单元尺度AHP-信息量模型的重点区域地质灾害风险评价——以贵州省紫云县中部重点区为例. 贵州地质. 2023(03): 310-320 . 百度学术
      22. 谭燕,崔雨,金华丽,方龙建,葛鹏,付乐意. 基于信息量模型及层次分析法的镇江丹徒区滑坡崩塌地质灾害易发性评价. 昆明冶金高等专科学校学报. 2023(04): 7-15 . 百度学术
      23. 董凯,王永卿,蒲秀勇,梁凯丽. 基于信息量法的广西南宁市武鸣区地质灾害易发性评价. 农业灾害研究. 2023(09): 300-303 . 百度学术

      其他类型引用(8)

    图(6)  /  表(6)
    计量
    • 文章访问数:  899
    • HTML全文浏览量:  210
    • PDF下载量:  120
    • 被引次数: 31
    出版历程
    • 收稿日期:  2022-08-07
    • 修回日期:  2023-01-13
    • 网络出版日期:  2023-07-11
    • 刊出日期:  2023-10-30

    目录

    /

    返回文章
    返回