ISSN 1003-8035 CN 11-2852/P
    Volume 33 Issue 4
    Aug.  2022
    Turn off MathJax
    Article Contents
    ZHANG Peng, TANG Xuemei, LI Hu, et al. Limit width analysis of X80 corroded pipeline pass through landslide[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 47-54. DOI: 10.16031/j.cnki.issn.1003-8035.202108020
    Citation: ZHANG Peng, TANG Xuemei, LI Hu, et al. Limit width analysis of X80 corroded pipeline pass through landslide[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 47-54. DOI: 10.16031/j.cnki.issn.1003-8035.202108020

    Limit width analysis of X80 corroded pipeline pass through landslide

    More Information
    • Received Date: August 20, 2021
    • Revised Date: October 24, 2021
    • Accepted Date: December 09, 2021
    • Available Online: May 16, 2022
    • In view of the safety early warning problems involved in X80 corroded pipeline crossing landslide, it is proposed to take the limit width as the discrimination factor of pipeline safety state, establish a finite element model according to the specific landslide conditions, to analyze the influence of different corrosion sizes and spatial positions of pipeline on the mechanical behavior and limit width of corroded pipeline. The results show that the limit width can be used to evaluate the safety state of pipeline. The width and depth of corrosion are negatively correlated with the ultimate width of pipeline, and show high sensitivity to corrosion depth; the influence of internal corrosion on pipeline safety is greater than that of external corrosion; under the soil landslide with a slope of 30°, the critical cross landslide width of the non-corrosive X80 pipeline with an outer diameter of 10.16 cm is 21.2 m, and the critical corrosion depth of the corrosive pipeline crossing the landslide is 0.25 times the wall thickness; when the distance between the corroded pipeline and the middle of the landslide area is greater than 6 m, the influence on the limit width of the pipeline can be ignored; the pipeline stress is negatively correlated with the limit width. When the corrosion depth is 0.2 times the wall thickness, the maximum stress of the pipeline is always at the corrosion position, and the stress at other positions is consistent with that of the non-corrosive pipeline.
    • loading
    • [1]
      高鹏, 高振宇, 刘广仁. 2019年中国油气管道建设新进展[J]. 国际石油经济,2020,28(3):52 − 58. [GAO Peng, GAO Zhenyu, LIU Guangren. New progress in China's oil and gas pipeline construction in 2019[J]. International Petroleum Economics,2020,28(3):52 − 58. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-7298.2020.03.007

      GAO Peng, GAO Zhenyu, LIU Guangren. New progress in China's oil and gas pipeline construction in 2019[J]. International Petroleum Economics, 2020, 28(3): 52-58. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-7298.2020.03.007
      [2]
      李阳春, 刘黔云, 李潇, 等. 基于机器学习的滑坡崩塌地质灾害气象风险预警研究[J]. 中国地质灾害与防治学报,2021,32(3):118 − 123. [LI Yangchun, LIU Qianyun, LI Xiao, et al. Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):118 − 123. (in Chinese with English abstract)

      LI Yangchun, LIU Qianyun, LI Xiao, et al. Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 118-123. (in Chinese with English abstract)
      [3]
      王玉川, 郭其峰, 周延国. 中等倾角岩层顺向坡滑坡发育特征及形成机制分析—以拖担水库左岸坝肩滑坡为例[J]. 中国地质灾害与防治学报,2021,32(4):17 − 23. [WANG Yuchuan, GUO Qifeng, ZHOU Yanguo. Development characteristics and formation mechanism of the medium-dip bedding slopes:A case study of the landslide on the left bank of Tuodan reservoir dam[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):17 − 23. (in Chinese with English abstract)

      WANG Yuchuan, GUO Qifeng, ZHOU Yanguo. Development characteristics and formation mechanism of the medium-dip bedding slopes: a case study of the landslide on the left bank of Tuodan reservoir dam[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 17-23. (in Chinese with English abstract)
      [4]
      邓道明, 周新海, 申玉平. 横向滑坡过程中管道的内力和变形计算[J]. 油气储运,1998,17(7):18 − 22. [DENG Daoming, ZHOU Xinhai, SHEN Yuping. Calculation of pipeline inner force and distortion during transverse landslide body[J]. Oil & Gas Storage and Transportation,1998,17(7):18 − 22. (in Chinese with English abstract)

      DENG Daoming, ZHOU Xinhai, SHEN Yuping. Calculation of pipeline inner force and distortion during transverse landslide body[J]. Oil & Gas Storage and Transportation, 1998, 17(7): 18-22. (in Chinese with English abstract)
      [5]
      郝建斌, 刘建平, 荆宏远, 等. 横穿状态下滑坡对管道推力的计算[J]. 石油学报,2012,33(6):1093 − 1097. [HAO Jianbin, LIU Jianping, JING Hongyuan, et al. A calculation of landslide thrust force to transverse pipelines[J]. Acta Petrolei Sinica,2012,33(6):1093 − 1097. (in Chinese with English abstract)

      HAO Jianbin, LIU Jianping, JING Hongyuan, et al. A calculation of landslide thrust force to transverse pipelines[J]. Acta Petrolei Sinica, 2012, 33(6): 1093-1097. (in Chinese with English abstract)
      [6]
      ZAHID U, GODIO A, MAURO S. An analytical procedure for modelling pipeline-landslide interaction in gas pipelines[J]. Journal of Natural Gas Science and Engineering,2020,81:103474. DOI: 10.1016/j.jngse.2020.103474
      [7]
      张铄, 吴明, 牛冉, 等. 深层圆弧形滑坡作用下长输埋地输气管道响应分析[J]. 中国安全生产科学技术,2015,11(11):29 − 34. [ZHANG Shuo, WU Ming, NIU Ran, et al. Analysis on response of long distance buried gas pipeline impacted by deep cir-cular arc landslide[J]. Journal of Safety Science and Technology,2015,11(11):29 − 34. (in Chinese with English abstract)

      ZHANG Shuo, WU Ming, NIU Ran, et al. Analysis on response of long distance buried gas pipeline impacted by deep cir-cular arc landslide[J]. Journal of Safety Science and Technology, 2015, 11(11): 29-34. (in Chinese with English abstract)
      [8]
      KUPPUSAMY C S, KARUPPANAN S, PATIL S S. Buckling strength of corroded pipelines with interacting corrosion defects:numerical analysis[J]. International Journal of Structural Stability and Dynamics,2016,16(9):1550063. DOI: 10.1142/S0219455415500637
      [9]
      徐鹏飞. 含体积型缺陷输气管道在滑坡作用下剩余强度评价技术研究[D]. 成都: 西南石油大学, 2018

      XU Pengfei. Research on residual strength evaluation technology of gas pipeline containing volume defects under landslide[D]. Chengdu: Southwest Petroleum University, 2018. (in Chinese with English abstract)
      [10]
      李非飞, 黄坤, 吴佳丽, 等. X80管道单腐蚀缺陷失效研究[J]. 应用力学学报,2020,37(1):330 − 337. [LI Feifei, HUANG Kun, WU Jiali, et al. Research on failure of single corrosion defect in X80 pipeline[J]. Chinese Journal of Applied Mechanics,2020,37(1):330 − 337. (in Chinese with English abstract)

      LI Feifei, HUANG Kun, WU Jiali, et al. Research on failure of single corrosion defect in X80 pipeline[J]. Chinese Journal of Applied Mechanics, 2020, 37(1): 330-337. (in Chinese with English abstract)
      [11]
      LIU Y W, ZHANG Z W, ZHANG Y. Two-dimensional numerical analysis of differential concentration corrosion in seawater pipeline[J]. Anti-Corrosion Methods and Materials,2020,67(3):257 − 268. DOI: 10.1108/ACMM-11-2019-2211
      [12]
      LI G Z, ZHANG P, LI Z X, et al. Safety length simulation of natural gas pipeline subjected to transverse landslide[J]. Electronic Journal of Geotechnical Engineering,2016,21(12):4387 − 4399.
      [13]
      中华人民共和国住房和城乡建设部. 输气管道工程设计规范: GB 50251—2015[S]. 北京: 中国计划出版社, 2015.

      The Ministry of Housing and Urban-Rural Development, PRC. Design code for gas transmission pipeline engineering: GB 50251—2015[S]. Beijing: China Planning Press, 2015. (in Chinese)
      [14]
      陈利琼, 宋利强, 吴世娟, 等. 基于有限元方法的滑坡地段输气管道应力分析[J]. 天然气工业,2017,37(2):84 − 91. [CHEN Liqiong, SONG Liqiang, WU Shijuan, et al. FEM-based stress analysis of gas pipelines in landslide areas[J]. Natural Gas Industry,2017,37(2):84 − 91. (in Chinese with English abstract) DOI: 10.3787/j.issn.1000-0976.2017.02.011

      CHEN Liqiong, SONG Liqiang, WU Shijuan, et al. FEM-based stress analysis of gas pipelines in landslide areas[J]. Natural Gas Industry, 2017, 37(2): 84-91. (in Chinese with English abstract) DOI: 10.3787/j.issn.1000-0976.2017.02.011
      [15]
      张家铭, 尚玉杰, 王荣有, 等. 基于Pasternak双参数模型的滑坡段埋地管道受力分析方法[J]. 中南大学学报(自然科学版),2020,51(5):1328 − 1336. [ZHANG Jiaming, SHANG Yujie, WANG Rongyou, et al. Force analysis method of buried pipeline in landslide section based on Pasternak double-parameter model[J]. Journal of Central South University (Science and Technology),2020,51(5):1328 − 1336. (in Chinese with English abstract) DOI: 10.11817/j.issn.1672-7207.2020.05.017

      ZHANG Jiaming, SHANG Yujie, WANG Rongyou, et al. Force analysis method of buried pipeline in landslide section based on Pasternak double-parameter model[J]. Journal of Central South University (Science and Technology), 2020, 51(5): 1328-1336. (in Chinese with English abstract) DOI: 10.11817/j.issn.1672-7207.2020.05.017
      [16]
      ZHANG S Z, LI S Y, CHEN S N, et al. Stress analysis on large-diameter buried gas pipelines under catastrophic landslides[J]. Petroleum Science,2017,14(3):579 − 585. DOI: 10.1007/s12182-017-0177-y
      [17]
      张会远, 管巧艳, 骆晓阳, 等. 管道穿越滑坡下静力学与数值模拟对比分析[J]. 煤田地质与勘探,2017,45(1):85 − 89. [ZHANG Huiyuan, GUAN Qiaoyan, LUO Xiaoyang, et al. Comparative analysis of statics and numerical simulation of buried gas pipeline crossing landslide[J]. Coal Geology & Exploration,2017,45(1):85 − 89. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-1986.2017.01.017

      ZHANG Huiyuan, GUAN Qiaoyan, LUO Xiaoyang, et al. Comparative analysis of statics and numerical simulation of buried gas pipeline crossing landslide[J]. Coal Geology & Exploration, 2017, 45(1): 85-89. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-1986.2017.01.017
      [18]
      ZHANG L S, FANG ML, PANG X F, et al. Mechanical behavior of pipelines subjecting to horizontal landslides using a new finite element model with equivalent boundary springs[J]. Thin-Walled Structures,2018,124:501 − 513. DOI: 10.1016/j.tws.2017.12.019
      [19]
      SARVANIS G C, KARAMANOS S A, VAZOURAS P, et al. Permanent earthquake-induced actions in buried pipelines:numerical modeling and experimental verification[J]. Earthquake Engineering & Structural Dynamics,2018,47(4):966 − 987.
      [20]
      国家能源局. 钢质管道管体腐蚀损伤评价方法: SY/T 6151—2009[S]. 北京: 石油工业出版社, 2010.

      The National Energy Administration. Evaluation method for corrosion damage of steel pipe body: SY/T 6151—2009[S]. Beijing: Petroleum Industry Press, 2010. (in Chinese)
      [21]
      张晓, 帅健. 基于内检测数据的管道腐蚀缺陷分布规律[J]. 油气储运,2018,37(9):980 − 985. [ZHANG Xiao, SHUAI Jian. Distribution regularities of pipeline corrosion defect based on in-line inspection data[J]. Oil & Gas Storage and Transportation,2018,37(9):980 − 985. (in Chinese with English abstract)

      ZHANG Xiao, SHUAI Jian. Distribution regularities of pipeline corrosion defect based on in-line inspection data[J]. Oil & Gas Storage and Transportation, 2018, 37(9): 980-985. (in Chinese with English abstract)
      [22]
      国家能源局. 钢质管道及储罐腐蚀评价标准埋地钢质管道内腐蚀直接评价: SY/T 0087.2—2012[S]. 北京: 石油工业出版社, 2012.

      National Energy Administration. Direct evaluation of internal corrosion in buried steel pipelines: SY/T 0087.2—2012[S]. Beijing: Petroleum Industry Press. 2012. (in Chinese)

    Catalog

      Figures(13)  /  Tables(3)

      Article views PDF downloads Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return