Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone (Puge section)
-
摘要: 以则木河断裂带(普格段)为研究区,分析研究区的地质灾害控制效应以及发育规律;选取海拔高程、坡向、坡度等7个评价因子构建评价指标体系,运用确定性系数模型与信息量模型耦合的加权信息量模型,通过ArcGIS进行地质灾害易发性评价。结果显示,研究区地质灾害发育具有断层距离效应、地层效应以及高程和坡度微地貌效应;极高易发区、高易发区、中易发区和低易发区的面积分别为46.75 km2、123.78 km2、215.73 km2、285.34 km2,面积占比分别为6.96%、18.43%、32.12%、42.49%。研究结果对指导则木河断裂带地区以及同类区域的国土空间规划与地灾防治等方面具有重要现实意义。Abstract: Taking Zemuhe fault zone (Puge section) as the study area, the control effect and development law of geological disasters in the study area are analyzed; Seven evaluation factors such as elevation, aspect and slope from fault are selected to construct the evaluation index system. The weighted information model coupled with deterministic coefficient model and information model is used to evaluate the susceptibility of geological disasters through ArcGIS. The results show that the development of geological hazards in the study area has fault distance effect, elevation and slope micro geomorphic effect and stratigraphic effect;The areas of extremely high, high, medium and low prone areas are 46.75 km2, 123.78 km2, 215.73 km2 and 285.34 km2 respectively, accounting for 6.96%, 18.43%, 32.12% and 42.49% respectively. The research results have important practical significance for guiding the land spatial planning and geological disaster prevention in Zemuhe fault zone and similar regions.
-
0. 引言
则木河断裂带位于我国青藏高原的东南边界川滇地块上,构造位置特殊,断裂活动与地表形变作用强烈。因此,该地区具有构造活动强烈、地震活动频繁、地形地貌复杂、次生地质灾害极为发育的特征,近四十年来成为研究热点。许多专家学者基于几何学角度、地震活动特征、运动学角度、动力学角度及断裂地质灾害角度等作为切入点,对则木河断裂带做了详尽的科学研究[1-11]。
地质灾害易发性评价是基于基础地质环境条件,以地质灾害的静态因素作为参考,来预测地质灾害在特定范围内发生的概率大小。因此,易发性评价作为危险性评价和风险评价的先决条件,成为地灾调查评价的必要组成部分[12-14]。20世纪60年代以来,中外专家学者针对不同地质环境条件,基于各种研究方法、模型对地质灾害易发性评价研究,评价方法也从一开始的定性描述,到半定性半定量,再到定量描述,主要常用方法有信息量法、层次分析法、确定系数法、逻辑回归分析法、证据权法、神经网络法和随机森林模型等[15-28]。在对地灾易发性评价的过程中,通常单一的模型方法都会有各种各样的优缺点,很难满足评价所需的精度,因此研究者通过对不同的模型比较以及将不同的模型进行组合,选择合适且精度较高的评价方法或模型,最后得出理想的易发性评价结果[29-33]。
截至目前为止,尚未有专家学者对则木河断裂带区域开展地质灾害易发性评价,该区域地质灾害的主控因素、发育规律研究。并且,基于确定性系数法与信息量法,耦合得到加权信息量模型,基于ArcGIS软件平台,选择海拔高程坡向、坡度距断层距离、距水系距离、距道路距离、工程地质岩组共7个因子,进行易发性评价,得出易发性评价结果,给出防灾减灾建议。
1. 研究区概况
研究区处于川西地区,凉山州普格县。东西最大距离21.5 km,南北最大距离49.9 km,省道S212贯穿断裂带区域,交通便利。
普格县内地貌按成因可分为两大类,分别是堆积河谷平原及侵蚀山间盆地、侵蚀剥蚀构造中高山地。研究区内大凉山分支中梁山与螺髻山东西对峙。气候旱雨季节分明,受控于印度北部干燥大陆性气团和西南季风。主要降水形式多为雨雪,多年平均降水量1176 mm,其中荞窝镇附近年均降雨量为1550 mm,最大可达到1946.7 mm,是全县暴雨中心。则木河断裂带穿过研究区内,发育有次级断层大箐断层和扯扯街断层。研究区水系由于构造活动的影响,则木河展布与研究区构造形迹相似,自北向南穿过普格县域,次级支流及溪沟也多与构造线方向垂直分布。区内地层从震旦系到第四系除石炭系部分与泥盆系上统部分缺失外,其余各系均有出露,出露最广是侏罗系和白垩系,火山岩局部出露,新近系昔格达组零星分布(图1)。
2. 地质灾害发育规律
研究区总面积671.6 km2,通过地质灾害详查、遥感解译等调查方法,查明并掌握区域内地质灾害的发育特征,运用ArcGIS数据以及工具统计得到则木河断裂带(普格段)的地质灾害发育分布规律。研究区发育有滑坡105处、泥石流38处,共计143处地质灾害,每百平方公里灾害密度21.29处。其中,滑坡、泥石流分别占总量的73.43%、26.57%,可见滑坡是研究区内主要地质灾害,泥石流次之,无崩塌灾害发育。对研究区灾害规模进行统计(表1),其中特大型、大型、中型、小型分别有0处、6处、39处、98处,主要为中小型灾害,大型次之,无特大型灾害发育。
表 1 则木河断裂带(普格段)地质灾害规模统计表Table 1. Statistical table of geological disaster scale of Zemuhe fault zone (Puge section)规模 特大型/处 大型/处 中型/处 小型/处 合计/处 滑坡 0 6 19 80 105 泥石流 0 0 20 18 38 合计 0 6 39 98 143 2.1 断层距离效应
由图2可知,地质灾害呈带状分布于则木河断裂带内,绝大部分分布在2 km范围内,将区域内地质灾害与距断层距离进行统计分析(表2),距则木河断层2 km范围内分布有94.4%的灾害点,距则木河断层1 km的范围内分布有82.5%的灾害点。由地灾点与距断层距离统计关系图(图2),地灾以断裂带为中心,分布密度随距离急剧下降。
表 2 灾害点分布与距断层距离的关系Table 2. Relationship between distribution of disaster points and fault distance距断裂距离/m 灾害点数量/处 面积/km2 密度/(处·km−2) <200 45 83.71788828 0.53751953 200~500 43 110.7142871 0.388387092 500~1000 30 129.3603065 0.231910397 1000~2 000 17 153.1572232 0.11099705 >2 000 8 194.6502949 0.041099347 2.2 地层岩性效应
研究区地层岩性分布存在明显差异。断裂带断陷区地层岩性主要为半成岩松散土层,东部地层岩性主要为侏罗系红砂泥岩,西部地层岩性主要为碳酸盐岩和三叠系中硬岩。根据地层与地质灾害的分布关系(图3),地质灾害主要分布在第四系和三叠系白果湾群、侏罗系益门组和侏罗系新村组,约占总灾害的78.3%,密度为0.2~1.6处/km2,特别是益门组1.6处/km2。这些地层主要分布在断层两侧,构造挤压,岩层破碎。滑坡主要分布在红层和软岩土层中,与地层岩性有关。中硬岩海拔高、坡度陡,地震反应强烈,软岩遇水易软化,强度低。易发生崩滑,给山洪、泥石流的形成提供了大量物源,尤其是新近沉积的土层,流域小,纵坡大,岩土体松散,滑坡坡面侵蚀严重,造成许多小型泥石流。
基于区域岩层强度,将其划分为四类:松散岩土、碎屑岩、碳酸盐岩与岩浆岩。基于灾害点和地层岩性的统计分析结果(表3),可以看出,地质灾害在所有岩性中均有分布,其中在松散岩土中发育最多,密度为0.64处/km2,其次为砂质泥岩、砂质页岩等碎屑岩,密度约为0.18处/km2,在碳酸盐岩和岩浆岩中发育最少。
表 3 灾害点分布与岩类的关系Table 3. Relationship between distribution of disaster points and rocks岩类 灾害点数量/处 面积/km2 密度/(处·km−2) 松散岩土类 37 57.25807612 0.646197052 碎屑岩类 101 561.6624813 0.179823298 碳酸盐岩 4 51.48866247 0.077687005 岩浆岩类 1 1.190780142 0.839785587 2.3 高程与坡度效应
利用GIS软件统计研究区泥石流、滑坡的高程分布(图4)。地质灾害主要分布在海拔1000~2400 m。地质灾害随着海拔的升高而减弱。海拔1000~1500 m的区域仅占该区域的7.04%,但地质灾害数量为58起,密度高达1.22处/km2,海拔1500~1800 m和1800~2100 m的灾害密度分别为0.55处/km2和0.34处/km2(表4)。调查发现,研究区域的人口主要分布在海拔2400 m以下。这个地区是河谷的中下游。山谷形状通常由V形转变为U形。支流与干道的交汇区域、岩体与沉积层的边界过渡带、断裂带的分布高程范围、地震波在不同地层、边坡形态和构造中的影响程度不同,重力场和应力场叠加响应的影响因素很多。
表 4 灾害点分布与高程的关系Table 4. Relationship between disaster point distribution and elevation高程/m 灾害点数量/处 面积/km2 密度/(处·km−2) ≤1500 58 47.29627874 1.226312123 1500~1800 34 61.81273055 0.550048505 1800~2100 33 95.51799726 0.345484631 2100~2400 14 123.1613209 0.113672051 2400~2700 2 106.0693742 0.018855584 2700~3000 1 102.444593 0.009761374 >3000 1 135.2977053 0.007391108 边坡坡度为崩塌和滑坡灾害的发展提供了良好的自由空间条件。根据研究区崩塌滑坡发育的边坡统计(图5、表5),地质灾害主要分布在0°~40°,约占总灾害的99%,地质灾害密度随边坡坡度的增大而减小。调查现场发现,影响地质灾害发展的主要因素是地震波放大效应的差异:①凸坡>线性坡>凹坡,地形由缓变陡或由陡变缓的拐点的PAG响应最大[34];②随着坡度的增加,加速度、位移和剪应力增加,稳定性急剧下降;③条带状或孤立的多面自由面边坡没有阻塞效应,稳定性差。
表 5 灾害点分布与坡度的关系Table 5. Relationship between disaster point distribution and slope坡度/(°) 灾害点数量/处 面积/km2 密度/(处·km−2) 0~10 33 72.82142422 0.453163342 10~20 51 180.4059596 0.282695761 20~30 46 220.8611978 0.208275607 30~40 12 146.3258923 0.082008726 >40 1 51.18552612 0.019536773 3. 地质灾害易发性评价
3.1 评价模型
3.1.1 信息量法
信息量模型是对特定评价单元中某一因素作用下的地灾发生频率和区域内地灾发生频率进行比较来实现的,反映出特定地质环境下最易发生灾害的因素及其细分的组合[35]。特定状态下某一因素对应的地质灾害信息量计算公式如下:
$$ {{I}}_{{i}}=\mathrm{l}\mathrm{n}\frac{{N}_{{i}}/{N}}{{S}_{{i}}/{S}} $$ (1) 式中:Ii——因素i区间(状态)下地质灾害发生的信息量;
Ni——因素i区间(状态)下的地质灾害点个数;
N——已知地质灾害点总数;
Si——因素i区间(状态)分布的栅格面积;
S——栅格总面积。
当Ii>0时,因素i区间(状态)下地质灾害发生倾向的信息量越大,越有利于地质灾害发生;当Ii<0时,因素i区间(状态)条件下,不利于地质灾害发生;当Ii=0时,因素i区间(状态)不提供有关地质灾害是否发生的任何信息,可排除其作为预测因子。
3.1.2 确定性系数法
确定性分析法即Shortliffe等[36]提出,经过Heckerman[37]优化,常常应用在因子敏感性的分析中,也经常作为判断因子权重的方法,进而得到各因子对地质灾害的影响大小[38]。基本假设条件为:可以根据易发生地质灾害确定环境因素数据库,通过对两者之间的统计关系进行分析,确定地质灾害的易发程度,计算公式如下:
$$ CF=\left\{\begin{array}{c}\dfrac{PPa-PPs}{PPa(1-PPs)},PPa\geqslant PPs\\ \dfrac{PPa-PPs}{PPa(1-PPa)},PPa < PPs\end{array}\right. $$ (2) 式中:CF——地灾发生的确定性系数值;
PPa—评价因子数据的灾害点个数与该区间内 数据面积的比值;
PPs—整个区内地质灾害点总个数与区内总面 积的比值。
CF值大小范围为[−1, 1],正负值表示地灾发生的确定性增大或减小,若CF值越接近于0,则无法判断其确定性。
权重计算公式为:
$$ W_i=CF_{(i,\max)}-CF_{(i,\min)} $$ (3) 式中:CF(i, max)——因子i对地质灾害发生确定性系数最 大值;
CF(i, min)——确定性系数最小值。
3.1.3 加权信息量模型
信息量模型与评价因子权重之间相乘,构成加权信息量模型,公式为:
$$ {{I}}_{{i}}={{W}}_{{i}}{\ln}\frac{{{N}}_{{i}}/{N}}{{{S}}_{{i}}/{S}} $$ (4) 通过信息量模型和确定系数法分别计算得出各评价因子图层的信息量值和客观权重值,两者结合,使得易发性评价结果的准确性与精度有所提升。
3.2 评价指标的选取与分析
地质灾害的形成原因复杂多样,同时受多种因素作用。在野外调查的基础上,结合前人研究成果,综合区域地质背景、研究尺度以及数据的可靠性等方面,选取海拔高程、坡度、坡向、距断层距离、距水系距离、距道路距离、工程地质岩组作为评价因子指标(表6)。
表 6 评价因子分级信息量值Table 6. Evaluation factor classification information value评价因子 分级 Ni Si 信息量 高程/m ≤1500 58 166506 1.750829687 1500~1800 34 217611 0.94906948 1800~2100 33 336270 0.484011174 2100~2400 14 433588 −0.627619424 2400~2700 2 373416 −2.424127878 2700~3000 1 360655 −3.082503802 >3000 1 476314 −3.36065928 坡度/(°) 0~10 33 255445 0.755315656 10~20 51 632833 0.283434285 20~30 46 774743 −0.022074748 30~40 12 513286 −0.954111328 >40 1 179550 −2.388638504 坡向 平地 1 1517 2.385080516 北 8 271199 −0.72159611 东北 24 351885 0.116564629 东 26 463075 −0.077977273 东南 25 360163 0.134134335 南 18 259672 0.132767678 西南 18 214302 0.324800739 西 14 200257 0.141271005 西北 9 233787 −0.455370651 工程地质岩组 松散岩类 37 210750 1.108369157 碎屑岩类 101 2067259 −0.170734496 碳酸盐岩类 4 189510 −1.010023591 岩浆岩类 1 4393 1.368111476 距断层距离/m 0~200 45 294975 1.86212416 200~400 31 272326 1.569339604 400~600 24 236142 1.455972789 600~800 11 202457 0.829720032 800~1000 7 176491 0.514992543 1000~1200 8 161212 0.73907355 1200~1400 1 154822 −1.299923793 1400~1600 3 139739 −0.098811831 1600~1800 4 129360 0.266047423 1800~2000 1 121499 −1.057553755 >2000 8 4145167 −2.507904537 距水系距离/m 0~300 54 190197 2.660820212 300~600 25 179240 1.950046678 600~900 6 168052 0.587382557 900~1200 11 156140 1.267038775 >1200 47 6512889 −1.011494271 距道路距离/m 0~300 74 594601 2.421824195 300~600 20 475861 1.336256172 600~900 14 427658 1.086383213 900~1200 6 401098 0.303203376 >1200 29 11046163 −1.436892883 3.2.1 高程
地质灾害的分布客观上受到海拔高度的影响。不同海拔范围内松散物体临空条件的差异,不同海拔范围内植被分布类型不同以及不同海拔范围内人类经济建设活动强度的差异,都会影响岩土体的稳定性。
研究区内高程范围为1036~4247 m,基于ArcGIS重分类工具把高程数据分类成7个区间进行分析,结果如图6(a)、图7(c)所示。统计分析结果表明,在1036~2400 m高程范围内,分布有97.20%的地灾点,其中在高程1036~1500 m范围内分布密度最高;地质灾害在高程2400 m以上区域零星发育。随着高程增大,灾害占比减小,信息量也随之减小。
3.2.2 坡向
不同的坡向受到的太阳照射时间与强度都大不相同,因而会使得不同坡向的山坡的水热比规律产生差异,从而影响地质灾害的发生。根据研究区DEM数据,使用ArcGIS分析工具提取坡向,将坡向分为平面、北、东北、东、东南、南、西南、西和西北9类进行统计结果图6(b)、图7(b)所示。从统计结果来看,研究区内地质灾害主要集中在东、东北、东南以及南和西南方向,共计111处,占总灾害的77.62%。
3.2.3 坡度
在一定程度上,坡度控制着坡体上松散岩土堆积厚度和应力分布。坡度是滑坡泥石流等所需物源的形成的基础;为灾害运动提供能量;对地表水径流、地下水渗流产生影响,降低了边坡稳定性。
研究区坡度分布在0°~78°,基于ArcGIS软件重分类工具把坡度分类为5级,统计分析结果如图6(c)、图7(c)所示。在坡度0°~30°之间,分布有90.90%的灾害。随着坡度的增加,信息量随之减小,灾害占比和面积占比皆呈现先升后降的趋势。
3.2.4 距断层距离
研究区断层多,区域构造活动活跃。岩土体破碎,致使抗剪强度下降,有利于灾害发育。以断层线为中心,向外缓冲11个等级,统计结果如图6(d)、图7(d)所示。
地质灾害主要发生在距构造0~1200 m区段,灾害占比88.11%,且呈现距断层距离越远,地质灾害发生越少的趋势。信息量整体上随着距断层距离的增加而减小。
3.2.5 距水系距离
河流水系的侵蚀作用是导致地灾发生的诱因之一。河流的侧向侵蚀作用致使边坡坡脚处应力分布集中,前缘失稳,边坡失稳;下蚀作用致使边坡岩土体风化强烈以及势能增大,有利于地质灾害的发育。
基于ArcGIS软件缓冲区工具以河流为中心向外缓冲,分为5个等级,统计分析结果如图6(e)、图6(e)所示。地质灾害整体上大致具有距水系河流越远,地质灾害的发生概率越低,信息量值越小的特点。在900~1200 m区段,由于面积占比较小,导致信息量较大。距河流600 m以内,灾害占比55.24%,是地灾高发区。
3.2.6 距道路距离
道路建设作为人类重要工程建设活动之一,在道路建设施工中,开挖公路边坡、填方堆积弃渣等,很容易产生许多不稳定或欠稳定边坡,直接或间接导致滑坡灾害发生。
道路向外缓冲5级,统计结果如图6(f)、图7(f)所示。离公路越近,灾害越多,信息量也越大。公路300 m范围内地质灾害发生率高,占51.74%,信息量高达2.4218。
3.2.7 工程地质岩组
不同地质岩组往往具有不同的岩体结构,其岩体硬度和强度也都大不相同,其拉伸和压缩性质也不同,因此发育的灾害的类型、规模也不同。根据出露地层岩体性质以及岩性组合特征,将其划分为四类,分别为松散岩土、碎屑岩、碳酸盐岩和岩浆岩。
基于ArcGIS软件对该因子进行分析,分析结果如图6(g)、图7(g)所示。灾害点在碎屑岩中分布最多,但由于碎屑岩面积也是最大,所以不是信息量最大的工程地质岩组;虽然仅有37处地质灾害分布在松散岩土层中,但由于面积仅占研究区的8.54%,所以该工程地质岩组信息量较高。
3.3 评价因子权重
评价因子权重是由各因子的确定系数最大值减去最小值得到,结果如表7所示。从表7得知,研究区高程、距断层距离影响地质灾害最大,因子权重为1.792、1.763,然后是距道路距离、距水系距离,权重为1.674、1.566,最后是坡度、坡向和工程地质岩组三个因子的权重较低,分别为1.438、1.422、1.381。
表 7 评价因子权重Table 7. Evaluation factor weight评价因子 CFmax CFmin 权重 高程 0.826 −0.965 1.792 坡度 0.530 −0.908 1.438 工程地质岩组 0.745 −0.636 1.381 距断层距离 0.845 −0.919 1.763 距水系距离 0.930 −0.636 1.566 距道路距离 0.911 −0.762 1.674 坡向 0.908 −0.514 1.422 3.4 评价结果与分析
在单因素加权信息层的基础上,利用spatial analyst下的rastercalculator工具对每一层进行叠加,得到易发性评价图,然后利用自然间断法将其重新划分为4类,即极高、高、中和低易发区。基于ArcGIS软件,将灾害点分布与易发性评价分区结果叠加在一起,进而统计得到各易发等级下灾害点个数、灾害点占比以及灾害点密度、易发区面积以及面积占比等,如图8和表8所示。
表 8 研究区地质灾害易发分区统计表Table 8. Statistical table of geological hazard prone zones in the study area易发性分区 面积/km2 面积占比/% 灾害点/处 灾害占比/% 每百平方公里灾害点密度/处 灾害占比与面积占比比值 低易发区 285.34 42.49 3 2.10 1.05 0.05 中易发区 215.73 32.12 22 15.38 10.20 0.48 高易发区 123.78 18.43 51 35.66 41.20 1.94 极高易发区 46.75 6.96 67 46.85 143.31 6.73 合计 671.60 100.00 143 100.00 − − 根据分析结果可知,极高易发区46.75 km2,面积占比为6.96%。该区主要分布在则木河及其支流两岸。该区域主要为碎屑岩和松散岩土,人口稠密,人类工程活动频繁,省道S212沿河修建,开挖边坡,河流侵蚀强烈,易引发灾害。区内分布有67处地质灾害,占比46.85%,密度143.31/100 km2。
高易发区123.78 km2,面积占比18.43%。该区域在极高易发区周围呈团状分布;主要为碎屑岩和松散岩土,少部分碳酸盐岩,岩体较为破碎;人口密度较大,工程活动较为活跃;水系强烈侵蚀,也易引发灾害。共有51处地质灾害分布在该区内,占全部地质灾害的35.66%,灾害密度为41.20处/100 km2。极高和高易发区面积占整个研究区的25.39%,但灾害数量却占整个研究区的82.51%,密度合计高达184.51处/100 km2。
中易发区215.73 km2,面积占比32.12%。该区主要为碎屑岩和部分碳酸盐岩;地形逐渐陡峭,沟谷密集;河流冲刷作用逐渐减弱;受公路建设开挖边坡影响减小。区内分布有22处地质灾害,占比15.38%,密度为10.20处/100 km2。
低易发区285.34 km2,面积占比42.49%。该区主要分布在黎安乡西部、西南部,荞窝镇-大槽乡-螺髻山镇-五道箐镇一线的东、西部,以及普基镇西北部地区。该区域主要为碎屑岩和部分碳酸盐岩,无松散岩土岩组,植被覆盖度高,坡陡、高程较大,不适宜人类居住活动;距离水系、道路和断层较远,影响较弱。区内分布有3处地质灾害,占比为2.10%,密度为1.05处/100 km2(图7)。
4. 结论
以则木河断裂带(普格段)为研究对象,分析研究区的地质灾害控制效应以及发育规律,运用确定性系数模型与信息量模型耦合的加权信息量模型,选择海拔高程、距断层距离、距道路距离、距水系距离、坡向、坡度、工程地质岩组共7个评价因子对研究区进行地质灾害易发性评价,给出防灾减灾建议,得出结论如下。
(1)研究区共发育有143处地质灾害,密度21.29处/100 km2。其中,有105处滑坡、38处泥石流,规模大小主要为中小型。灾害点呈带状分布于断裂带内,以断裂为中心,随距离变远密度急剧下降。灾害分布具有地层倾向性,主要在第四系、三叠系白果湾群、益门组、新村组四个地层中分布,约占地灾总量的78.3%。微地貌上,灾害主要分布于坡度0°~40°,高程1000~2400 m。
(2)通过各因子的分级信息量计算分析,表明地质灾害在高程≤1500 m、距构造距离0~200 m、距道路距离0~300 m、距水系距离0~300 m、坡度0°~10°、西南向和松散岩土的区域内信息量最大。对各因子确定权重,从大到小排序依次为高程、距断层距离、距道路距离、距水系距离、坡度、坡向、工程地质岩组,权重大小分别为1.792、1.763、1.674、1.566、1.438、1.422、1.381。
(3)易发性评价结果分成4个易发性分区,其中极高易发区、高易发区、中易发区和低易发区的面积分别为46.75 km2、123.78 km2、215.73 km2、285.34 km2,面积占比分别为6.96%、18.43%、32.12%、42.49%。
-
表 1 则木河断裂带(普格段)地质灾害规模统计表
Table 1 Statistical table of geological disaster scale of Zemuhe fault zone (Puge section)
规模 特大型/处 大型/处 中型/处 小型/处 合计/处 滑坡 0 6 19 80 105 泥石流 0 0 20 18 38 合计 0 6 39 98 143 表 2 灾害点分布与距断层距离的关系
Table 2 Relationship between distribution of disaster points and fault distance
距断裂距离/m 灾害点数量/处 面积/km2 密度/(处·km−2) <200 45 83.71788828 0.53751953 200~500 43 110.7142871 0.388387092 500~1000 30 129.3603065 0.231910397 1000~2 000 17 153.1572232 0.11099705 >2 000 8 194.6502949 0.041099347 表 3 灾害点分布与岩类的关系
Table 3 Relationship between distribution of disaster points and rocks
岩类 灾害点数量/处 面积/km2 密度/(处·km−2) 松散岩土类 37 57.25807612 0.646197052 碎屑岩类 101 561.6624813 0.179823298 碳酸盐岩 4 51.48866247 0.077687005 岩浆岩类 1 1.190780142 0.839785587 表 4 灾害点分布与高程的关系
Table 4 Relationship between disaster point distribution and elevation
高程/m 灾害点数量/处 面积/km2 密度/(处·km−2) ≤1500 58 47.29627874 1.226312123 1500~1800 34 61.81273055 0.550048505 1800~2100 33 95.51799726 0.345484631 2100~2400 14 123.1613209 0.113672051 2400~2700 2 106.0693742 0.018855584 2700~3000 1 102.444593 0.009761374 >3000 1 135.2977053 0.007391108 表 5 灾害点分布与坡度的关系
Table 5 Relationship between disaster point distribution and slope
坡度/(°) 灾害点数量/处 面积/km2 密度/(处·km−2) 0~10 33 72.82142422 0.453163342 10~20 51 180.4059596 0.282695761 20~30 46 220.8611978 0.208275607 30~40 12 146.3258923 0.082008726 >40 1 51.18552612 0.019536773 表 6 评价因子分级信息量值
Table 6 Evaluation factor classification information value
评价因子 分级 Ni Si 信息量 高程/m ≤1500 58 166506 1.750829687 1500~1800 34 217611 0.94906948 1800~2100 33 336270 0.484011174 2100~2400 14 433588 −0.627619424 2400~2700 2 373416 −2.424127878 2700~3000 1 360655 −3.082503802 >3000 1 476314 −3.36065928 坡度/(°) 0~10 33 255445 0.755315656 10~20 51 632833 0.283434285 20~30 46 774743 −0.022074748 30~40 12 513286 −0.954111328 >40 1 179550 −2.388638504 坡向 平地 1 1517 2.385080516 北 8 271199 −0.72159611 东北 24 351885 0.116564629 东 26 463075 −0.077977273 东南 25 360163 0.134134335 南 18 259672 0.132767678 西南 18 214302 0.324800739 西 14 200257 0.141271005 西北 9 233787 −0.455370651 工程地质岩组 松散岩类 37 210750 1.108369157 碎屑岩类 101 2067259 −0.170734496 碳酸盐岩类 4 189510 −1.010023591 岩浆岩类 1 4393 1.368111476 距断层距离/m 0~200 45 294975 1.86212416 200~400 31 272326 1.569339604 400~600 24 236142 1.455972789 600~800 11 202457 0.829720032 800~1000 7 176491 0.514992543 1000~1200 8 161212 0.73907355 1200~1400 1 154822 −1.299923793 1400~1600 3 139739 −0.098811831 1600~1800 4 129360 0.266047423 1800~2000 1 121499 −1.057553755 >2000 8 4145167 −2.507904537 距水系距离/m 0~300 54 190197 2.660820212 300~600 25 179240 1.950046678 600~900 6 168052 0.587382557 900~1200 11 156140 1.267038775 >1200 47 6512889 −1.011494271 距道路距离/m 0~300 74 594601 2.421824195 300~600 20 475861 1.336256172 600~900 14 427658 1.086383213 900~1200 6 401098 0.303203376 >1200 29 11046163 −1.436892883 表 7 评价因子权重
Table 7 Evaluation factor weight
评价因子 CFmax CFmin 权重 高程 0.826 −0.965 1.792 坡度 0.530 −0.908 1.438 工程地质岩组 0.745 −0.636 1.381 距断层距离 0.845 −0.919 1.763 距水系距离 0.930 −0.636 1.566 距道路距离 0.911 −0.762 1.674 坡向 0.908 −0.514 1.422 表 8 研究区地质灾害易发分区统计表
Table 8 Statistical table of geological hazard prone zones in the study area
易发性分区 面积/km2 面积占比/% 灾害点/处 灾害占比/% 每百平方公里灾害点密度/处 灾害占比与面积占比比值 低易发区 285.34 42.49 3 2.10 1.05 0.05 中易发区 215.73 32.12 22 15.38 10.20 0.48 高易发区 123.78 18.43 51 35.66 41.20 1.94 极高易发区 46.75 6.96 67 46.85 143.31 6.73 合计 671.60 100.00 143 100.00 − − -
[1] 则木河活断裂填图组. 则木河活动断裂带1∶5万地质填图及综合研究[J]. 四川地震,2000(增刊 1):1 − 4. [Working group for geologic mapping on Zemuhe fault. Geologic mapping and comprehensive analysis on the active faults of Zemuhe[J]. Earthquake Research in Sichuan,2000(Sup 1):1 − 4. (in Chinese with English abstract) Working group for geologic mapping on Zemuhe fault. Geologic mapping and comprehensive analysis on the active faults of zemuhe[J]. Earthquake Research in Sichuan, 2000(Sup 1): 1-4. (in Chinese with English abstract)
[2] REN J W, PING L. Earthquake-caused landforms and paleoseismic study on the northern segment of the Zemuhe fault[J]. Seismology & Geology, 1989.
[3] REN Z K, LIN A M. Deformation characteristics of co-seismic surface ruptures produced by the 1850 M 7.5 Xichang earthquake on the eastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences,2010,38(1/2):1 − 13.
[4] 任治坤, 田勤俭, 张军龙. 后差分GPS测量则木河断裂地震微地貌特征[J]. 地震,2007,27(3):97 − 104. [REN Zhikun, TIAN Qinjian, ZHANG Junlong. Micro geomorphology of Zemuhe Fault surveyed by virtue deferential GPS[J]. Earthquake,2007,27(3):97 − 104. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3274.2007.03.013 REN Zhikun, TIAN Qinjian, ZHANG Junlong. Micro geomorphology of Zemuhe Fault surveyed by virtue deferential GPS[J]. Earthquake, 2007, 27(3): 97-104. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3274.2007.03.013
[5] 杜平山. 则木河断裂带的演化历史及变形机制[J]. 四川地震,2000(增刊 1):65 − 79. [DU Pingshan. Evolution histories and deformation mechanism about active fault of Zemuhe[J]. Earthquake Research in Sichuan,2000(Sup 1):65 − 79. (in Chinese with English abstract) DU Pingshan. Evolution histories and deformation mechanism about active fault of zemuhe[J]. Earthquake Research in Sichuan, 2000(Sup 1): 65 − 79. (in Chinese with English abstract)
[6] 闻学泽. 则木河断裂的第四纪构造活动模式[J]. 地震研究,1983,6(1):41 − 50. [WEN Xueze. Model of active tectonic of the quaternary period of Zemu river fault[J]. Journal of Seismological Research,1983,6(1):41 − 50. (in Chinese with English abstract) WEN Xueze. Model of active tectonic of the quaternary period of zemu river fault[J]. Journal of Seismological Research, 1983, 6(1): 41-50. (in Chinese with English abstract)
[7] 唐荣昌, 黄祖智, 伍先国, 等. 则木河断裂全新世以来的新活动与地震[J]. 中国地震,1986,2(4):84 − 90. [TANG Rongchang, HUANG Zuzhi, WU Xianguo, et al. The new activities and earthquakes of the Zemuhe fault since the Holocene[J]. Earthquake Research in China,1986,2(4):84 − 90. (in Chinese with English abstract) TANG Rongchang, HUANG Zuzhi, WU Xianguo, et al. The new activities and earthquakes of the zemuhe fault since the Holocene[J]. Earthquake Research in China, 1986, 2(4): 84-90. (in Chinese with English abstract)
[8] 冯元保, 杜平山. 1850年西昌地震孕育和发生的地质构造条件[J]. 四川地震,2000(增刊 1):97 − 101. [FENG Yuanbao, DU Pingshan. Geologic tectonic and earthquake preparation conditions about 1850 Xuchuan earthquake[J]. Earthquake Research in Sichuan,2000(Sup 1):97 − 101. (in Chinese with English abstract) FENG Yuanbao, DU Pingshan. Geologic tectonic and earthquake preparation conditions about 1850 xuchuan earthquake[J]. Earthquake Research in Sichuan, 2000(Sup 1): 97-101. (in Chinese with English abstract)
[9] 王虎, 冉勇康, 李彦宝, 等. 则木河断裂上古地震破裂与小型三角状拉分盆地演化[J]. 中国科学(地球科学),2013,43(7):1106 − 1114. [WANG Hu, RAN Yongkang, LI Yanbao, et al. Upper paleoseismic rupture of Zemuhe fault and evolution of small triangular pull apart basin[J]. Scientia Sinica (Terrae),2013,43(7):1106 − 1114. (in Chinese with English abstract) DOI: 10.1360/zd-2013-43-7-1106 WANG Hu, RAN Yongkang, LI Yanbao, et al. Upper paleoseismic rupture of Zemuhe fault and evolution of small triangular pull apart basin [J]. Scientia Sinica (Terrae), 2013, 43(7): 1106-1114. (in Chinese with English abstract) DOI: 10.1360/zd-2013-43-7-1106
[10] 郭乾. 则木河断裂带中段典型古地震滑坡动力学特征研究[D]. 成都: 成都理工大学, 2014 GUO Qian. Research on dynamical characteristics of historical seismic landslide in the middle of Zemuhe fault zone[D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese with English abstract)
[11] 曹文正. 则木河断裂带西昌—普格段重大古滑坡发育特征及成因机理研究[D]. 成都: 成都理工大学, 2015 CAO Wenzheng. Research on development characteristics and genetic mechanism of the seismic landslides from Xichang to Puge along Zemuhe fault zone[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese with English abstract)
[12] 黄润秋, 向喜琼, 巨能攀. 我国区域地质灾害评价的现状及问题[J]. 地质通报,2004,23(11):1078 − 1082. [HUANG Runqiu, XIANG Xiqiong, JU Nengpan. Assessment of China's regional geohazards: Present situation and problems[J]. Regional Geology of China,2004,23(11):1078 − 1082. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2004.11.005 HUANG Runqiu, XIANG Xiqiong, JU Nengpan. Assessment of China's regional geohazards: present situation and problems[J]. Regional Geology of China, 2004, 23(11): 1078-1082. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2004.11.005
[13] GUZZETTI F, REICHENBACH P, CARDINALI M, et al. Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology,2005,72(1/2/3/4):272 − 299.
[14] 倪化勇, 王德伟, 陈绪钰, 等. 四川雅江县城地质灾害发育特征与稳定性评价[J]. 现代地质,2015,29(2):474 − 480. [NI Huayong, WANG Dewei, CHEN Xuyu, et al. Formation characteristics and stability assessment of geological hazards in Yajiang City, Sichuan Province[J]. Geoscience,2015,29(2):474 − 480. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-8527.2015.02.036 NI Huayong, WANG Dewei, CHEN Xuyu, et al. Formation characteristics and stability assessment of geological hazards in Yajiang City, Sichuan Province[J]. Geoscience, 2015, 29(2): 474-480. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-8527.2015.02.036
[15] 阮沈勇, 黄润秋. 基于GIS的信息量法模型在地质灾害危险性区划中的应用[J]. 成都理工学院学报,2001,28(1):89 − 92. [RUAN Shenyong, HUANG Runqiu. Application of gis-based information model on assessment of geological hazards risk[J]. Journal of Chengdu University of Technology,2001,28(1):89 − 92. (in Chinese with English abstract) RUAN Shenyong, HUANG Runqiu. Application of gis-based information model on assessment of geological hazards risk[J]. Journal of Chengdu University of Technology, 2001, 28(1): 89-92. (in Chinese with English abstract)
[16] 薛强, 张茂省, 李林. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J]. 地质通报,2015,34(11):2108 − 2115. [XUE Qiang, ZHANG Maosheng, LI Lin. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yanan[J]. Geological Bulletin of China,2015,34(11):2108 − 2115. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2015.11.017 XUE Qiang, ZHANG Maosheng, LI Lin. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan'an[J]. Geological Bulletin of China, 2015, 34(11): 2108-2115. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2015.11.017
[17] 陈朝亮, 张文君, 钱静, 等. 基于改进Logistic回归模型在地质灾害评价中的应用[J]. 环境科学与技术,2019,42(4):188 − 193. [CHEN Chaoliang, ZHANG Wenjun, QIAN Jing, et al. Application of improved logistic regression model in geological hazard evaluation[J]. Environmental Science & Technology,2019,42(4):188 − 193. (in Chinese with English abstract) CHEN Chaoliang, ZHANG Wenjun, QIAN Jing, et al. Application of improved logistic regression model in geological hazard evaluation[J]. Environmental Science & Technology, 2019, 42(4): 188-193. (in Chinese with English abstract)
[18] 赵成, 张永军, 赵玉红. 层次分析法在甘肃省地质灾害易发性评价中的应用[J]. 冰川冻土,2009,31(1):182 − 188. [ZHAO Cheng, ZHANG Yongjun, ZHAO Yuhong. Application of the hierarchical analytical methods to evaluating geological hazard tendency in Gansu Province[J]. Journal of Glaciology and Geocryology,2009,31(1):182 − 188. (in Chinese with English abstract) ZHAO Cheng, ZHANG Yongjun, ZHAO Yuhong. Application of the hierarchical analytical methods to evaluating geological hazard tendency in Gansu Province[J]. Journal of Glaciology and Geocryology, 2009, 31(1): 182-188. (in Chinese with English abstract)
[19] 许冲, 戴福初, 姚鑫, 等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报,2010,18(1):15 − 26. [XU Chong, DAI Fuchu, YAO Xin, et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology,2010,18(1):15 − 26. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2010.01.003 XU Chong, DAI Fuchu, YAO Xin, et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 2010, 18(1): 15-26. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2010.01.003
[20] 李益敏, 李驭豪, 赵志芳. 基于确定性系数模型的泸水市泥石流易发性评价[J]. 水土保持研究,2019,26(4):336 − 342. [LI Yimin, LI Yuhao, ZHAO Zhifang. Assessment on susceptibility of debris flow in Lushui based on the certain factor model[J]. Research of Soil and Water Conservation,2019,26(4):336 − 342. (in Chinese with English abstract) LI Yimin, LI Yuhao, ZHAO Zhifang. Assessment on susceptibility of debris flow in Lushui based on the certain factor model[J]. Research of Soil and Water Conservation, 2019, 26(4): 336-342. (in Chinese with English abstract)
[21] SANDRIC I, IONITA C, CHITU Z, et al. Using CUDA to accelerate uncertainty propagation modelling for landslide susceptibility assessment[J]. Environmental Modelling & Software,2019,115:176 − 186.
[22] ADITIAN A, KUBOTA T, SHINOHARA Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia[J]. Geomorphology,2018,318:101 − 111. DOI: 10.1016/j.geomorph.2018.06.006
[23] 张书豪, 吴光. 随机森林与GIS的泥石流易发性及可靠性[J]. 地球科学,2019,44(9):3115 − 3134. [ZHANG Shuhao, WU Guang. Debris flow susceptibility and its reliability based on random forest and GIS[J]. Earth Science,2019,44(9):3115 − 3134. (in Chinese with English abstract) ZHANG Shuhao, WU Guang. Debris flow susceptibility and its reliability based on random forest and GIS[J]. Earth Science, 2019, 44(9): 3115-3134. (in Chinese with English abstract)
[24] 黄立鑫, 郝君明, 李旺平, 等. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价: 以甘肃岷县为例[J]. 中国地质灾害与防治学报,2021,32(6):116 − 126. [HUANG Lixin, HAO Junming, LI Wangping, et al. Landslide susceptibility assessment by the coupling method of RBF neural network and information value: A case study in Min Xian, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):116 − 126. (in Chinese with English abstract) HUANG Lixin, HAO Junming, LI Wangping, et al. Landslide susceptibility assessment by the coupling method of RBF neural network and information value: a case study in Min Xian, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 116-126. (in Chinese with English abstract)
[25] 刘福臻, 王灵, 肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract) LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98-106. (in Chinese with English abstract)
[26] 周天伦, 曾超, 范晨, 等. 基于快速聚类-信息量模型的汶川及周边两县滑坡易发性评价[J]. 中国地质灾害与防治学报,2021,32(5):137 − 150. [ZHOU Tianlun, ZENG Chao, FAN Chen, et al. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties, China[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):137 − 150. (in Chinese with English abstract) Tianlun ZHOU, Chao ZENG, Chen FAN, Hongji BI, Enhui GONG, Xiao LIU. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties, China[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 137-150. (in Chinese with English abstract)
[27] 方然可, 刘艳辉, 黄志全. 基于机器学习的区域滑坡危险性评价方法综述[J]. 中国地质灾害与防治学报,2021,32(4):1 − 8. [FANG Ranke, LIU Yanhui, HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):1 − 8. (in Chinese with English abstract) Ranke FANG, Yanhui LIU, Zhiquan HUANG. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 1-8. (in Chinese with English abstract)
[28] 郭学飞, 王志一, 焦润成, 等. 基于层次分析法的北京市地质环境质量综合评价[J]. 中国地质灾害与防治学报,2021,32(1):70 − 76. [GUO Xuefei, WANG Zhiyi, JIAO Runcheng, et al. Comprehensive evaluation method of geological environment quality in Beijing based on AHP[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):70 − 76. (in Chinese with English abstract) GUO Xuefei, WANG Zhiyi, JIAO Runcheng, et al. Comprehensive evaluation method of geological environment quality in Beijing based on AHP[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 70-76. (in Chinese with English abstract)
[29] 张晓东, 刘湘南, 赵志鹏, 等. 信息量模型、确定性系数模型与逻辑回归模型组合评价地质灾害敏感性的对比研究[J]. 现代地质,2018,32(3):602 − 610. [ZHANG Xiaodong, LIU Xiangnan, ZHAO Zhipeng, et al. Comparative study of geological hazards susceptibility assessment: Constraints from the information value + logistic regression model and the CF + logistic regression model[J]. Geoscience,2018,32(3):602 − 610. (in Chinese with English abstract) ZHANG Xiaodong, LIU Xiangnan, ZHAO Zhipeng, et al. Comparative study of geological hazards susceptibility assessment: constraints from the information value + logistic regression model and the CF + logistic regression model[J]. Geoscience, 2018, 32(3): 602-610. (in Chinese with English abstract)
[30] 田春山, 刘希林, 汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质,2016,43(6):154 − 161. [TIAN Chunshan, LIU Xilin, WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology,2016,43(6):154 − 161. (in Chinese with English abstract) TIAN Chunshan, LIU Xilin, WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 154-161. (in Chinese with English abstract)
[31] 李远远, 梅红波, 任晓杰, 等. 基于确定性系数和支持向量机的地质灾害易发性评价[J]. 地球信息科学学报,2018,20(12):1699 − 1709. [LI Yuanyuan, MEI Hongbo, REN Xiaojie, et al. Geological disaster susceptibility evaluation based on certainty factor and support vector machine[J]. Journal of Geo-Information Science,2018,20(12):1699 − 1709. (in Chinese with English abstract) DOI: 10.12082/dqxxkx.2018.180349 LI Yuanyuan, MEI Hongbo, REN Xiaojie, et al. Geological disaster susceptibility evaluation based on certainty factor and support vector machine[J]. Journal of Geo-Information Science, 2018, 20(12): 1699-1709. (in Chinese with English abstract) DOI: 10.12082/dqxxkx.2018.180349
[32] 樊芷吟, 苟晓峰, 秦明月, 等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报,2018,26(2):340 − 347. [FAN Zhiyin, GOU Xiaofeng, QIN Mingyue, et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology,2018,26(2):340 − 347. (in Chinese with English abstract) FAN Zhiyin, GOU Xiaofeng, QIN Mingyue, et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology, 2018, 26(2): 340-347. (in Chinese with English abstract)
[33] 何原荣, 傅文杰. 模糊支持向量机在滑坡危险性评价中的应用[J]. 自然灾害学报,2009,18(5):107 − 112. [HE Yuanrong, FU Wenjie. Application of fuzzy support vector machine to landslide risk assessment[J]. Journal of Natural Disasters,2009,18(5):107 − 112. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-4574.2009.05.016 HE Yuanrong, FU Wenjie. Application of fuzzy support vector machine to landslide risk assessment[J]. Journal of Natural Disasters, 2009, 18(5): 107-112. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-4574.2009.05.016
[34] 冯文凯, 黄润秋, 许强. 斜坡震裂变形发育分布规律及危险性分析[J]. 成都理工大学学报(自然科学版),2010,37(6):679 − 684. [FENG Wenkai, HUANG Runqiu, XU Qiang. Analysis of the development, distribution rules and risk of slope shattering deformation[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2010,37(6):679 − 684. (in Chinese with English abstract) FENG Wenkai, HUANG Runqiu, XU Qiang. Analysis of the development, distribution rules and risk of slope shattering deformation[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(6): 679-684. (in Chinese with English abstract)
[35] 殷坤龙, 晏同珍. 汉江河谷旬阳段区域滑坡规律及斜坡不稳定性预测[J]. 地球科学,1987,12(6):631 − 638. [YIN Kunlong, YAN Tongzhen. Distribution regularity of landslides and prediction of slope instability nearby Xunyang, Han River valley[J]. Earth Science,1987,12(6):631 − 638. (in Chinese with English abstract) YIN Kunlong, YAN Tongzhen. Distribution regularity of landslides and prediction of slope instability nearby Xunyang, Han River valley[J]. Earth Science, 1987, 12(6): 631-638. (in Chinese with English abstract)
[36] SHORTLIFFE E H, BUCHANAN B G. A model of inexact reasoning in medicine[J]. Mathematical Biosciences,1975,23(3/4):351 − 379.
[37] HECKERMAN D. Probabilistic interpretations for MYCIN's certainty factors[J]. CoRR,2013,abs/1304.3419:167 − 196.
[38] 刘艳辉, 刘传正, 唐灿, 等. 基于确定性系数模型的地质灾害多因子权重计算方法[J]. 中国地质灾害与防治学报,2015,26(1):92 − 97. [LIU Yanhui, LIU Chuanzheng, TANG Can, et al. CF-based multi-factor overlay method to determine weights of the factors for geo-hazards[J]. The Chinese Journal of Geological Hazard and Control,2015,26(1):92 − 97. (in Chinese with English abstract) LIU Yanhui, LIU Chuanzheng, TANG Can, et al. CF-based multi-factor overlay method to determine weights of the factors for geo-hazards[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1): 92-97. (in Chinese with English abstract)
-
期刊类型引用(13)
1. 张晓丽,曾祥宇,唐流东,刘亮,张阳. 基于信息量法的区域滑坡易发性评价——以宜宾市叙州区为例. 农业灾害研究. 2025(01): 265-267 . 百度学术
2. 石文君,王宇栋,解晋航,李章杰,梁形形. 基于多种模型对比的寻甸县地质灾害易发性分析. 矿产勘查. 2024(06): 1092-1102 . 百度学术
3. 陆雄轩,朱永浩. 基于信息量模型开展的滑坡崩塌易发性评价. 科技资讯. 2024(12): 196-198 . 百度学术
4. 石文君,王宇栋,李章杰,解晋航. 基于I-LR模型耦合的斜坡类地质灾害易发性评价. 防灾减灾学报. 2024(03): 31-37 . 百度学术
5. 陈绰裕,黄强兵,解庆禹,李伦. 泾阳——渭南活动断裂带场地形变与地层应力特征数值分析. 水文地质工程地质. 2024(05): 136-149 . 百度学术
6. 余杰,丁艳伟. 者么箐泥石流沟发育特征及运动参数研究. 科技与创新. 2024(23): 76-79 . 百度学术
7. 丁思蒙,韩尚鹏,田仕雄,刘鑫. 基于GIS技术的乃东区斜坡类地质灾害易发性评价. 防灾减灾学报. 2024(04): 13-20 . 百度学术
8. 曾斌,吕权儒,寇磊,艾东,许汇源,袁晶晶. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价. 中国地质灾害与防治学报. 2023(04): 105-113 . 本站查看
9. 胡杨,张紫昭,林世河. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价. 工程地质学报. 2023(04): 1350-1363 . 百度学术
10. 高波,张佳佳,陈龙,田尤,刘建康. 藏东红层地区断裂对泥石流物源的控制作用——以西藏贡觉县哇曲中游流域为例. 中国地质灾害与防治学报. 2023(05): 20-31 . 本站查看
11. 谭彬,刘国栋,余安亮,林平. 基于AHP-INF耦合模型的察雅县地质灾害易发性评价. 地理空间信息. 2023(11): 15-19 . 百度学术
12. 王志民,罗刚,王媛,胡卸文,陈仕阔. 切割斜坡断层的几何形态对斜坡地震响应影响研究. 水文地质工程地质. 2023(06): 147-157 . 百度学术
13. 铁永波,孙强,徐勇,张勇,魏云杰,杨秀元,张泰丽,谭建民. 南方山地丘陵区典型地质灾害成因机制与风险评价. 中国地质调查. 2022(04): 1-9 . 百度学术
其他类型引用(1)