ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
ZHANG Youyi, WANG Yunjun, YUAN Yadong. Dynamic reserves of evaluation model for materials source in the channel based on fractal theory and model test[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 40-49. DOI: 10.16031/j.cnki.issn.1003-8035.202202006
Citation: ZHANG Youyi, WANG Yunjun, YUAN Yadong. Dynamic reserves of evaluation model for materials source in the channel based on fractal theory and model test[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 40-49. DOI: 10.16031/j.cnki.issn.1003-8035.202202006

Dynamic reserves of evaluation model for materials source in the channel based on fractal theory and model test

More Information
  • Received Date: February 08, 2022
  • Revised Date: May 29, 2022
  • Available Online: October 13, 2022
  • After the Wenchuan earthquake, many loose solid sources accumulated in the channel, which increased the probability of debris flow . It was difficult to calculate the dynamic reserves of debris flow sediment source accurately. Based on field investigation, data collection and laboratory model test, this paper introduced the fractal theory to quantitatively describe the complex soil particle size composition with fractal dimension, and studied the erosion regular of different deposits in channels under different rainfall effects. A dynamic reserve evaluation model with rainfall intensity and fractal dimension as double influencing factors was established. The results show: Coarse-grained soil is not easy to start, but under sufficient hydrodynamic conditions, erosion will be multiplied; When debris flow occurs, the erosion change and total erosion scale of "fine-grained on coarse-grained soil" are small, and which is beneficial to the stability of channel; The erosion phenomenon of "coarse-grained on fine-grained soil" is similar to that of coarse-grained soil, but the rainfall threshold of large-scale debris flow is lower than coarse-grained soil; For materials source in the channel, the order of erosion effect is headward erosion > shear erosion > lateral erosion > subsurface erosion; The formula fitted in this paper is suitable for the wide and slow channel of debris flow, but it has some limitations for the narrow and steep channel.
  • [1]
    XIONG J,TANG C,CHEN M,et al. Long-term changes in the landslide sediment supply capacity for debris flow occurrence in Wenchuan County,China[J]. CATENA,2021,203:105340. DOI: 10.1016/j.catena.2021.105340
    [2]
    方群生,唐川,王毅,等. 汶川极震区泥石流动储量与总物源量计算方法研究[J]. 防灾减灾工程学报,2016,36(6):1008 − 1014. [FANG Qunsheng,TANG Chuan,WANG Yi,et al. A calculation method for predicting dynamic reserve and the total amount of material source of the debris flows in the Wenchuan meizoseismal area[J]. Journal of Disaster Prevention and Mitigation Engineering,2016,36(6):1008 − 1014. (in Chinese with English abstract) DOI: 10.13409/j.cnki.jdpme.2016.06.023
    [3]
    JAKOB M,BOVIS M,ODEN M. The significance of channel recharge rates for estimating debris-flow magnitude and frequency[J]. Earth Surface Processes and Landforms,2005,30(6):755 − 766. DOI: 10.1002/esp.1188
    [4]
    乔建平,黄栋,杨宗佶,等. 汶川地震极震区泥石流物源动储量统计方法讨论[J]. 中国地质灾害与防治学报,2012,23(2):1 − 6. [QIAO Jianping,HUANG Dong,YANG Zongji,et al. Statistical method on dynamic reserve of debris flow's source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control,2012,23(2):1 − 6. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2012.02.001
    [5]
    CHANG C W,LIN P S,TSAI C L. Estimation of sediment volume of debris flow caused by extreme rainfall in Taiwan[J]. Engineering Geology,2011,123(1/2):83 − 90.
    [6]
    NI H Y. Experimental study on initiation of gully-type debris flow based on artificial rainfall and channel runoff[J]. Environmental Earth Sciences,2015,73(10):6213 − 6227. DOI: 10.1007/s12665-014-3845-x
    [7]
    林斌,张友谊,罗珂,等. 沟道松散物质起动模型试验及冲出量预测—四川省以北川青林沟为例[J]. 人民长江,2019,50(5):113 − 118. [LIN Bin,ZHANG Youyi,LUO Ke,et al. Model test of start-up of loose material in gully and runout volume prediction:Case of Qinglin ditch in Sichuan Province[J]. Yangtze River,2019,50(5):113 − 118. (in Chinese with English abstract) DOI: 10.16232/j.cnki.1001-4179.2019.05.021
    [8]
    张静,田述军,侯鹏鹂. 基于面积-高程和面积-坡度积分的泥石流物质供给能力分析[J]. 中国地质灾害与防治学报,2021,32(4):9 − 16. [ZHANG Jing,TIAN Shujun,HOU Pengli. The material supply ability analysis of debris flows based on areahypsometric integral and area-gradient integral[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):9 − 16. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.04-02
    [9]
    张田田, 杨为民, 万飞鹏. 浑河断裂带地质灾害发育特征及其成因机制[J]. 吉林大学学报(地球科学版),2022,52(1):149 − 161. [ZHANG Tiantian, YANG Weimin, WAN Feipeng. Characteristics and formation mechanism of geohazards in Hunhe fault zone[J]. Journal of Jilin University (Earth Science Edition),2022,52(1):149 − 161. (in Chinese with English abstract)
    [10]
    胡卸文. 无泥型软弱层带物理力学特性[M]. 成都: 西南交通大学出版社, 2002

    HU Xiewen. Physical and mechanical properties of mudless weak zone[M]. Chengdu: Southwest Jiaotong University Press, 2002. (in Chinese)
    [11]
    潘华利,安笑,邓其娟,等. 泥石流松散固体物源研究进展与展望[J]. 科学技术与工程,2020,20(24):9733 − 9741. [PAN Huali,AN Xiao,DENG Qijuan,et al. Progress and prospects of research on debris flow solid source[J]. Science Technology and Engineering,2020,20(24):9733 − 9741. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2020.24.007
    [12]
    魏玉虎,胡卸文,齐光辉. 分形理论在土体粒度成分特征评价中的应用[J]. 安徽地质,2006,16(2):120 − 122. [WEI Yuhu,HU Xiewen,QI Guanghui. Application of fractal theory to evaluation of features of grain size composition of soil mass[J]. Geology of Anhui,2006,16(2):120 − 122. (in Chinese with English abstract) DOI: 10.3969/j.issn.1005-6157.2006.02.008
    [13]
    游勇, 柳金峰, 欧国强. 泥石流常用排导槽水力条件的比较[J]. 岩石力学与工程学报, 2006, 25(增刊1): 2820 − 2825

    YOU Yong, LIU Jinfeng, OU Guoqiang. Comparison of hydraulic conditions among usual debris flow drainage canal[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Sup 1): 2820 − 2825. (in Chinese with English abstract)
    [14]
    李书钦,高建恩,邵辉,等. 选沙对水力侵蚀比尺模拟试验侵蚀过程相似的影响[J]. 水土保持学报,2009,23(3):6 − 10. [LI Shuqin,GAO Jianen,SHAO Hui,et al. Effects of model material selection on the similarity of erosion processes in hydraulic erosion simulation experiment[J]. Journal of Soil and Water Conservation,2009,23(3):6 − 10. (in Chinese with English abstract) DOI: 10.3321/j.issn:1009-2242.2009.03.002
    [15]
    郭朝旭,崔鹏. 宽级配弱固结土体内细颗粒迁移规律研究评述[J]. 山地学报,2017,35(2):179 − 186. [GUO Chaoxu,CUI Peng. Fine particle migration in wide grading and poorly consolidated soil:An overview[J]. Mountain Research,2017,35(2):179 − 186. (in Chinese with English abstract) DOI: 10.16089/j.cnki.1008-2786.000210
    [16]
    黄海,刘建康,杨东旭. 泥石流容重的时空变化特征及影响因素研究[J]. 水文地质工程地质,2020,47(2):161 − 168. [HUANG Hai,LIU Jiankang,YANG Dongxu. A study of the characteristics and influencing factors of spatial-temporal changes in the debris flow density[J]. Hydrogeology & Engineering Geology,2020,47(2):161 − 168. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201907024
    [17]
    万飞鹏, 杨为民, 邱占林, 等. 甘肃岷县纳古呢沟滑坡-泥石流灾害链成灾机制及其演化[J/OL]. 中国地质, 2022: 1 − 19. (2022-06-22). https://kns.cnki.net/kcms/detail/11.1167.p.20220621.1148.008.html.

    WAN Feipeng, YANG Weimin, QIU Zhanlin, et al. Disaster mechanism and evolution of Nagune gully landslide-debris flow disaster chain in Minxian County, Gansu Province[J/OL]. Geology in China, 2022: 1 − 19. (2022-06-22). https://kns.cnki.net/kcms/detail/11.1167.p.20220621.1148.008.html.(in Chinese with English abstract)
    [18]
    黄健, 胡卸文, 金涛, 等. 四川西昌“3·30”火烧区响水沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2022,33(3):15 − 22. [HUANG Jian, HU Xiewen, JIN Tao, et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3·30” fire area of Xichang, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):15 − 22. (in Chinese with English abstract)
  • Related Articles

    [1]Xueqiang GONG, Chuanjie XI, Xiewen HU, Yayun HU, Yonghao ZHOU, Yu ZHANG. Landslide susceptibility assessment and zonation using negative sampling strategy: A case study of Bazhong area, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(1): 146-155. DOI: 10.16031/j.cnki.issn.1003-8035.202309028
    [2]Jianping CHEN, Yabo XIN, Zepeng WANG, Wei CHEN, Changyuan WAN, Yunyan LIU, Junjie HUANG. Effect of sample selection on the susceptibility assessment of geological hazards: A case study in Liulin County, Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 152-162. DOI: 10.16031/j.cnki.issn.1003-8035.202210037
    [3]Bin CHEN, Yingyi LI, Lianzhi ZHANG, Tianqiang QU, Na WEI, Ning LIU, Chunlin HUANG. Classification optimization of geological hazard susceptibility evaluation factors based on AIFFC algorithm[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 72-81. DOI: 10.16031/j.cnki.issn.1003-8035.202210048
    [4]Cheng HUANG, Xiangsheng YAN, Hongbo MEI, Cuiqiong ZHOU, Ge HUANG. Susceptibility analysis of Geological hazards based on the random forest weighted information value model:A case study of Shidian County,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202401013
    [5]Guozhen CHEN, Junqi LIU, Jinghui CUI, Shupeng YU, Xiaohu ZHANG, Ninghui ZHU, Yuxin SONG. Application of different machine learning models in landslide susceptibility assessment in Badong County, Hubei province[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202310011
    [6]Wei ZHANG, Fangrui HU, Wei QI, Lin PENG, Yonglin WANG, Feng CHEN. Susceptibility assessment of geological hazard based on XGBoost and cloud model[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 136-145. DOI: 10.16031/j.cnki.issn.1003-8035.202210041
    [7]Shuai LIU, Jieyong ZHU, Dehu YANG, Bo MA. Evaluation of geological hazard susceptibility of collapse and landslide in Yuanyang County using slope units and random forest modeling[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 144-150. DOI: 10.16031/j.cnki.issn.1003-8035.202207003
    [8]Feng WANG, Fan YANG, Zhongrong JIANG, E WU, Guan WANG. Susceptibility assessment of debris flow based on watershed units in Kangding City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 145-156. DOI: 10.16031/j.cnki.issn.1003-8035.202205038
    [9]Bin SUN, Chuanbing ZHU, Xiaobo KANG, Lei YE, Yi LIU. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 119-127. DOI: 10.16031/j.cnki.issn.1003-8035.202204003
    [10]Shu HE, XMSY ABUDIKEYIMU, Meng HU, Kang CHEN. Evaluation on landslide susceptibility based on self-organizing feature map network and random forest model:A case study of Dayu County of Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 132-140. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-16
  • Cited by

    Periodical cited type(6)

    1. 刘朝晖,盛佳豪,柳力. 数据驱动下的沥青混合料材料组成设计方法. 材料导报. 2025(04): 75-83 .
    2. 郭明娟,徐哈宁,肖慧,范凌峰,胡佳超,游丝露. 基于双采样随机森林的临滑阶段的预测算法:以湖北黄石5号铁矿石治理地块为例. 科学技术与工程. 2024(14): 5733-5741 .
    3. 袁永建,张莲花. 基于AHP-熵值法模糊评价模型在滑坡灾害风险性评价中的应用. 甘肃水利水电技术. 2024(03): 38-42 .
    4. 关艳丽,贾荣谷,李育红,翁彦梅,李家艳,冯蕊. 水库滑坡机理及风险评价研究与展望. 人民珠江. 2024(08): 10-18 .
    5. 刘东升,吴越,李珂,王艳磊. 基于失稳概率的单体滑坡灾害风险定量评价及其工程应用. 中国地质灾害与防治学报. 2024(04): 67-74 . 本站查看
    6. 唐学武,刘耕,邵磊,姚灯,陈东旭,田优平. 基于CF-BPNN耦合模型的益湛铁路沿线滑坡危险性评价. 地质科学. 2024(05): 1470-1486 .

    Other cited types(1)

Catalog

    Article views (246) PDF downloads (147) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return