ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
SONG Yin,CHEN Liang,WANG Yan,et al. Formation mechanism and hazard assessment of debris flow in Yizhong River, Deqin County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 103-109. DOI: 10.16031/j.cnki.issn.1003-8035.202307040
Citation: SONG Yin,CHEN Liang,WANG Yan,et al. Formation mechanism and hazard assessment of debris flow in Yizhong River, Deqin County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 103-109. DOI: 10.16031/j.cnki.issn.1003-8035.202307040

Formation mechanism and hazard assessment of debris flow in Yizhong River, Deqin County, Yunnan Province

More Information
  • Received Date: July 27, 2023
  • Revised Date: November 16, 2023
  • Accepted Date: July 03, 2024
  • Available Online: July 08, 2024
  • Deqin County in Yunnan Province is among the most severely affected regions in China by debris flow disasters. The Yizhong River in Deqin County has witnessed numerous large-scale debris flow disasters, causing significant damage and substantial economic losses to residential areas and the G214 national road. To elucidate the range of hazard zones and initiation mechanisms of debris flow disaster triggered by potential sources in the upstream Yizhong River under conditions of heavy rainfall and earthquakes, this study conducted field investigations and causal analyses. High-precision Digital Elevation Model (DEM) data derived from close-range UAV aerial photography were utilized as topographic data. The RAMMS software simulated a debris flow of 16.05×104 m3 under heavy rain and earthquake conditions. Two hazardous zones within the Yizhong River Basin were delineated, and the disaster initiation mode of debris flow in Yizhong River was expounded. The results show that the debris flow in Yizhong River belongs to the gully-type viscous debris flow typical of plateau mountainous regions, characterized by large scale, high frequency, and severe impact. Its disaster mechanism is summarized as a gully and valley disaster chain involving high-altitude landslide, debris flow, dammed lake, and flood breach. Risk zone I is located in the area from G214 national road to Dewei Road, while risk zone II is in the gully mouth area prone to accumulation and blockage, presenting high risk. During debris flow movement, the maximum flow velocity reached 23.93 m/s, maximum impact force was 1000 kPa, maximum accumulation depth was 9.33 m, and the maximum single outburst volume of debris flow was approximately 80000 m3, with a danger area of about 0.31 km2. The research results provide a scientific basis for debris flow control projects in Yizhong River and are of practical significance for improving the comprehensive prevention and control of geological hazards in Deqin County.

  • [1]
    刘希林,唐川. 泥石流危险性评价[M]. 北京:科学出版社,1995. [LIU Xilin,TANG Chuan. Danger assessment on debris flow[M]. Beijing:Science Press,1995. (in Chinese)]

    LIU Xilin, TANG Chuan. Danger assessment on debris flow[M]. Beijing: Science Press, 1995. (in Chinese)
    [2]
    殷跃平. 链状地质灾害的特征与防范应对[J]. 中国地质灾害与防治学报,2017,28(3):3. [YIN Yueping. Characteristics of chain geological disasters and countermeasures[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):3. (in Chinese with English abstract)]

    YIN Yueping. Characteristics of chain geological disasters and countermeasures[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(3): 3. (in Chinese with English abstract)
    [3]
    于国强,张霞,顾小凡,等. 基底侵蚀作用对黄土坡面泥流动力过程影响机制研究[J/OL]. 中国地质,(2024-07-05)[2024-07-28]. [YU Guoqiang,ZHANG Xia,GU Xiaofan,et al. Influence of the basal erosion on kinetic process of loess slope debris flow[J/OL]. Geology in China,(2024-07-05)[2024-07-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240704.1646.002.html. (in Chinese with English abstract)]

    YU Guoqiang, ZHANG Xia, GU Xiaofan, et al. Influence of the basal erosion on kinetic process of loess slope debris flow[J/OL]. Geology in China, (2024-07-05)[2024-07-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240704.1646.002.html. (in Chinese with English abstract)
    [4]
    乔成,欧国强,潘华利,等. 泥石流数值模拟方法研究进展[J]. 地球科学与环境学报,2016,38(1):134 − 142. [QIAO Cheng,OU Guoqiang,PAN Huali,et al. Review on numerical modeling methods of debris flow[J]. Journal of Earth Sciences and Environment,2016,38(1):134 − 142. (in Chinese with English abstract)]

    QIAO Cheng, OU Guoqiang, PAN Huali, et al. Review on numerical modeling methods of debris flow[J]. Journal of Earth Sciences and Environment, 2016, 38(1): 134 − 142. (in Chinese with English abstract)
    [5]
    王俊豪,管建军,魏云杰,等. 德钦县城直溪河泥石流成灾模式及运动过程模拟[J]. 水文地质工程地质,2021,48(6):187 − 195. [WANG Junhao,GUAN Jianjun,WEI Yunjie,et al. A study of the disaster model and movement process simulation of debris flow in the Zhixi River of Deqin County[J]. Hydrogeology & Engineering Geology,2021,48(6):187 − 195. (in Chinese with English abstract)]

    WANG Junhao, GUAN Jianjun, WEI Yunjie, et al. A study of the disaster model and movement process simulation of debris flow in the Zhixi River of Deqin County[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 187 − 195. (in Chinese with English abstract)
    [6]
    宋兵,沈军辉,李金洋,等. RAMMS在泥石流运动模拟中的应用——以白沙沟泥石流为例[J]. 泥沙研究,2018,43(1):32 − 37. [SONG Bing,SHEN Junhui,LI Jinyang,et al. Application of RAMMS model on simulation of debris flow in the Baisha Gully[J]. Journal of Sediment Research,2018,43(1):32 − 37. (in Chinese with English abstract)]

    SONG Bing, SHEN Junhui, LI Jinyang, et al. Application of RAMMS model on simulation of debris flow in the Baisha Gully[J]. Journal of Sediment Research, 2018, 43(1): 32 − 37. (in Chinese with English abstract)
    [7]
    熊冲冲,胡卸文,刘丁毅,等. 基于RAMMS锄头沟泥石流运动过程模拟[J]. 四川地质学报,2021,41(1):107 − 111. [XIONG Chongchong,HU Xiewen,LIU Dingyi,et al. Simulation of debris flow activity in the Chutou gully based on RAMMS[J]. Acta Geologica Sichuan,2021,41(1):107 − 111. (in Chinese with English abstract)]

    XIONG Chongchong, HU Xiewen, LIU Dingyi, et al. Simulation of debris flow activity in the Chutou gully based on RAMMS[J]. Acta Geologica Sichuan, 2021, 41(1): 107 − 111. (in Chinese with English abstract)
    [8]
    段学良,马凤山,郭捷,等. 基于Massflow模型的西藏仁布杰仲沟泥石流运动特征分析[J]. 中国地质灾害与防治学报,2019,30(6):25 − 33. [DUAN Xueliang,MA Fengshan,GUO Jie,et al. Movement characteristics of Jiezhonggou debris flow of Renbu,Tibet based on massflow model[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):25 − 33. (in Chinese with English abstract)]

    DUAN Xueliang, MA Fengshan, GUO Jie, et al. Movement characteristics of Jiezhonggou debris flow of Renbu, Tibet based on massflow model[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(6): 25 − 33. (in Chinese with English abstract)
    [9]
    刘珍. 云南德钦县城泥石流物源汇集模式探讨[J]. 云南地质,2020,39(2):284 − 287. [LIU Zhen. A probe into the convergence model of debris flow in Deqin,Yunnan[J]. Yunnan Geology,2020,39(2):284 − 287. (in Chinese with English abstract)]

    LIU Zhen. A probe into the convergence model of debris flow in Deqin, Yunnan[J]. Yunnan Geology, 2020, 39(2): 284 − 287. (in Chinese with English abstract)
    [10]
    王研. 云南省德钦县一中河泥石流形成机制和防治对策[D]. 北京:中国地质大学(北京),2016. [WANG Yan. The forming conditions and engineering revention of Yizhong River debris flow in Yunnan Province Deqin County[D]. Beijing:China University of Geosciences,2016. (in Chinese with English abstract)]

    WANG Yan. The forming conditions and engineering revention of Yizhong River debris flow in Yunnan Province Deqin County[D]. Beijing: China University of Geosciences, 2016. (in Chinese with English abstract)
    [11]
    张楠. 舟曲三眼峪沟泥石流灾害形成机理及综合防治研究[D]. 武汉:中国地质大学,2018. [ZHANG Nan. Study on formation mechanism and comprehensive prevention of debris flow disasters in Sanyanyu Valley,Zhouqu[D]. Wuhan:China University of Geosciences,2018. (in Chinese with English abstract)]

    ZHANG Nan. Study on formation mechanism and comprehensive prevention of debris flow disasters in Sanyanyu Valley, Zhouqu[D]. Wuhan: China University of Geosciences, 2018. (in Chinese with English abstract)
    [12]
    杨兴国,曹志翔,邢会歌,等. 冰碛土滑坡—泥石流—堰塞湖灾害链发展过程机理与模拟技术研究构想[J]. 工程科学与技术,2022,54(3):1 − 13. [YANG Xingguo,CAO Zhixiang,XING Huige,et al. Research framework of the program:dynamic evolution mechanism and simulation of moraine landslide —debris flow —dammed lake disaster chain[J]. Advanced Engineering Sciences,2022,54(3):1 − 13. (in Chinese with English abstract)]

    YANG Xingguo, CAO Zhixiang, XING Huige, et al. Research framework of the program: dynamic evolution mechanism and simulation of moraine landslide —debris flow —dammed lake disaster chain[J]. Advanced Engineering Sciences, 2022, 54(3): 1 − 13. (in Chinese with English abstract)
    [13]
    王翔弘绅,胡桂胜,杨志全,等. 云南维西哈达沟中频泥石流特征及堵溃危险性分析[J]. 中国地质灾害与防治学报,2023,34(2):42 − 52. [WANG Xianghongshen,HU Guisheng,YANG Zhiquan,et al. Characteristics of intermediate frequency debris flow and analysis of the hazard of blockage in Hada gully,Weixi County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):42 − 52. (in Chinese with English abstract)]

    WANG Xianghongshen, HU Guisheng, YANG Zhiquan, et al. Characteristics of intermediate frequency debris flow and analysis of the hazard of blockage in Hada gully, Weixi County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 42 − 52. (in Chinese with English abstract)
    [14]
    赵聪,梁京涛,铁永波,等. 西藏雅鲁藏布江峡谷特大巨型泥石流活动与泥沙输移特征研究[J]. 中国地质灾害与防治学报,2024,35(4):45 − 55. [ZHAO Cong,LIANG Jingtao,TIE Yongbo,et al. Study on the activities of the massive debris flows and sediment transport characteristics in the Grand Bend of the Yarlung Zangbo River Gorge, Xizang[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):45 − 55. (in Chinese with English abstract)]

    ZHAO Cong, LIANG Jingtao, TIE Yongbo, et al. Study on the activities of the massive debris flows and sediment transport characteristics in the Grand Bend of the Yarlung Zangbo River Gorge, Xizang[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 45 − 55. (in Chinese with English abstract)
    [15]
    袁东, 张广泽, 王栋, 等. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报,2023,42(5):743 − 752. [YUAN Dong, ZHANG Guangze, WANG Dong, et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China,2023,42(5):743 − 752. (in Chinese with English abstract)]

    YUAN Dong, ZHANG Guangze, WANG Dong, et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of Western China[J]. Geological Bulletin of China, 2023, 42(5): 743 − 752. (in Chinese with English abstract)
    [16]
    杨强,王高峰,李金柱,等. 白龙江中上游泥石流形成条件与成灾模式探讨[J]. 中国地质灾害与防治学报,2022,33(6):70 − 79. [YANG Qiang,WANG Gaofeng,LI Jinzhu,et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):70 − 79. (in Chinese with English abstract)]

    YANG Qiang, WANG Gaofeng, LI Jinzhu, et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 70 − 79. (in Chinese with English abstract)
    [17]
    张宪政,铁永波,宁志杰,等. 四川汶川县板子沟“6•26” 特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质,2023,50(5):134 − 145. [ZHANG Xianzheng,TIE Yongbo,NING Zhijie,et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology,2023,50(5):134 − 145. (in Chinese with English abstract)]

    ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134 − 145. (in Chinese with English abstract)
    [18]
    庞海松,谢骏锦,张小明,等. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J]. 地质科技通报,2024,43(2):215 − 225. [PANG Haisong,XIE Junjin,ZHANG Xiaoming,et al. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology,2024,43(2):215 − 225. (in Chinese with English abstract)]

    PANG Haisong, XIE Junjin, ZHANG Xiaoming, et al. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215 − 225. (in Chinese with English abstract)
    [19]
    史继帅,姜亮,翟胜强. 四川甘洛县黑西洛沟“8•31” 泥石流动力过程[J]. 中国地质灾害与防治学报,2024,35(3):52 − 60. [SHI Jishuai,JIANG Liang,ZHAI Shengqiang. Dynamic process of the “8•31” debris flow in Luoxi gulley of Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):52 − 60. (in Chinese with English abstract)]

    SHI Jishuai, JIANG Liang, ZHAI Shengqiang. Dynamic process of the “8•31” debris flow in Luoxi gulley of Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 52 − 60. (in Chinese with English abstract)
    [20]
    蒋涛,崔圣华,许向宁,等. 基于遥感解译的典型强震区泥石流物源发育及演化——以四川都汶高速沿线为例[J]. 地质通报,2024,43(7):1243 − 1254. [JIANG Tao, CUI Shenghua, XU Xiangning, et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen Expressway[J]. Geological Bulletin of China,2024,43(7):1243 − 1254. (in Chinese with English abstract)]

    JIANG Tao, CUI Shenghua, XU Xiangning, et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen Expressway[J]. Geological Bulletin of China, 2024, 43(7): 1243 − 1254. (in Chinese with English abstract)
  • Related Articles

    [1]Bin TONG, Yueping YIN, Bing LI, Jiting TANG, Xudong YANG, Zixuan XU. Review on artificial intelligence-based large language models for geological hazards[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202503007
    [2]Yu FENG, Huaien ZENG, Pengfei TU. Research on prediction model of landslide creep displacement on genetic algorithm[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 82-91. DOI: 10.16031/j.cnki.issn.1003-8035.202209038
    [3]Yongtang YU, Jianguo ZHENG, Mo SUN, Xin HUANG, Wenbin HAN. Evaluation methods for performance of post-construction settlement prediction models in thick loess filled ground[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 39-48. DOI: 10.16031/j.cnki.issn.1003-8035.202211003
    [4]Lei ZHANG, Yinpeng ZHOU, Yu ZHUANG, Aiguo XING, Junyi HE, Yanbo ZHANG. Dynamic analysis and prediction of rear slope affected area of the Jianshanying landslide in Shuicheng County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 1-7. DOI: 10.16031/j.cnki.issn.1003-8035.202204006
    [5]Jiajia MENG, Yiping WU, Chao KE, Fasheng MIAO. Intelligent prediction and analysis of influencing factors of Quaternary accumulation layer thickness in landslide-prone areas: A case study in the Tiefeng area of Wanzhou District, Chongqing City[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 1-10. DOI: 10.16031/j.cnki.issn.1003-8035.202202008
    [6]Yusi YUAN, Xiaopeng FENG, Yong LI, Cancan YI. Prediction of mine slope deformation based on PSO-DSRVM[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 1-7. DOI: 10.16031/j.cnki.issn.1003-8035.202112032
    [7]Suhua ZHOU, Shuaikang ZHOU, Yunqiang ZHANG, Zhihong NIE, Yu LEI. Predicting of swelling-shrinking level of expansive soil using support vector regression[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 117-126. DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.16
    [8]Jianping CHEN, Chunlei WANG, Xuedong WANG. Coal mine floor water inrush prediction based on CNN neural network[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 50-57. DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.07
    [9]LI Xingyu. Research and practice of high-precision intelligent monitoring and early warning technology for landslide deformation[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 21-29. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.03
  • Cited by

    Periodical cited type(11)

    1. 张雪,魏云杰,杨成生,刘勇,杨佳艺. 云南昭通地区滑坡隐患InSAR广域识别与监测. 地球科学与环境学报. 2025(01): 128-142 .
    2. 王林峰,蒋辉,唐宁,黄晓明,谭国金. 无人机贴近摄影技术在高陡边坡的三维重建与结构面识别中的应用. 中国地质灾害与防治学报. 2025(01): 92-100 . 本站查看
    3. 孙成永. InSAR技术在河南信阳新县地质灾害风险调查中的应用. 城市地质. 2024(03): 383-389 .
    4. 孙琪皓,刘桂卫,王飞,张璇钰,王衍汇. 铁路地质灾害早期识别与监测预警技术及应用研究. 铁道标准设计. 2024(09): 24-31 .
    5. 臧烨祺,郭永刚,苏立彬,王国闻,吴升杰,秦得顺. 西藏东南地区滑坡易发性多模型评价方法研究. 中国地质灾害与防治学报. 2024(06): 58-69 . 本站查看
    6. 鲁魏,杨斌,杨坤. 基于时序InSAR的西南科技大学地表形变监测与分析. 中国地质灾害与防治学报. 2023(02): 61-72 . 本站查看
    7. 李凡,李素敏,杨渊,李杰,袁利伟,成睿,毛嘉骐. 基于时序InSAR的沙湾大沟滑坡型泥石流发育特征研究. 地球物理学进展. 2023(02): 532-541 .
    8. 顿佳伟,冯文凯,易小宇,张国强,吴明堂. 白鹤滩库区蓄水前活动性滑坡InSAR早期识别研究——以葫芦口镇至象鼻岭段为例. 工程地质学报. 2023(02): 479-492 .
    9. 于冰,胡云亮,刘国祥,罗小军,胡金龙. 时序InSAR反演唐山市二维地表形变时间序列. 测绘科学. 2023(06): 82-94+230 .
    10. 陈行,刘汉湖,葛宗旭. 时序SBAS-InSAR下的香格里拉市地表形变监测. 宜宾学院学报. 2022(06): 54-59 .
    11. 盖侨侨. PS-InSAR技术在北江下游沿线形变监测中的应用. 水利技术监督. 2022(10): 57-59+72 .

    Other cited types(4)

Catalog

    Article views (124) PDF downloads (64) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return