ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

贵州晴隆红寨大型古滑坡复活变形特征及成因分析

党杰, 杨亮, 段方情, 范宣梅

党杰,杨亮,段方情,等. 贵州晴隆红寨大型古滑坡复活变形特征及成因分析[J]. 中国地质灾害与防治学报,2024,35(4): 25-35. DOI: 10.16031/j.cnki.issn.1003-8035.202401024
引用本文: 党杰,杨亮,段方情,等. 贵州晴隆红寨大型古滑坡复活变形特征及成因分析[J]. 中国地质灾害与防治学报,2024,35(4): 25-35. DOI: 10.16031/j.cnki.issn.1003-8035.202401024
DANG Jie,YANG Liang,DUAN Fangqing,et al. Reactivation characteristics and genesis analysis of the large ancient landslide in Hongzhai, Qinglong County, Guizhou Province [J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 25-35. DOI: 10.16031/j.cnki.issn.1003-8035.202401024
Citation: DANG Jie,YANG Liang,DUAN Fangqing,et al. Reactivation characteristics and genesis analysis of the large ancient landslide in Hongzhai, Qinglong County, Guizhou Province [J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 25-35. DOI: 10.16031/j.cnki.issn.1003-8035.202401024

贵州晴隆红寨大型古滑坡复活变形特征及成因分析

基金项目: 国家杰出青年科学基金项目(42125702);贵州省地质灾害“隐患点+风险区”精细化调查评价项目[黔财资环[2023]87号]
详细信息
    作者简介:

    党 杰(1987— ),男,陕西渭南人,博士研究生,高级工程师,主要从事地质灾害防治、地质环境调查评价等工作。E-mail:396816806@qq.com

    通讯作者:

    杨 亮(1984—),男,山东济南人,博士研究生,高级工程师,主要从事地质灾害防治等工作。E-mail:231380129@qq.com

  • 中图分类号: P642.22

Reactivation characteristics and genesis analysis of the large ancient landslide in Hongzhai, Qinglong County, Guizhou Province

Funds: This research is financially supported by the Funds for National Science Foundation for Outstanding Young Scholars (Grant No. 42125702) and the Geological hazards refined investigation and evaluation project in Guizhou Province ([2023]87).
  • 摘要:

    2020年9月17日,贵州省晴隆县鸡场镇红寨村发生滑坡灾害,导致134栋房屋严重损毁,127户569人紧急避险。通过调查发现,红寨滑坡是一处规模达6.25×106 m3的深层大型滑坡,地表房屋及基础设施破坏严重,但整个滑坡运动距离极短。通过对地形地貌和岩土体结构及物质成分组成的分析、水系变动判断及钻孔揭露的多层滑面等综合分析认为,红寨滑坡是一处顺层的复活古滑坡。为分析研究该滑坡的变形特征和复活成因,采用无人机航测、工程地质调查、岩土体勘查、地球物理勘探等手段,获取了详细的灾害发育特征、影响因素及古滑坡的辨识特征等数据。分析结果表明:红寨滑坡可根据变形破坏特征及应力传递方向分为A、B、C、D 4个分区,其中B区又根据相对滑移量分为B1、B2亚区;滑坡的变形复活是在高陡的地形地貌、复杂的岩体结构、软弱的工程岩组和持续地表水入渗等共同作用下发生的;滑坡后缘圈椅状地形、滑体与周围岩土体的物质差异、断层切割前缘及水系堆积物的变迁等多方面特征验证了古滑坡的事实。

    Abstract:

    On September 17, 2020, a landslide occurred in Hongzhai Village, Jichang Town, Qinglong County, Guizhou Province, resulting in serious damage to 134 houses and emergency evacuation of 569 people from 127 households. Investigation revealed that the Hongzhai landslide is a deep-seated large-scale landslide with a volume of approximately 6.25×106 m3. Although surface buildings and infrastructure were severely damaged, the overall movement distance of the landslide was extremely short. Through comprehensive analysis including terrain geomorphology, rock and soil structure and material composition analysis, assessment of hydrological changes, and disclosure of multiple slip surfaces through borehole drilling, it was concluded that the Hongzhai landslide is a resurrected ancient landslide along bedding planes. In order to analyze and study the deformation characteristics and resurrection causes of the landslide, methods including UAV aerial survey, engineering geological survey, rock and soil mass investigation, and geophysical exploration were employed to obtain detailed data on disaster development characteristics, influencing factors, and identification features of ancient landslides. The results show that the Hongzhai landslide can be divided into four zones (A, B, C, D) based on deformation and stress transfer direction, with zone B further divided into subzones B1 and B2 based on relative displacement. The deformation and resurrection of the landslide occurred under the joint effects of steep terrain, complex rock mass structures, weak engineering rock masses, and continuous surface infiltration. Various features such as the arm-chair shaped topography at the back edge of the landslide, material differences between the slide body and surrounding rock and soil masses, fault-cutting front edges, and changes in hydrological sedimentation verify the existence of the ancient landslide.

  • 近年来,我国地质灾害防治工作由隐患管理逐步向风险管理转变,作为地质灾害风险管理的支撑和依据,地质灾害风险评价越来越受重视[1]

    早在20世纪60年代,国外已开始研究地质灾害风险性相关内容[2]。联合国于1991年将地质灾害风险性正式定义为在一定时间与特定区域内,地质灾害发生时,对人类社会造成损失的期望值[3]。Remondo等[4]于2005年提出了新的基于统计学原理的地质灾害风险性评价方法。国内研究起步稍晚,吴树仁等[5]逐步把国外的风险管理理论引入国内。国土资源经济研究院主要致力于地质灾害易损性、风险评价、经济评价等方面的研究[6]。王佳佳等[7]以三峡库区万州区为例开展滑坡灾害易发性评价,为该区域滑坡灾害防治规划与预测预报提供技术支持。施成艳等[8]在对区域1∶5万地质灾害详细调查的基础上,利用综合指数法对地质灾害进行了易发区划分。李春燕等[9]采用地质灾害危险性与承灾体易损性分项测算,以定性综合评估的方式实现我国县域单元地质灾害风险评估。在国内外研究成果的支撑下,国务院于2020年部署了第一次全国自然灾害综合风险普查。作为六大灾种之一,地质灾害风险普查工作取得了阶段性进展,110个试点县已顺利完成,其中江苏省完成了徐州市铜山区和常州市金坛区两个县级试点。

    从国内研究成果及相关工作部署来看,目前对于地质灾害易发性研究较多,且尺度一般以县级、城镇为主,缺乏系统的市级地质灾害风险性研究。本文以南京市为研究区,系统开展了易发性、危险性、易损性评价,并通过矩阵分析开展市级风险评价。相关成果为南京市地质灾害防灾减灾以及国土空间规划提供有效支撑,也为类似工作提供经验借鉴。

    研究区位于江苏省西南部,呈近南北走向“带状”,总面积6587 km2

    区域地处低山丘陵与平原过渡地带,境内有东西向的老山山脉、宁镇山脉横于长江两侧。构造上处于扬子板块上一个以震旦系为变质基底的长期凹陷带内,断裂根据走向大体可分为北北东向压扭性断裂、北西向张性断裂以及近东西向断裂。地层属华南地层大区下扬子分区,对地质灾害影响较大的地层岩性主要为震旦系至奥陶系以及中石炭统至下二叠统的碳酸盐岩、上侏罗统至白垩系的碎屑岩、第四系的黏土、粉质黏土。研究区属于北亚热带季风气候,多年平均降水量为1083.2 mm,其中6—9月为降雨集中期,多年平均降水量600.1 mm,约占全年降水量的53%。此外,作为长三角特大城市之一,工程建设密集繁多,不可避免的削坡、开挖坡脚等对边坡稳定性造成一定程度的破坏,区内每年排查新增的崩塌、滑坡地质灾害大多为因人类工程活动而导致的边坡失稳。

    根据地质灾害历史数据统计显示,滑坡是区内数目最多、危害最大的地质灾害类型,其次为崩塌。截至2022年4月,研究区地质灾害隐患点共计202处,其中滑坡130处,占比64.36%;崩塌72处,占比35.64%。威胁人数约1196人,潜在经济损失约17758万元[10]

    研究区滑坡隐患点规模多为小型,长度基本小于100 m,宽度小于200 m,厚度一般为1 m左右,中型规模滑坡可达15 m,多呈复合式滑动。平面形态以半圆形为主,剖面形态以直线形和凹形为主。滑体性质主要为土质,研究区广泛分布的下蜀土具有吸水饱和后强度迅速降低的力学性质,易导致滑坡产生[11-14]。崩塌隐患点规模亦多为小型,呈拉裂式,主要发生于70°~90°的陡崖地段,以顺向坡为主,多在碳酸盐岩及砂岩等碎屑岩地层发育。

    地质灾害在空间上的展布具有明显的不均匀性和区域集中性。主要在中部的沿江低山—丘陵区分布最为密集,其次是南部的石臼湖—固城湖滨湖平原—岗地区及秦淮河流域丘陵—岗地—平原区,在北部六合岗地—丘陵区分布最为稀疏。

    在时间分布上,根据近30年来已发生的116处地质灾害发育时间历史记录统计,其发生集中分布于每年的6、7月,已查明地质灾害分别为11处、85处,占比82.8%,尤以滑坡更为明显,其余各月查明地质灾害点较少,占比17.2%(图1)。由此可见,地质灾害的时间分布特征与年降雨量集中分布时间相一致,每年的雨季是地质灾害的高易发期,强降雨和持续性降雨为地质灾害发育分布的主要诱发因素。

    图  1  降雨量与历史地灾点数量关系
    Figure  1.  Relationship between rainfall amount and the number of historical disasters

    根据地质灾害风险理论,地质灾害风险评价由地质灾害易发性评价、危险性评价、易损性评价、风险评价构成。

    地质灾害易发性评价采用信息量法结合层次分析法开展。

    (1)信息量法[15-16]。地质灾害的形成受多种因素影响,信息量模型通过特定评估单元内某种因素作用下地质灾害发生频率与区域地质灾害发生频率相比较实现。对应某种因素特定状态下的地质灾害信息量公式可表示为下式:

    $$ {I_{Aj \to B}} = \ln \frac{{{N_j}/N}}{{{S _j}/S}}(j = 1,2,3,\cdots,n) $$

    式中:IAjB——对应因素Aj状态下地质灾害B发生的 信息量;

    Nj——对应因素Aj状态下地质灾害分布的单元数;

    N——调查区已有地质灾害分布的单元总数;

    Sj——因素Aj状态分布的单元数;

    S——调查区单元总数。

    各状态因素组合条件下信息量的综合值越大表示越易于发生地质灾害,该单元内的地质灾害易发性越高。最后对全部单元信息量值划分类别,分成不同的易发等级。

    (2)层次分析法[17-19]。该方法将复杂问题中的各种因素以某种相互联系的有序层次使之条理化,并将数据、专家意见和分析者的主观判断直接有效地结合起来,就每一层次的相对重要性予以定量表示。然后,利用数学方法确定每一层次全部元素的相对重要性权值,通过排序结果分析并求解所提出的问题。

    (3)评价单元确定。评价单元通常可取栅格单元或斜坡单元,对于地形较为平坦、山体规模较小的地区,规则的栅格单元更为适用,其优势是易于获取和处理各类数据且运算速度快。结合研究经验[20],栅格单元大小可按下式计算:

    $$ {G_{\rm{s}}} = 7.49 + 0.000\;6S - 2 \times {10^{ - 9}}{S^2} + 2.9 \times {10^{ - 15}}{S^3} $$

    式中:Gs——适宜网格的大小;

    S——原始等高线数据精度的分母。

    区内崩塌、滑坡地质灾害的主要诱发因素是连续大量降雨,在前述易发性评价的基础上,选取不同降雨重现周期开展地质灾害危险性评价。在此之前,需先进行区域地质灾害时间概率和空间概率的计算,其中时间概率的计算需满足一定的前提条件,即长重现期降雨诱发的地质灾害中一定包含了短重现期降雨诱发的地质灾害,考虑到降雨量一旦超过了地质灾害的降雨临界阀值,便发生变形破坏。本次以易发性表征地质灾害的空间概率,以降雨重现概率表征时间概率,危险性按下式计算:

    $$ H = I \times \left( {\frac{{{H_{24P}}}}{{{H_{24}}}}} \right) $$

    式中:H——每个单元的危险性指数;

    I——每个单元的信息量;

    H24P——不同重现期下研究区年最大日降雨量;

    H24——为年最大日降雨量均值。

    地质灾害承灾体易损性评价是对地质灾害可能威胁的建筑物、人员、交通设施进行综合评价。建筑物为人口分布的基础载体,同时又具有自身的经济价值,采用对建筑物面积归一化处理的方法,取归一化值作为研究区内的建筑易损性;采用第七次人口普查常住人口结合建筑物面积与人员分布关系,得到地质灾害危险区内人员分布,通过核密度算法获得人员易损性,再进行重分类;交通设施按其不同类型和等级进行易损性赋值。将不同类型承灾体易损性进行权重叠加,获得综合易损性评价结果。

    在危险性、易损性评价基础上,采用矩阵分析方法,划分为极高、高、中、低四个等级(表1)。

    表  1  地质灾害风险等级矩阵分析
    Table  1.  Analysis of geological hazard risk level matrix
    风险性危险性
    极高


    极高极高极高
    极高
    下载: 导出CSV 
    | 显示表格

    (1)评价因子。划分为地质灾害现状、地质环境条件及诱发因素三大类。选取地质灾害点密度、坡度、地形起伏度、地层岩性、地质构造及人类工程活动等6项指标作为评价因子。

    (2)过程结果。以ArcGIS 10.8作为多元数据处理平台,以栅格作为评价单元,将各类数据融合到同一体系下。各个因子分级开始以较小的间隔进行分级,以各指标条件下地质灾害数量和累计发生频次曲线斜率的突变为依据,对评估指标因子进行状态分级,求得最佳因子分级,计算结果见表2

    表  2  评价因子信息量
    Table  2.  Information value of evaluation factors
    评价因子子类区间信息量值
    灾害点密度/(个·km−20−5.86
    (0,2]2.51
    (2,4]3.10
    >44.12
    坡度/(°)[0,10)−0.97
    [10,25)1.97
    [25,40)3.31
    [40,50)4.87
    [50,90]5.32
    地形起伏度/m<20−2.16
    [20,40)2.86
    [40,90)3.47
    [90,120)5.24
    [120,140]6.85
    >1407.13
    工程地质岩组老黏性土−1.43
    一般黏性土−3.71
    岩浆岩类坚硬岩1.33
    碎屑岩类软~极软岩2.64
    碳酸盐岩类坚硬岩3.10
    碳酸盐岩类较坚硬岩2.40
    碎屑岩类较坚硬岩2.39
    碎屑岩类坚硬岩1.08
    距断层距离/m<202.50
    [20,200)2.48
    [200,500)1.78
    [500,1000]0.90
    >1000−0.56
    距道路距离/m<100−0.19
    [100,200]0.06
    (200,300]0.53
    (300,400]0.65
    (400,500]0.59
    >500−2.19
    下载: 导出CSV 
    | 显示表格

    层次分析法地质灾害易发性评价指标体系见图2,判断矩阵见表34,经层析分析法计算各因子的权重见表5

    图  2  地质灾害易发性评价指标体系
    Figure  2.  Evaluation indicator system for assessing susceptibility to geological hazards
    表  3  地质灾害易发性分区评价判断矩阵
    Table  3.  Judgment matrix for assessing susceptibility zonation of geological hazards
    地质灾害易发性
    分区评价
    地质环境条件诱发因素地质灾害现状权重
    地质环境条件1330.5936
    诱发因素1/3120.2493
    地质灾害现状1/31/210.1571
    判断矩阵一致性比例:0.0516;对总目标的权重:1.0000;
    最大特征根:3.0536
    下载: 导出CSV 
    | 显示表格
    表  4  地质环境条件判断矩阵
    Table  4.  Judgment matrix for geological environmental conditions
    地质环境条件坡度工程地质岩组地形起伏度距断层距离权重
    坡度1111/20.2071
    工程地质岩组11120.2929
    地形起伏度11120.2929
    距断层距离21/21/210.2071
    判断矩阵一致性比例:0.0923;对总目标的权重:0.5936;
    最大特征根:4.2463
    下载: 导出CSV 
    | 显示表格
    表  5  层次分析法计算各因子权重
    Table  5.  Calculation of factor weights using analytic hierarchy process (AHP)
    影响因子权重
    历史灾害点密度0.17
    坡度0.12
    地形起伏度0.17
    工程地质岩组0.17
    距断层距离0.12
    距道路距离0.25
    下载: 导出CSV 
    | 显示表格

    由信息量值乘以各因子的权重后再按照自然断点法进行聚类分析,计算结果如图3所示。

    图  3  评价因子分级及易发性等级
    Figure  3.  Classification of evaluation factors and susceptibility levels

    从易发性评价结果来看,总体来说,区内崩塌、滑坡地质灾害易发程度中、低易发区及非易发区分布范围较广,高易发区分布较少,崩塌、滑坡易发区面积为2175.4 km2,占全区面积的33%。其中高易发区面积为90.1 km2,中易发区地区面积为690.8 km2,低易发区面积为1394.5 km2

    (3)结果检验。采用接受者操作特性曲线(ROC曲线)对评价结果进行检验[21]。纵轴代表真阳性概率(TPR),即“地质灾害易发区灾害栅格数”与“研究区灾害栅格数”的比值,横轴代表假阳性概率(FPR),即“地质灾害易发区总栅格数-地质灾害易发区灾害栅格数”与“研究区总栅格数-研究区灾害栅格数”的比值。检验结果以ROC曲线下方的面积(AUC)来表示(图4),AUC面积为90.3%>90%,说明结果准确。

    图  4  评价结果ROC检验曲线
    Figure  4.  ROC curve of evaluation results

    利用ArcGIS的空间分析工具计算各评价单元的危险性指数,将地质灾害危险性分为高危险区、中危险区和低危险区。研究区不同重现期降雨量见表6,评价结果见图5

    表  6  研究区不同重现期降雨量
    Table  6.  Precipitation distribution in different recurrence period in the study area
    年均及不同重现期降雨量/mm
    年最大日降雨量均值101
    P=10%157.92
    P=5%182.22
    P=2%212.84
    P=1%235.22
    下载: 导出CSV 
    | 显示表格
    图  5  不同重现期降雨强度下地质灾害危险性分级
    Figure  5.  Classification of geological hazards under different rainfall intensity in different recurrence period

    根据结果统计,在10年、20年、50年、100年一遇4种降雨强度下,地质灾害总体上呈现高危险区面积逐渐增大、低危险区面积逐渐减小的趋势,10年一遇降雨强度下,高危险区面积约140.63 km2,20年一遇降雨工况高危险区面积增加至281.28 km2,面积增加一倍,50年一遇降雨工况下面积增加至498.16 km2,较20年一遇增加77%,100年一遇增加至561.52 km2,较50年一遇增加幅度达13%。分区域来看,高危险区主要分布于栖霞山、青龙山沿线、老山东南侧等地,随降雨周期变长,高危险区面积显著增加,且由中危险区升至高危险区。

    表1风险等级矩阵分析可知,仅分析危险区范围内的承灾体即可,将建筑物、人员、交通设施不同类型承灾体易损性进行叠加,分析得综合易损性评估图,见图6(a)。其中,极高易损区面积为304.0 km2,占比4.62%;高易损区面积为296.5 km2,占比4.50%;中易损区面积为173.4 km2,占比2.63%;低易损区面积1396.4 km2,占比21.20%。

    图  6  地质灾害综合易损性以及风险评价
    Figure  6.  Comprehensive vulnerability and risk assessment of geological hazards

    选取10年一遇降雨强度危险性评价与易损性评价结果开展矩阵分析,得到风险评价结果,见图6(b)。高风险区主要集中在沿江的老山、幕府山、紫金山、栖霞山以及青龙山等部分人员聚居的山前坡麓一带,面积51.3 km2,占比0.8%;中风险区主要集中在低山丘陵中人员较集中的区域,面积371.9 km2,占比5.6%;低风险区分布较广,位于其余低山丘陵岗地,面积1740.1 km2,占比26.4%。防治措施上,高风险区建议以工程治理、搬迁避让、专业监测为主,中风险区以工程治理、群测群防为主,低风险区以群测群防为主。

    为支撑地质灾害风险管控新要求,本文以南京市为研究对象,开展了市级地质灾害风险评价研究,主要有以下结论:

    (1)研究区主要发育崩塌、滑坡地质灾害,规模以小型为主,滑坡主要类型为半圆形土质复合式滑坡,崩塌主要类型多为岩质拉裂式崩塌。

    (2)开展了基于易发性、危险性、易损性的风险评价,分别划定了地质灾害高、中、低三类风险区,其中高风险区主要集中在沿江的老山、幕府山、紫金山、栖霞山以及青龙山等部分人员聚居的山前坡麓一带,中风险区主要集中在低山丘陵中人员较集中的区域,低风险区分布较广,位于其余低山丘陵岗地。高风险区防治措施建议以工程治理、搬迁避让、专业监测为主。

    (3)研究成果应用具有一定的理论和现实意义,能够有效支撑地质灾害风险管控以及新一轮国土空间规划应用。下一步,可以构建动态的地质灾害风险评价模型,结合气象实时信息,开展地质灾害风险预警研究。

  • 图  1   红寨滑坡区位及地质图

    Figure  1.   Traffic location and topographical map of the Hongzhai landslide area

    图  2   红寨滑坡裂缝发育特征

    Figure  2.   Fracture characteristics of the Hongzhai landslide

    图  3   红寨滑坡变形特征

    Figure  3.   Deformation characteristics of the Hongzhai landslide

    图  4   钻孔揭露的滑坡结构特征

    Figure  4.   Characteristics of landslide structure revealed by borehole

    图  5   红寨滑坡剖面特征

    Figure  5.   Profile characteristics of the Hongzhai landslide

    图  6   滑坡变形破坏期间降雨量

    Figure  6.   Rainfall during landslide deformation and failure

    图  7   红寨古滑坡地貌特征

    Figure  7.   Topographical features of the Hongzhai ancient landslide

    表  1   双层滑带深度分布范围

    Table  1   Depth distribution of double-layer slip zone

    钻孔编号 ZK1 ZK2 ZK3 ZK4 ZK5 ZK6
    滑带
    深度/m
    第一层 18.0~23.0 18.0~22.0 15.0~16.7 16.0~19.6 12.8~16.0
    第二层 20.7~22.4 24.3~26.0 23.2~25.3 18.0~23.7 22.4~27.7 24.0~27.4
    下载: 导出CSV
  • [1] 张永双,吴瑞安,郭长宝,等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展,2018,33(7):728 − 740. [ZHANG Yongshuang,WU Ruian,GUO Changbao,et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science,2018,33(7):728 − 740. (in Chinese with English abstract)] DOI: 10.11867/j.issn.1001-8166.2018.07.0728

    ZHANG Yongshuang, WU Ruian, GUO Changbao, et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 2018, 33(7): 728 − 740. (in Chinese with English abstract) DOI: 10.11867/j.issn.1001-8166.2018.07.0728

    [2] 齐畅,吴瑞安,马海善,等. 西藏庞村古滑坡发育特征与危险性评价[J/OL]. 地质通报, (2023-11-27)[2023-12-12]. [QI Chang,WU Ruian,MA Haishan,et al. Development characteristics and hazard assessment of the Pangcun landslide,Xizang[J/OL]. Geological Bulletin of China(2023-11-27)[2023-12-12]. http://kns.cnki.net/kcms/detail/11.4648.P.20231124.1820.002.html. (in English with Chinese abstract)]

    QI Chang, WU Ruian, MA Haishan, et al. Development characteristics and hazard assessment of the Pangcun landslide, Xizang[J/OL]. Geological Bulletin of China(2023-11-27)[2023-12-12]. http://kns.cnki.net/kcms/detail/11.4648.P.20231124.1820.002.html. (in English with Chinese abstract)

    [3] 任三绍,郭长宝,吴瑞安,等. 成兰铁路松潘隧道入口红花屯古滑坡发育特征与稳定性分析[J]. 地质力学学报,2017,23(5):754 − 765. [REN Sanshao,GUO Changbao,WU Ruian,et al. Development characteristics and stability analysis of the honghuatun ancient landslide at Songpan tunnel entrance of Chengdu-Lanzhou railway[J]. Journal of Geomechanics,2017,23(5):754 − 765. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2017.05.012

    REN Sanshao, GUO Changbao, WU Ruian, et al. Development characteristics and stability analysis of the honghuatun ancient landslide at Songpan tunnel entrance of Chengdu-Lanzhou railway[J]. Journal of Geomechanics, 2017, 23(5): 754 − 765. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2017.05.012

    [4] 王富平,叶堃,岳志勤. 成贵铁路高山田巨型古滑坡成因分析及地质选线[J]. 高速铁路技术,2018,9(1):76 − 79. [WANG Fuping,YE Kun,YUE Zhiqin. Cause analysis and geologic route selection for Gaoshantian giant fossil landslide of chengdu-Guiyang railway[J]. High Speed Railway Technology,2018,9(1):76 − 79. (in Chinese with English abstract)]

    WANG Fuping, YE Kun, YUE Zhiqin. Cause analysis and geologic route selection for Gaoshantian giant fossil landslide of chengdu-Guiyang railway[J]. High Speed Railway Technology, 2018, 9(1): 76 − 79. (in Chinese with English abstract)

    [5] 王家柱,高延超,冉涛,等. 川藏铁路交通廊道某大型古滑坡成因及失稳模式分析[J]. 现代地质,2021,35(1):18 − 25. [WANG Jiazhu,GAO Yanchao,RAN Tao,et al. Analysis of genetic mechanism and failure mode of a large paleo-landslide in Sichuan-Tibet railway transportation corridor[J]. Geoscience,2021,35(1):18 − 25. (in Chinese with English abstract)]

    WANG Jiazhu, GAO Yanchao, RAN Tao, et al. Analysis of genetic mechanism and failure mode of a large paleo-landslide in Sichuan-Tibet railway transportation corridor[J]. Geoscience, 2021, 35(1): 18 − 25. (in Chinese with English abstract)

    [6] 王伟,王卫,戴雄辉. 四川美姑拉马阿觉滑坡复活特征与影响因素分析[J]. 中国地质灾害与防治学报,2022,33(4):9 − 17. [WANG Wei,WANG Wei,DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):9 − 17. (in Chinese with English abstract)]

    WANG Wei, WANG Wei, DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 9 − 17. (in Chinese with English abstract)

    [7] 宋丹青,冯兴波. 库水位上升对古滑坡稳定性的影响[J]. 河南理工大学学报(自然科学版),2016,35(6):876 − 880. [SONG Danqing,FENG Xingbo. The influence of reservoir water level rise on the stability of ancient landslide[J]. Journal of Henan Polytechnic University (Natural Science),2016,35(6):876 − 880. (in Chinese with English abstract)]

    SONG Danqing, FENG Xingbo. The influence of reservoir water level rise on the stability of ancient landslide[J]. Journal of Henan Polytechnic University (Natural Science), 2016, 35(6): 876 − 880. (in Chinese with English abstract)

    [8] 黄晓虎,易武,龚超,等. 开挖致使古滑坡复活变形机理研究[J]. 岩土工程学报,2020,42(7):1276 − 1285. [HUANG Xiaohu,YI Wu,GONG Chao,et al. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering,2020,42(7):1276 − 1285. (in Chinese with English abstract)] DOI: 10.11779/CJGE202007011

    HUANG Xiaohu, YI Wu, GONG Chao, et al. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1276 − 1285. (in Chinese with English abstract) DOI: 10.11779/CJGE202007011

    [9] 吴瑞安,张永双,郭长宝,等. 西藏加查拉岗村巨型古滑坡发育特征与形成机理研究[J]. 地质学报,2018,92(6):1324 − 1334. [WU Ruian,ZHANG Yongshuang,GUO Changbao,et al. Characteristics and formation mechanisms of the lagangcun giant ancient landslide in Jiacha,Tibet[J]. Acta Geologica Sinica,2018,92(6):1324 − 1334. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0001-5717.2018.06.015

    WU Ruian, ZHANG Yongshuang, GUO Changbao, et al. Characteristics and formation mechanisms of the lagangcun giant ancient landslide in Jiacha, Tibet[J]. Acta Geologica Sinica, 2018, 92(6): 1324 − 1334. (in Chinese with English abstract) DOI: 10.3969/j.issn.0001-5717.2018.06.015

    [10] 魏昌利,张瑛,冯文凯,等. 岷江上游槽谷曲流段大型古滑坡成因与复活性分析——以松潘县元坝子古滑坡为例[J]. 水文地质工程地质,2018,45(6):141 − 149. [WEI Changli,ZHANG Ying,FENG Wenkai,et al. Formation mechanism and reactivation analyses of large ancient landslides in the meandering trough valley of the upper Minjiang River:A case study of the Yuanbazi ancient landslide in Songpan County[J]. Hydrogeology & Engineering Geology,2018,45(6):141 − 149. (in Chinese with English abstract)]

    WEI Changli, ZHANG Ying, FENG Wenkai, et al. Formation mechanism and reactivation analyses of large ancient landslides in the meandering trough valley of the upper Minjiang River: A case study of the Yuanbazi ancient landslide in Songpan County[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 141 − 149. (in Chinese with English abstract)

    [11] 钟育瑾,范宣梅,戴岚欣,等. 岷江叠溪巨型古滑坡研究[J]. 地球物理学进展,2021,36(4):1784 − 1796. [ZHONG Yujin,FAN Xuanmei,DAI Lanxin,et al. Research on the Diexi giant paleo-landslide along Minjiang River in Sichuan,China[J]. Progress in Geophysics,2021,36(4):1784 − 1796. (in Chinese with English abstract)] DOI: 10.6038/pg2021EE0367

    ZHONG Yujin, FAN Xuanmei, DAI Lanxin, et al. Research on the Diexi giant paleo-landslide along Minjiang River in Sichuan, China[J]. Progress in Geophysics, 2021, 36(4): 1784 − 1796. (in Chinese with English abstract) DOI: 10.6038/pg2021EE0367

    [12] 冯振,吴中海,曹佳文,等. 小江断裂带巧家段巨型古滑坡及其工程地质特征[J]. 地球学报,2019,40(4):629 − 636. [FENG Zhen,WU Zhonghai,CAO Jiawen,et al. Engineering geological characteristics of gigantic pre-historic landslide along Qiaojia section of the Xiaojiang fault[J]. Acta Geoscientica Sinica,2019,40(4):629 − 636. (in Chinese with English abstract)] DOI: 10.3975/cagsb.2019.012401

    FENG Zhen, WU Zhonghai, CAO Jiawen, et al. Engineering geological characteristics of gigantic pre-historic landslide along Qiaojia section of the Xiaojiang fault[J]. Acta Geoscientica Sinica, 2019, 40(4): 629 − 636. (in Chinese with English abstract) DOI: 10.3975/cagsb.2019.012401

    [13] 刘莉,张丽萍,李萍,等. 金沙江巧家巨型古滑坡发育特征及其形成条件[J]. 人民长江,2022,53(1):118 − 125. [LIU Li,ZHANG Liping,LI Ping,et al. Development characteristics and forming conditions of Qiaojia giant ancient landslide in Jinsha River[J]. Yangtze River,2022,53(1):118 − 125. (in Chinese with English abstract)]

    LIU Li, ZHANG Liping, LI Ping, et al. Development characteristics and forming conditions of Qiaojia giant ancient landslide in Jinsha River[J]. Yangtze River, 2022, 53(1): 118 − 125. (in Chinese with English abstract)

    [14] 何坤,胡卸文,马国涛,等. 四川省盐源玻璃村特大型玄武岩古滑坡复活机制[J]. 岩土力学,2020,41(10):3443 − 3455. [HE Kun,HU Xiewen,MA Guotao,et al. The reactivated mechanism of Boli Village giant ancient basalt landslide in Yanyuan,Sichuan[J]. Rock and Soil Mechanics,2020,41(10):3443 − 3455. (in Chinese with English abstract)]

    HE Kun, HU Xiewen, MA Guotao, et al. The reactivated mechanism of Boli Village giant ancient basalt landslide in Yanyuan, Sichuan[J]. Rock and Soil Mechanics, 2020, 41(10): 3443 − 3455. (in Chinese with English abstract)

    [15] 郭长宝,倪嘉伟,杨志华,等. 川西大渡河泸定段大型古滑坡发育特征与稳定性评价[J]. 地质通报,2021,40(12):1981 − 1991. [GUO Changbao,NI Jiawei,YANG Zhihua,et al. The ancient landslides development characteristics and stability evaluation along the Luding Section,Dadu River,western Sichuan Province[J]. Geological Bulletin of China,2021,40(12):1981 − 1991. (in Chinese with English abstract)]

    GUO Changbao, NI Jiawei, YANG Zhihua, et al. The ancient landslides development characteristics and stability evaluation along the Luding Section, Dadu River, western Sichuan Province[J]. Geological Bulletin of China, 2021, 40(12): 1981 − 1991. (in Chinese with English abstract)

    [16] 杨德宏,陈兴强,黄勇,等. 雅江缝合带角不弄巨型古滑坡发育特征及形成机制研究[J]. 铁道标准设计,2021,65(3):34 − 40. [YANG Dehong,CHEN Xingqiang,HUANG Yong,et al. Study on the development characteristics and formation mechanism of the Jiao bunong giant ancient landslide in Yajiang suture zone[J]. Railway Standard Design,2021,65(3):34 − 40. (in Chinese with English abstract)]

    YANG Dehong, CHEN Xingqiang, HUANG Yong, et al. Study on the development characteristics and formation mechanism of the Jiao bunong giant ancient landslide in Yajiang suture zone[J]. Railway Standard Design, 2021, 65(3): 34 − 40. (in Chinese with English abstract)

    [17] 李雪,郭长宝,杨志华,等. 金沙江断裂带雄巴巨型古滑坡发育特征与形成机理[J]. 现代地质,2021,35(1):47 − 55. [LI Xue,GUO Changbao,YANG Zhihua,et al. Development characteristics and formation mechanism of the Xiongba giant ancient landslide in the Jinshajiang tectonic zone[J]. Geoscience,2021,35(1):47 − 55. (in Chinese with English abstract)]

    LI Xue, GUO Changbao, YANG Zhihua, et al. Development characteristics and formation mechanism of the Xiongba giant ancient landslide in the Jinshajiang tectonic zone[J]. Geoscience, 2021, 35(1): 47 − 55. (in Chinese with English abstract)

    [18] 窦晓东,张泽林. 甘肃舟曲垭豁口滑坡复活机理及成因探讨[J]. 中国地质灾害与防治学报,2021,32(2):9 − 18. [DOU Xiaodong,ZHANG Zelin. Mechanism and causal analysis on the Yahuokou landslide reactivation and causes(Zhouqu County,Gansu,China)[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):9 − 18. (in Chinese with English abstract)]

    DOU Xiaodong, ZHANG Zelin. Mechanism and causal analysis on the Yahuokou landslide reactivation and causes(Zhouqu County, Gansu, China)[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 9 − 18. (in Chinese with English abstract)

    [19] 郭长宝,任三绍,李雪,等. 甘肃舟曲南峪江顶崖古滑坡发育特征与复活机理[J]. 现代地质,2019,33(1):206 − 217. [GUO Changbao,REN Sanshao,LI Xue,et al. Development characteristics and reactivation mechanism of the Jiangdingya ancient landslide in the Nanyu Town,Zhouqu County,Gansu Province[J]. Geoscience,2019,33(1):206 − 217. (in Chinese with English abstract)]

    GUO Changbao, REN Sanshao, LI Xue, et al. Development characteristics and reactivation mechanism of the Jiangdingya ancient landslide in the Nanyu Town, Zhouqu County, Gansu Province[J]. Geoscience, 2019, 33(1): 206 − 217. (in Chinese with English abstract)

    [20] 郭桥桥,郭长宝,申维,等. 川西岷江河谷典型大型—巨型古滑坡特征物探解译分析[J]. 地质力学学报,2017,23(5):788 − 797. [GUO Qiaoqiao,GUO Changbao,SHEN Wei,et al. Geophysical exploration and sliding surface discriminant analysis of large-giant ancient landslides in Minjiang River valley,western Sichuan[J]. Journal of Geomechanics,2017,23(5):788 − 797. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2017.05.015

    GUO Qiaoqiao, GUO Changbao, SHEN Wei, et al. Geophysical exploration and sliding surface discriminant analysis of large-giant ancient landslides in Minjiang River valley, western Sichuan[J]. Journal of Geomechanics, 2017, 23(5): 788 − 797. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2017.05.015

    [21] 李忠,吴中海,汪金明,等. 利用EH4音频大地电磁测深仪探测巧家巨型古滑坡及其结构面特征[J]. 地质力学学报,2021,27(2):317 − 325. [LI Zhong,WU Zhonghai,WANG Jinming,et al. Using EH4 audio-magnetotelluric sounder to detect the gigantic Qiaojia paleo-landslide and its structural characteristics[J]. Journal of Geomechanics,2021,27(2):317 − 325. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2021.27.02.029

    LI Zhong, WU Zhonghai, WANG Jinming, et al. Using EH4 audio-magnetotelluric sounder to detect the gigantic Qiaojia paleo-landslide and its structural characteristics[J]. Journal of Geomechanics, 2021, 27(2): 317 − 325. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2021.27.02.029

    [22] 张永双,刘筱怡,姚鑫. 基于InSAR技术的古滑坡复活早期识别方法研究——以大渡河流域为例[J]. 水利学报,2020,51(5):545 − 555. [ZHANG Yongshuang,LIU Xiaoyi,YAO Xin. InSAR-based method for early recognition of ancient landslide reactivation in Dadu River,China[J]. Journal of Hydraulic Engineering,2020,51(5):545 − 555. (in Chinese with English abstract)]

    ZHANG Yongshuang, LIU Xiaoyi, YAO Xin. InSAR-based method for early recognition of ancient landslide reactivation in Dadu River, China[J]. Journal of Hydraulic Engineering, 2020, 51(5): 545 − 555. (in Chinese with English abstract)

    [23] 吴明辕,罗明,刘岁海. 基于光学遥感与InSAR技术的潜在滑坡与老滑坡综合识别——以滇西北地区为例[J]. 中国地质灾害与防治学报,2022,33(3):84 − 93. [WU Mingyuan,LUO Ming,LIU Suihai. Comprehensive identification of potential and old landslides based on optical remote sensing and InSAR technologies:A case study in northwestern Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):84 − 93. (in Chinese with English abstract)]

    WU Mingyuan, LUO Ming, LIU Suihai. Comprehensive identification of potential and old landslides based on optical remote sensing and InSAR technologies: A case study in northwestern Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 84 − 93. (in Chinese with English abstract)

    [24] 李彩虹,郭长宝,张广泽,等. 基于激光雷达(LiDAR)的地形与钻探滑面重构滑坡体积计算方法——以四川省巴塘县德达古滑坡为例[J]. 地质通报,2021,40(12):2015 − 2023. [LI Caihong,GUO Changbao,ZHANG Guangze,et al. A landslide volume calculation method based on LiDAR topography and slip surface reconstruction:A case study of Deda ancient landslide in Batang County of Sichuan Province[J]. Geological Bulletin of China,2021,40(12):2015 − 2023. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2021.12.004

    LI Caihong, GUO Changbao, ZHANG Guangze, et al. A landslide volume calculation method based on LiDAR topography and slip surface reconstruction: A case study of Deda ancient landslide in Batang County of Sichuan Province[J]. Geological Bulletin of China, 2021, 40(12): 2015 − 2023. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2021.12.004

    [25] 陈豫津,吴志坚,刘兴荣. 基于有限元的动力稳定性评价方法与应用——以王家墩古滑坡为例[J]. 西北地质,2019,52(4):286 − 293. [CHEN Yujin,WU Zhijian,LIU Xingrong. Evaluation method and application of dynamic stability based on finite element analysis:Example from the Wangjiadun landslide in Tianshui City,Gansu Province[J]. Northwestern Geology,2019,52(4):286 − 293. (in Chinese with English abstract)]

    CHEN Yujin, WU Zhijian, LIU Xingrong. Evaluation method and application of dynamic stability based on finite element analysis: Example from the Wangjiadun landslide in Tianshui City, Gansu Province[J]. Northwestern Geology, 2019, 52(4): 286 − 293. (in Chinese with English abstract)

    [26] 吴瑞安,张永双,郭长宝,等. 川西松潘上窑沟古滑坡复活特征及危险性预测研究[J]. 岩土工程学报,2018,40(9):1659 − 1667. [WU Ruian,ZHANG Yongshuang,GUO Changbao,et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering,2018,40(9):1659 − 1667. (in Chinese with English abstract)] DOI: 10.11779/CJGE201809012

    WU Ruian, ZHANG Yongshuang, GUO Changbao, et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659 − 1667. (in Chinese with English abstract) DOI: 10.11779/CJGE201809012

    [27] 孙昊,李天涛,裴向军,等. 青海隆务西山古滑坡群复活机理及威胁范围预测[J]. 工程地质学报,2022,30(3):829 − 842. [SUN Hao,LI Tiantao,PEI Xiangjun,et al. Revitalization mechanism and threat range prediction of longwuxishan ancient landslide group,Qinghai Province[J]. Journal of Engineering Geology,2022,30(3):829 − 842. (in Chinese with English abstract)]

    SUN Hao, LI Tiantao, PEI Xiangjun, et al. Revitalization mechanism and threat range prediction of longwuxishan ancient landslide group, Qinghai Province[J]. Journal of Engineering Geology, 2022, 30(3): 829 − 842. (in Chinese with English abstract)

    [28] 田倩,吴健,赵东. 基于神经网络和多标度特征分析的古滑坡变形预测及趋势评价[J]. 大地测量与地球动力学,2022,42(10):1056 − 1062. [TIAN Qian,WU Jian,ZHAO Dong. Deformation prediction and trend evaluation of paleo-landslide based on neural network and multi-scale feature analysis[J]. Journal of Geodesy and Geodynamics,2022,42(10):1056 − 1062. (in Chinese with English abstract)]

    TIAN Qian, WU Jian, ZHAO Dong. Deformation prediction and trend evaluation of paleo-landslide based on neural network and multi-scale feature analysis[J]. Journal of Geodesy and Geodynamics, 2022, 42(10): 1056 − 1062. (in Chinese with English abstract)

    [29] 郭长宝,张永双,刘定涛,等. 基于离心机模型试验的甘肃江顶崖古滑坡复活机理研究[J]. 工程地质学报,2022,30(1):164 − 176. [GUO Changbao,ZHANG Yongshuang,LIU Dingtao,et al. Centrifuge model test of reactivation mechanism of Jiangdingya ancient landslide in Gansu Province[J]. Journal of Engineering Geology,2022,30(1):164 − 176. (in Chinese with English abstract)]

    GUO Changbao, ZHANG Yongshuang, LIU Dingtao, et al. Centrifuge model test of reactivation mechanism of Jiangdingya ancient landslide in Gansu Province[J]. Journal of Engineering Geology, 2022, 30(1): 164 − 176. (in Chinese with English abstract)

    [30] 王康,畅俊斌,李晓科,等. 基于水文过程和应力应变耦合的陕北黄土滑坡复活机理分析——以延安二庄科滑坡为例[J]. 中国地质灾害与防治学报,2023,34(6):47 − 56. [WANG Kang,CHANG Junbin,LI Xiaoke,et al. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution:A case study of the Erzhuangke landslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control,2023,34(6):47 − 56. (in Chinese with English abstract)]

    WANG Kang, CHANG Junbin, LI Xiaoke, et al. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangke landslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 47 − 56. (in Chinese with English abstract)

    [31] 殷跃平, 高少华. 高位远程地质灾害研究: 回顾与展望[J]. 中国地质灾害与防治学报,2024,35(1):1 − 18. [YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):1 − 18. (in Chinese with English abstract)]

    YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1 − 18. (in Chinese with English abstract)

    [32] 王溢禧,赵俊彦,朱兴华,等. 贵德盆地席芨滩巨型滑坡前缘次级滑坡特征及其复活机理分析[J/OL]. 中国地质灾害与防治学报,(2023-09-13)[2024-01-26]. [WANG Yixi,ZHAO Junyan,ZHU Xinghua, et al. Analysis on characteristics and reactivtion mechanism of secondary landslides in the front part of the Xijitan giant landslide, Guide Basin [J/OL]. The Chinese Journal of Geological Hazard and Control,(2023-09-13)[2024-01-26]. (in Chinese with English abstract) https://kns.cnki.net/kcms/detail/11.2852.P.20230913.1035.002.html.]

    WANG Yixi, ZHAO Junyan, ZHU Xinghua, et al. Analysis on characteristics and reactivtion mechanism of secondary landslides in the front part of the Xijitan giant landslide, Guide Basin [J/OL]. The Chinese Journal of Geological Hazard and Control, (2023-09-13)[2024-01-26]. (in Chinese with English abstract) https://kns.cnki.net/kcms/detail/11.2852.P.20230913.1035.002.html.

    [33] 陈家兴,赵兰英,司长亮. 碎石土古滑坡演化复活机理分析[J]. 人民长江,2019,50(10):136 − 142. [CHEN Jiaxing,ZHAO Lanying,SI Changliang. Mechanism analysis of reactivation evolution of ancient detritus landslide[J]. Yangtze River,2019,50(10):136 − 142. (in Chinese with English abstract)]

    CHEN Jiaxing, ZHAO Lanying, SI Changliang. Mechanism analysis of reactivation evolution of ancient detritus landslide[J]. Yangtze River, 2019, 50(10): 136 − 142. (in Chinese with English abstract)

    [34] 张永双,刘筱怡,吴瑞安,等. 青藏高原东缘深切河谷区古滑坡:判识、特征、时代与演化[J]. 地学前缘,2021,28(2):94 − 105. [ZHANG Yongshuang,LIU Xiaoyi,WU Ruian,et al. Cognization,characteristics,age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau,China[J]. Earth Science Frontiers,2021,28(2):94 − 105. (in Chinese with English abstract)]

    ZHANG Yongshuang, LIU Xiaoyi, WU Ruian, et al. Cognization, characteristics, age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau, China[J]. Earth Science Frontiers, 2021, 28(2): 94 − 105. (in Chinese with English abstract)

    [35] 赵瑛,王显彪,陈菊林,等. 古滑坡活动诱发次级滑坡的稳定性评价及变形潜势分析[J]. 三峡大学学报(自然科学版),2022,44(3):27 − 33. [ZHAO Ying,WANG Xianbiao,CHEN Julin,et al. Stability evaluation and deformation potential analysis of secondary landslide induced by ancient landslide activity[J]. Journal of China Three Gorges University (Natural Sciences),2022,44(3):27 − 33. (in Chinese with English abstract)]

    ZHAO Ying, WANG Xianbiao, CHEN Julin, et al. Stability evaluation and deformation potential analysis of secondary landslide induced by ancient landslide activity[J]. Journal of China Three Gorges University (Natural Sciences), 2022, 44(3): 27 − 33. (in Chinese with English abstract)

  • 期刊类型引用(5)

    1. 张云,资锋,郭杰华,曹运江,段九龄,郭志刚,唐龙. 基于生态位模型的地质灾害风险评价——以邵阳市隆回县为例. 水文地质工程地质. 2025(01): 190-201 . 百度学术
    2. 张文纶,邵东桥,王喜红,李可可,肖吉会. 云南姚安红层区地质灾害风险评价. 云南地质. 2024(03): 414-422 . 百度学术
    3. 邬铁. 基于层次分析-信息量耦合模型的茂名地质灾害风险评价. 云南地质. 2024(03): 432-439 . 百度学术
    4. 李煜楠,甄俊伟,屈向阳,卢星谕. 基于ArcGIS的广东省汕尾市地质灾害风险评价. 世界地质. 2024(04): 586-599 . 百度学术
    5. 王守沛,高攀,咬登魁. 安徽省崩滑流地质灾害风险评价研究. 安徽地质. 2023(04): 289-291+335 . 百度学术

    其他类型引用(1)

图(7)  /  表(1)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  36
  • PDF下载量:  89
  • 被引次数: 6
出版历程
  • 收稿日期:  2024-01-15
  • 修回日期:  2024-04-15
  • 录用日期:  2024-06-24
  • 网络出版日期:  2024-07-03
  • 刊出日期:  2024-08-21

目录

/

返回文章
返回