Citation: | CHEN Bin,LI Yingyi,ZHANG Lianzhi,et al. Classification optimization of geological hazard susceptibility evaluation factors based on AIFFC algorithm[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 72-81. DOI: 10.16031/j.cnki.issn.1003-8035.202210048 |
This paper addresses the issue of uncertainty in the grading of geological hazard susceptibility evaluation factors and introduces the adaptive expansion factor fuzzy coverage grading method (AIFFC) to optimize the grading of geological hazard susceptibility evaluation factors. Taking Xiangxiang City, Hunan Province as the research area, nine evaluation factors, including slope, slope direction, elevation and average annual rainfall, normalized difference vegetation index for land use, roads, faults, lithology, were extracted. The AIFFC method and the natural breakpoint method were used to grade continuous factors. These graded factors were then incorporated into a weighted information model and random forest model to obtain a susceptibility zoning map for the study area. The superiority of the AIFFC classification method was tested through the comparison of single-factor grading results, disaster product ratio analysis,and ROC curve comparison of susceptibility zoning results. Based on AIFFC, the hazard accumulation ratio of the random forest model and the weighted information entropy model in the high susceptibility areas increased by 56.3% and 74.6%, respectively, while in the low susceptibility areas, it decreased by 48% and 58.1%, respectively. The AUC values increased by 7.6% and 2.7%, respectively. The AIFFC classification method is used to optimize the evaluation factor classification of geological disaster susceptibility, which significantly improves the rationality of the evaluation of geological disaster susceptibility.
[1] |
焦伟之,张明,谢鑫鹏,等. 基于GIS与加权信息量模型的城镇地质灾害易发性评价——以大新镇为例[J]. 安全与环境工程,2022,29(4):119 − 128. [JIAO Weizhi,ZHANG Ming,XIE Xinpeng,et al. Susceptibility evaluation of urban geological disaster based on GIS and weighted information value model:A case study of Daxin Town[J]. Safety and Environmental Engineering,2022,29(4):119 − 128. (in Chinese with English abstract)]
|
[2] |
赵魁. 基于ArcGIS的云安区地质灾害易发性分区评价[J]. 地质灾害与环境保护,2020,31(4):38 − 42. [ZHAO Kui. The study of geological disaster susceptible division in Yun’an District based on ArcGIS[J]. Journal of Geological Hazards and Environment Preservation,2020,31(4):38 − 42. (in Chinese with English abstract)]
|
[3] |
许冲,戴福初,姚鑫,等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报,2010,18(1):15 − 26. [XU Chong,DAI Fuchu,YAO Xin,et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology,2010,18(1):15 − 26. (in Chinese with English abstract)]
|
[4] |
刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract)]
|
[5] |
孙德亮,马祥龙,唐小娅,等. 基于不同因子分级的滑坡易发性区划对比——以万州区为例[J]. 重庆师范大学学报(自然科学版),2021,38(5):43 − 54. [SUN Deliang,MA Xianglong,TANG Xiaoya,et al. Comparison of landslide susceptibility mapping based on different factor classifications:Taking Wanzhou District as an example[J]. Journal of Chongqing Normal University (Natural Science),2021,38(5):43 − 54. (in Chinese with English abstract)]
|
[6] |
杨得虎, 朱杰勇, 刘帅, 等. 基于信息量、加权信息量与逻辑回归耦合模型的云南罗平县崩滑灾害易发性评价对比分析[J]. 中国地质灾害与防治学报,2023,34(5):43 − 53. [YANG Dehu, ZHU Jieyong, LIU Shuai, et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value, weighted information value and logistic regression coupled model in Luoping County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):43 − 53. (in Chinese with English abstract)]
|
[7] |
解明礼,巨能攀,赵建军,等. 区域地质灾害易发性分级方法对比分析研究[J]. 武汉大学学报(信息科学版),2021,46(7):1003 − 1014. [XIE Mingli,JU Nengpan,ZHAO Jianjun,et al. Comparative analysis on classification methods of geological disaster susceptibility assessment[J]. Geomatics and Information Science of Wuhan University,2021,46(7):1003 − 1014. (in Chinese with English abstract)]
|
[8] |
凌晓,刘甲美,王涛,等. 基于致灾因子对称法分级的信息量模型在地震滑坡危险性评价中的应用[J]. 国土资源遥感,2021,33(2):172 − 181. [LING Xiao,LIU Jiamei,WANG Tao,et al. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources,2021,33(2):172 − 181. (in Chinese with English abstract)]
|
[9] |
郭建华,刘初群,刘翠. 基于遗传算法优化的城市标准循环工况构建[J]. 科学技术与工程,2017,17(15):327 − 333. [GUO Jianhua,LIU Chuqun,LIU Cui. The construction of standard driving cycle based on genetic algorithm optimization[J]. Science Technology and Engineering,2017,17(15):327 − 333. (in Chinese with English abstract)]
|
[10] |
陈绪钰,倪化勇,李明辉,等. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学,2021,36(2):71 − 78. [CHEN Xuyu,NI Huayong,LI Minghui,et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology,2021,36(2):71 − 78. (in Chinese with English abstract)]
|
[11] |
陈伟. 山区村镇滑坡灾害风险评估研究[D]. 武汉:武汉大学,2019. [CHEN Wei. Study on landslide risk assessment in mountainous villages and towns[D]. Wuhan:Wuhan University,2019. (in Chinese with English abstract)]
CHEN Wei. Study on landslide risk assessment in mountainous villages and towns[D]. Wuhan: Wuhan University, 2019. (in Chinese with English abstract)
|
[12] |
孙娟娟, 江南, 刘缵武. 基于自适应膨胀因子的模糊覆盖分级方法[J]. 测绘科学技术学报,2007,24(5):384 − 386. [SUN Juanjuan, JIANG Nan, LIU Zuanwu. Fuzzy cover approach for clustering based on adaptive inflation factor[J]. Journal of Geomatics Science and Technology,2007,24(5):384 − 386. (in Chinese with English abstract)]
|
[13] |
孙娟娟. 专题地图数据分级模型的研究——现代数学在地图数据分级中的应用[D]. 郑州:解放军信息工程大学,2007. [SUN Juanjuan. Research of classification model for thematic mapping data[D]. Zhengzhou:PLA Information Engineering University,2007. (in Chinese with English abstract)]
SUN Juanjuan. Research of classification model for thematic mapping data[D]. Zhengzhou: PLA Information Engineering University, 2007. (in Chinese with English abstract)
|
[14] |
姚宇婕,陈毓芬. 引导型专题数据分级处理研究[J]. 测绘工程,2012,21(1):25 − 29. [YAO Yujie,CHEN Yufen. Research on guiding thematic data classification[J]. Engineering of Surveying and Mapping,2012,21(1):25 − 29. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-7949.2012.01.007
|
[15] |
张涵斐. 多尺度地理信息显示处理与发布技术研究[D]. 郑州:解放军信息工程大学,2012. [ZHANG Hanfei. Research on the display processing and publish technology of multi-scale geographic information[D]. Zhengzhou:PLA Information Engineering University,2012. (in Chinese with English abstract)]
ZHANG Hanfei. Research on the display processing and publish technology of multi-scale geographic information[D]. Zhengzhou: PLA Information Engineering University, 2012. (in Chinese with English abstract)
|
[16] |
牟廉明,黄国兴. 一种基于自适应膨胀因子的聚类新方法[J]. 计算机工程,2003,29(9):100 − 102. [MOU Lianming,HUANG Guoxing. New approach of clustering based on adaptive inflation factor[J]. Computer Engineering,2003,29(9):100 − 102. (in Chinese with English abstract)]
|
[17] |
赖冠中,陈文音. 基于自然断点法分析的城乡建设用地整理潜力分区研究——以汕头市濠江区为例[J]. 广西城镇建设,2019(12):123 − 127. [LAI Guanzhong,CHEN Wenyin. Study on potential zoning of urban and rural construction land consolidation based on natural breakpoint analysis:A case study of Haojiang District,Shantou City[J]. Cities and Towns Construction in Guangxi,2019(12):123 − 127. (in Chinese)] DOI: 10.3969/j.issn.1672-7045.2019.12.016
|
[18] |
尹子虚. 基于夜光数据的城市空间特征提取尺度研究[D]. 大连:辽宁师范大学,2021. [YIN Zixu. Study on the scale of urban spatial feature extraction based on nighttime light data[D]. Dalian:Liaoning Normal University,2021. (in Chinese with English abstract)]
YIN Zixu. Study on the scale of urban spatial feature extraction based on nighttime light data[D]. Dalian: Liaoning Normal University, 2021. (in Chinese with English abstract)
|
[19] |
孟晓捷,张新社,曾庆铭,等. 基于加权信息量法的黄土滑坡易发性评价——以1∶5万天水市麦积幅为例[J]. 西北地质,2022,55(2):249 − 259. [MENG Xiaojie,ZHANG Xinshe,ZENG Qingming,et al. The susceptibility evaluation of loess landslide based on weighted information value method:Taking 1∶50 000 map of Maiji District of Tianshui City as an example[J]. Northwestern Geology,2022,55(2):249 − 259. (in Chinese with English abstract)]
|
[20] |
孙滨,祝传兵,康晓波,等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin,ZHU Chuanbing,KANG Xiaobo,et al. Susceptibility assessment of debris flows based on information model in Dongchuan,Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese with English abstract)]
|
[21] |
束龙仓,黄蕾,陈华伟,等. 基于AHP-EWM的莱州市海岸带海水入侵灾害风险评价与区划[J]. 吉林大学学报(地球科学版),2023,53(6):1864 − 1879. [SHU Longcang,HUANG Lei,CHEN Huawei,et al. Risk assessment and zoning of seawater intrusion hazard in coastal region of Laizhou city based on AHP-EWM method[J]. Journal of Jilin University (Earth Science Edition),2023,53(6):1864 − 1879. (in Chinese with English abstract)]
|
[22] |
BREIMAN L. Bagging predictors[J]. Machine Learning,1996,24(2):123 − 140.
|
[23] |
马啸,王念秦,李晓抗,等. 基于RF-FR模型的滑坡易发性评价——以略阳县为例[J]. 西北地质,2022,55(3):335 − 344. [MA Xiao,WANG Nianqin,LI Xiaokang,et al. Assessment of landslide susceptibility based on RF-FR model:Taking Lueyang County as an example[J]. Northwestern Geology,2022,55(3):335 − 344. (in Chinese with English abstract)]
|
[24] |
温鑫,范宣梅,陈兰,等. 基于信息量模型的地质灾害易发性评价——以川东南古蔺县为例[J]. 地质科技通报,2022,41(2):290 − 299. [WEN Xin,FAN Xuanmei,CHEN Lan,et al. Susceptibility assessment of geological disasters based on an information value model:A case of Gulin County in southeast Sichuan[J]. Bulletin of Geological Science and Technology,2022,41(2):290 − 299. (in Chinese with English abstract)]
|
[25] |
李萍,叶辉,谈树成. 基于层次分析法的永德县地质灾害易发性评价[J]. 水土保持研究,2021,28(5):394 − 399. [LI Ping,YE Hui,TAN Shucheng. Evaluation of geological hazards in Yongde County based on analytic hierarchy process[J]. Research of Soil and Water Conservation,2021,28(5):394 − 399. (in Chinese with English abstract)]
|
[26] |
贾雨霏, 魏文豪, 陈稳, 等. 基于SOM-I-SVM耦合模型的滑坡易发性评价[J]. 水文地质工程地质,2023,50(3):125 − 137. [JIA Yufei, WEI Wenhao, CHEN Wen, et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology,2023,50(3):125 − 137. (in Chinese with English abstract)]
|
[27] |
范强,巨能攀,向喜琼,等. 基于结果验证的信息量法地质灾害易发性评价——以贵州省开阳县为例[J]. 人民长江,2015,46(15):65 − 68. [FAN Qiang,JU Nengpan,XIANG Xiqiong,et al. Geohazard susceptibility assessment by using information quantity model with result validation:A case study in Kaiyang County,Guizhou Province[J]. Yangtze River,2015,46(15):65 − 68. (in Chinese with English abstract)]
|
[28] |
陈前,晏鄂川,黄少平,等. 基于样本与因子优化的黄冈南部地区地质灾害易发性评价[J]. 地质科技通报,2020,39(2):175 − 185. [CHEN Qian,YAN Echuan,HUANG Shaoping,et al. Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization[J]. Bulletin of Geological Science and Technology,2020,39(2):175 − 185. (in Chinese with English abstract)]
|
[29] |
刘月,王宁涛,周超,等. 基于ROC曲线与确定性系数法集成模型的三峡库区奉节县滑坡易发性评价[J]. 安全与环境工程,2020,27(4):61 − 70. [LIU Yue,WANG Ningtao,ZHOU Chao,et al. Evaluation of landslide susceptibility based on ROC and certainty factor method in Fengjie County,Three Gorges Reservoir[J]. Safety and Environmental Engineering,2020,27(4):61 − 70. (in Chinese with English abstract)]
|
[30] |
WANG Liangjie,SAWADA K,MORIGUCHI S. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy[J]. Computers & Geosciences,2013,57:81 − 92.
|