ISSN 1003-8035 CN 11-2852/P

    干流公路桥涵堵塞对泥石流灾害的风险放大效应

    杨静萍, 陈宁生, 杨志全, 彭泰鑫, 田树峰, 黄娜

    杨静萍,陈宁生,杨志全,等. 干流公路桥涵堵塞对泥石流灾害的风险放大效应 [J]. 中国地质灾害与防治学报,2024,35(5): 120-132. DOI: 10.16031/j.cnki.issn.1003-8035.202312008
    引用本文: 杨静萍,陈宁生,杨志全,等. 干流公路桥涵堵塞对泥石流灾害的风险放大效应 [J]. 中国地质灾害与防治学报,2024,35(5): 120-132. DOI: 10.16031/j.cnki.issn.1003-8035.202312008
    YANG Jingping,CHEN Ningsheng,YANG Zhiquan,et al. Risk amplification effect caused by main stream road bridges and culverts blockages due to debris flow[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 120-132. DOI: 10.16031/j.cnki.issn.1003-8035.202312008
    Citation: YANG Jingping,CHEN Ningsheng,YANG Zhiquan,et al. Risk amplification effect caused by main stream road bridges and culverts blockages due to debris flow[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5): 120-132. DOI: 10.16031/j.cnki.issn.1003-8035.202312008

    干流公路桥涵堵塞对泥石流灾害的风险放大效应

    基金项目: 国家自然科学基金项目(42361144880);青海省自然科学基金项目(2024-ZJ-904);国家重点研发项目课题(2023YFC3008301);国家资助博士后计划(GZC20232571)
    详细信息
      作者简介:

      杨静萍(1998—),女,云南大理人,硕士研究生,主要从事山地灾害评价与预测研究。E-mail:2199625815@qq.com

      通讯作者:

      陈宁生(1965—),男,四川成都人,博士,二级研究员,博士生导师,主要从事山地灾害形成机理与防治研究工作。E-mail:chennsh@imde.ac.cn

    • 中图分类号: P642.23

    Risk amplification effect caused by main stream road bridges and culverts blockages due to debris flow

    • 摘要:

      2020年8月17日,四川省平武县亚者造祖村干流沿岸4条沟相继暴发泥石流,导致G247国道多处断道和垮方,九绵高速项目部及民工驻地等多处遭受巨大损毁,泥石流裹挟的大量漂木汇入干流后,引发下游公路桥涵堵塞并回水淹没村庄,放大了灾害风险。为了避免类似灾害再次发生,灾后基于野外调查和遥感解译等手段,探讨了此次泥石流灾害风险特征,并重点分析了干流公路桥涵堵塞对泥石流灾害的风险放大效应。结果表明:(1)亚者造祖村“8•17”泥石流为低频稀性大规模群发性泥石流,暴发频率约为50年一遇。阿祖沟和杂排沟泥石流在规模上属特大型,麻石扎三号沟和夺补河五号沟泥石流在规模上属大型,堆积扇受灾面积约为16.66×104 m2。(2)干流公路桥涵布设不当,导致泥石流裹挟的大量漂木堵塞桥涵,形成堰塞体,致使受灾面积增大了16.78×104 m2,风险范围扩大了约1倍。(3)对于植被覆盖良好的湿润山区,干流公路桥涵修建时应适当增大桥墩之间的轴向间距,给河道预留出一定的宽度和运行空间,避免因漂木堵塞放大泥石流灾害风险。研究可为类似山区干流公路桥涵合理规划及泥石流相关防治预警工作提供参考。

      Abstract:

      On August 17, 2020, debris flows successively occurred in four ravines along the main stream of Yazhezaozu Village, Pingwu County, Sichuan Province. This event resulted in multiple collapses and interruptions along the G247 national highway, and extensive damage to the Jiumian expressway project site and laborer residences, among other areas. A significant volume of driftwood carried by the debris flow converged into the main stream, leading to the blockage of downstream road bridges and culverts, causing backflow and village flooding, thereby exacerbating the disaster risk. To prevent similar disasters in the future, post-disaster investigations using field surveys and remote sensing interpretations explored the characteristics of this debris flow disaster's risk. A primary focus was placed on analyzing the risk amplification effect caused by blockages in main stream road bridges and culverts due to debris flow. The results indicated: (1) The ‘8.17’ debris flow in Yazhezaozu Village was a low-frequency, large-scale, rare, and extensive group occurrence, with an eruption frequency of approximately once every 50 years. The debris flows in Azu Gully and Zapai Gully were extremely large-scale, while Mashizha No. 3 Gully and Duobu River No. 5 Gully were large-scale, with an affected debris fan area of about 16.66×104 square meters. (2) Improper layout of main stream road bridges and culverts resulted in the blockages of driftwood carried by the debris flow, forming dammed bodies, increasing the affected area by 16.78×104 square meters, and enlarging the risk range by about 1-fold. (3) In well-vegetated, moist mountainous areas, when constructing main stream road bridges and culverts, it is advisable to appropriately increase the axial spacing between bridge piers, allowing for a certain width and operational space in the river channel. This will prevent the amplification of debris flow disaster risks caused by driftwood blockages. This study aims to provide guidance for the reasonable planning of main stream road bridges and culverts in similar mountainous areas and relevant prevention and early warning of debris flows.

    • 查明与地质灾害有关的危险区域是地质灾害管理的重要工作,也是促进研究区人民生活和基础设施发展安全的重要依据[1],基于建模评价地质灾害易发性是重要而且有效的途径。

      应用经验式、数值模拟和统计方法对地质灾害易发性建模和评价,已经进行了许多研究[1-10]。其中,经验式方法基于现场观察和专家经验判断;数值模拟计算边坡的稳定性;统计方法部分基于实地观察和专家的先验知识,部分基于对地质灾害发生的权重或概率的统计计算,这类方法使用统计技术来评估诱发地质灾害的各种因素的相关作用,每个因素的重要性都是根据观察到的与地质灾害的关系来确定的。

      文中使用基于贝叶斯理论的证据权法,综合GIS技术评价研究区地质灾害易发性。证据权法是一种统计方法,最初应用于非空间、定量的医学诊断,以结合临床诊断的证据来预测疾病[11-12]。在地球科学中,该方法被广泛应用,如:矿产资源潜力评估和矿床预测[13-16],公路路基岩溶塌陷危险性评价[17]和滑坡易发性和危险性[1, 3, 18-23]

      文中选择云南高原滇中昆明盆地低山丘陵地带这一云南省地质灾害防治重点地区的典型代表,云南省省会昆明市的主要行政区之一,昆明市五华区作为研究对象,该区地质灾害易发性评价研究具有典型代表性,可向整个云南高原昆明盆地低山丘陵区和其他低山丘陵区推广,具有技术方法和社会经济意义。研究区面积381.6 km2,地势西北高东南低,昆明盆地内地形开阔低缓,北部山区地形崎岖,沟壑较发育。区域年降水量的80%以上集中在6—9月,年平均降水量608.4~887.0 mm。碳酸盐岩分布最广,约占全区面积的38.93%,其次为砂岩、泥岩、页岩,约占23.11%,岩浆岩主要为玄武岩,约占16.95%,主要分布在昆明盆地和其他小盆地的松散碎石土体约占11.36%,石英砂岩类约占7.56%,还发育一些岩脉;断裂构造较发育,以南北向构造为主[24-25]

      通过地质灾害风险普查获得了研究区地质灾害分布数据。根据调查分析,选择工程地质岩组、断裂构造、高程、坡度、坡向、坡面曲率、距公路距离和土地利用类型等8类因素纳入评价分析。地质数据收集自云南省地质局1∶20万昆明幅、武定幅区域地质调查报告和图件[24-25],12.5 m分辨率DEM(数字高程模型)收集自ASF,道路数据收集自OSM,土地利用类型数据收集自ESA(图1表1)。

      图  1  因素基础数据图
      Figure  1.  Basic data charts of factors
      表  1  数据简介
      Table  1.  Data introduction
      数据灾点及
      致灾要素
      类型来源
      地灾地灾点矢量点地质灾害风险普查
      地质工程地质岩组矢量面云南省地质局
      距断裂
      距离
      矢量线和缓冲区云南省地质局
      地形地貌高程栅格12.5 m DEM,
      https://asf.alaska.edu/
      坡度栅格根据DEM,应用ArcGIS提取
      坡向栅格根据DEM,应用ArcGIS提取
      坡面曲率栅格根据DEM,应用ArcGIS提取
      道路距公路
      距离
      矢量线缓冲区http://www.openstreetmap.org
      根据矢量线用ArcGIS制作
      土地利用
      类型
      土地利用
      类型
      栅格ESA WorldCover 10 m 2020,https://esa-worldcover.org/en
      下载: 导出CSV 
      | 显示表格

      现状发育地质灾害89处,滑坡73处,崩塌11处,泥石流4条,地面沉降1处,为小—中型,无大型,中型14处,小型75处,主要分布在研究区低山丘陵地貌区,盆地内仅发育1处(图2)。

      图  2  地质灾害分布图(底图为高程和山体阴影渲染)
      Figure  2.  Map of geological hazard distribution (The bottom was rendered by elevation and hillshade)

      选择指标“因子面积百分比A”“地灾数百分比B”和“比率(β=B/A)”表征地质灾害的空间分布特征、主控因素和成灾特征。β定义了地质灾害点在因素分级中相对于均匀分布的丰度,β>1表示相对丰度更高,β<1则相反。β>1的因素分级有(图3表2):高程1800~1850 m、1920~1950 m和1950~2000 m,坡度15°~25°、25°~35°和>35°,坡向北东、东、南东和北,坡面曲率−0.75~−0.28(凹形)、−0.28~−0.15(凹形)、−0.15~−0.05(凹形)和0.05~0.15(凸形),石英砂岩岩组和砂岩、泥岩、页岩岩组,距断层距离0~50 m、300~500 m和1000~2000 m,距主要公路距离0~50 m和50~100 m,草地和裸地/稀疏植被区域。这些因素分级内,发育了相对于均匀分布丰度更高的地质灾害,表征这些因素分级可能是研究区地质灾害的主控因素。

      图  3  各因素分级分区和地灾点数量相关性统计图
      Figure  3.  Statistical charts of correlation between the factors and the number of geological hazard points

      把研究区栅格单元化,利用条件概率计算证据因素图层所有单元对地质灾害发生的贡献权重[13-15, 26-27]。定义$ D $为已发生地质灾害的单元,$ \bar{D} $为未发生地质灾害的单元,$ B $为证据因素区内的单元,$ \bar{B} $为证据因素区外的单元。

      证据因素$ B $条件下$ D $的条件(后验)概率为:

      $$ { O}\left(D|B\right)={ O}\left(D\right)\frac{P\left(B\right|D)}{P(B|{\bar D})} $$ (1)

      式中:$ { O}\left(D\right) $—证据因素B的先验概率, ${{ O}}\left(D\right)=$ $\dfrac{\mathrm{事}\mathrm{件}\mathrm{将}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}{\mathrm{事}\mathrm{件}\mathrm{不}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}=\dfrac{P\left(D\right)}{1-P\left(D\right)}=$ $\dfrac{P\left(D\right)}{P({\bar D})} $

      $P\left(B\right|D)、 P(B|{\bar D})$——在地质灾害发生(D)和未发生 ($ \bar{D} $)时,证据因素B的条件 概率,取自然对数即是证据 权法中的正权重(证据因素 存在区的权重值)$ {W}^{+} $

      $$ {W}^+=\ln\frac{P\left(B\right|D)}{P\left(B|{\bar D}\right)} $$ (2)
      $$ P\left(B|D\right)=P\left(B\cap D\right)/P\left(D\right) $$ (3)
      $$ P(B|\bar{D})=P(B\cap \bar{D})/P(\bar{D}) $$ (4)

      $ D $$ B $的单元数N可表示为:

      $$ P\left(B|D\right)=N\left(B\cap D\right)/N\left(D\right) $$ (5)
      $$ P(B|\bar{D})=N(B\cap \bar{D})/N(\bar{D}) $$ (6)

      同式(1),在证据因素不存在的情况下($ \bar{B} $),$ D $的条件概率(后验)为:

      $$ {{ O}}(D|\bar{B})={{ O}}(D)\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (7)

      式中:$P(\bar{B}|D)/P(\bar{B}|\bar{D})$—取自然对数即是负权重(证据 因素不存在区的权重值)$ {W}^{-} $

      $$ {W}^-={\rm{ln}}\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (8)

      同式(3)—(6):

      $$ P(\bar{B}|D)=N(\bar{B}\cap D)/N(D) $$ (9)
      $$ P(\bar{B}|\bar{D})=N(\bar{B}\cap \bar{D})/N(\bar{D}) $$ (10)

      $N (B\cap D) + N (\bar{B}\cap D)=N(D)$$N (B\cap \bar{D}) + N (\bar{B}\cap \bar{D})= N(\bar{D})$,所以式(2)和式(8)可写为:

      $$ {W}^+={\rm{ln}}\left(\frac{N(B\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(B\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (11)
      $$ {W}^-={\rm{ln}}\left(\frac{N(\bar{B}\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(\bar{B}\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (12)

      根据式(11)和(12),使用ArcGIS空间分析工具执行权重$ {W}^{+} $$ {W}^{-} $计算。

      $ {W}^{+} $的大小表明证据因素的存在与地质灾害发生之间存在正相关关系。$ {W}^{-} $表示负相关,即证据因素存在抑制诱发地质灾害的作用。证据因素原始数据缺失区域的权重值取0。两个权重之间的差异$ {W}_{{\rm{f}}}={W}^{+}-{W}^{-} $,即综合权重,量化证据因素和地质灾害相关性大小。如果$ {W}_{{\rm{f}}} $为正,则证据因素对地质灾害有利,如果为负,则对滑坡不利。如果$ {W}_{{\rm{f}}} $接近于零,则表明证据因素与地质灾害的相关性不大。

      在上述权重值计算及分析的基础上,实施证据因素分类的优选,选择类间差异显著的证据因素类,归并不显著的证据因素类。选择近似学生化检验(Student-T)统计值进行显著性测试[15, 28]

      $$ {S tuden{t}}-{{T}}={W}_{{\rm{f}}}/{\sigma }_{{W}_{{\rm{f}}}}={W}_{{\rm{f}}}/\sqrt{{\sigma }_{{W}^+}^{2}+{\sigma }_{{W}^-}^{2}} $$ (13)

      式中:$ {\sigma }_{{W}^{+}}^{} $$ {\sigma }_{{W}^{-}}^{} $——分别是$ {W}^{+} $$ {W}^{-} $的标准差;

      Wf ——综合权重;

      ${\sigma }_{{W}_{{\rm{f}}}}$——综合权重标准差。

      当测试值的绝对值$|{S tuden{t}}-{ T}|$为1.96和2.326时,置信度达97.5%、99%,文中以$|{S tuden{t}}-{ T}|=2$作为阈值。先将证据因素划分为若干分级(分类),计算权重和标准差、${{S} tuden{t}}-{ T}$,将$|{S} tuden{t}-{ T} | < 2$的各分类视为显著性低并归为一类,保留$|{{S} tuden{t}}-{T}|\geqslant 2$的因素分类,然后重新计算归并后各分类的权重值。

      根据贝叶斯法则,任一单元$ K $为地质灾害的可能性,即对数后验概率可表示为[13-15, 26, 27]

      $$ F=\ln O\left(D|\sum _{i=1}^{n}{B}_{i}^{K\left(i\right)}\right)=\sum _{i=0}^{n}{W}_{i}^{K}+\ln O\left(D\right) $$ (14)

      式中:$ {B}_{i} $——第$ i $个证据因素层;

      $ K\left(i\right) $$ {W}_{i} $是第$ i $个证据因素存在或不存在的权 重,在第$ i $个证据因素层存在时是+,不存在 时是−。

      最后计算后验概率:

      $$ P=O/(1+O)=\exp\left(F\right)/\left(1+\exp\left(F\right)\right) $$ (15)

      后验概率的大小作为易发性高低的指标,值越大表示易发性越高,值越小表示易发性越低。

      证据权重计算结果(表2图4)与1.3节可相互印证。在地形高程方面,1800~1850 m、1920~1950 m和1950~2000 m段利于地质灾害发生,正权重0.5550、1.1758和0.6439。>35°和15°~25°的山体斜坡较易于地质灾害发生,正权重0.5436和0.3785。坡向因素各分级权重值均不高,表明坡向对地质灾害发生的驱动作用可能不太显著。坡面曲率结果显示,−0.75~−0.28(凹形)和−0.28~−0.15(凹形)两个凹形坡分级段较易于地质灾害发生,正权重0.5690和0.7577。工程地质岩组各岩组分类的正权重值总体不高,但砂岩、泥岩、页岩岩组的统计结果仍然表现出对地质灾害发生的较有利性,其正权重0.4474,高于排在第二位的石英砂岩岩组(正权重值为0.2947)。距断层距离和距主要公路距离因素统计结果均显示出了较明显的距离效应,即距断裂或主要公路远的地区与地质灾害发生负相关,距断裂0~50 m和距主要公路0~50 m、50~100 m易于地质灾害发生,其正权重0.7973、0.9820和0.5111。裸地或稀疏植被地区是易于地质灾害发生的区域,其正权重0.8719。

      表  2  因素证据权重计算结果表
      Table  2.  Calculation results of factor evidence weights
      因素因素分级因素面积
      百分比/%
      地灾数
      百分比/%
      正权重
      W+
      W+
      标准差${\sigma }_{{W}^{+}}^{} $
      负权重WW
      标准差${\sigma }_{{W}^{-}}^{} $
      综合权重
      $ {W}_{{\rm{f}}} $
      $ {W}_{{\rm{f}}} $的
      标准差${\sigma }_{{W}_{{\rm{f}}}} $
      StudentT分类
      归并
      归并后
      权重
      权重
      标准差
      高程/m<17350.010.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      1735~18000.360.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      1 800~1 8500.651.120.55501.0082−0.00480.10710.55981.01380.5522合并−0.27440.1607
      1 850~1 9009.5510.110.05740.3350−0.00630.11230.06360.35330.1801合并−0.27440.1607
      1 900~1 9206.814.49−0.41860.50150.02480.1090−0.44340.5133−0.8639合并−0.27440.1607
      1 920~1 9506.7321.351.17580.2329−0.17200.12001.34780.26205.144441.17580.2329
      1 950~2 00012.5023.600.64390.2202−0.13680.12180.78070.25163.103250.64390.2202
      2 000~2 10023.2511.24−0.73180.31690.14680.1131−0.87870.3365−2.611013−0.73180.3169
      2 100~2 20018.8620.220.07080.2369−0.01720.11920.08790.26520.3315合并−0.27440.1607
      2 200~2 30011.484.49−0.94360.50090.07670.1090−1.02030.5126−1.9903合并−0.27440.1607
      2 300~2 4007.023.37−0.73830.57860.03890.1084−0.77720.5887−1.3201合并−0.27440.1607
      2 400~2 5002.610.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      >2 5000.190.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      坡度/(°)<518.724.49−1.42970.50060.16200.1091−1.59160.5123−3.10685−1.42970.5006
      5~1538.3237.08−0.02880.17490.01740.1343−0.04620.2205−0.2093合并0.02210.1450
      15~2528.7241.570.37850.16550.20230.13920.58080.21632.685330.37850.1655
      25~3511.6012.360.06880.3030−0.00930.11380.07820.32370.2416合并0.02210.1450
      >352.644.490.54360.5040−0.01950.10900.56320.51571.0921合并0.02210.1450
      坡向北东9.7211.240.14600.3179−0.01710.11300.16310.33740.4833合并−0.00010.1065
      12.7715.730.21070.2688−0.03490.11600.24560.29280.8388合并−0.00010.1065
      南东16.9219.100.12220.2438−0.02680.11840.14900.27100.5496合并−0.00010.1065
      13.1611.24−0.15920.31750.02210.1130−0.18130.3370−0.5379合并−0.00010.1065
      南西10.5710.11−0.04480.33480.00520.1123−0.05000.3532−0.1415合并−0.00010.1065
      西13.456.74−0.69540.40920.07540.1103−0.77070.4238−1.8186合并−0.00010.1065
      北西14.5812.36−0.16670.30270.02590.1138−0.19260.3234−0.5955合并−0.00010.1065
      8.8213.480.42900.2908−0.05290.11450.48190.31251.5423合并−0.00010.1065
      坡面
      曲率
      −0.75~−0.28(凹形)3.205.620.56900.4509−0.02550.10960.59450.46401.2812合并0.09600.1367
      −0.28~−0.15(凹形)10.6422.470.75770.2258−0.14320.12090.90090.25623.517110.75770.2258
      −0.15~−0.05(凹形)19.6626.970.31970.2054−0.09620.12460.41590.24031.7311合并0.09600.1367
      −0.05~0.05(平坦)34.1816.85−0.71190.25880.23620.1169−0.94820.2840−3.33886−0.71190.2588
      0.05~0.15(凸形)17.5321.350.19900.2307−0.04780.12010.24680.26010.9489合并0.09600.1367
      0.15~0.28(凸形)11.005.62−0.67660.44830.05930.1097−0.73590.4615−1.5945合并0.09600.1367
      0.28~0.69(凸形)3.781.12−1.21941.00140.02750.1071−1.24691.0071−1.2381合并0.09600.1367
      工程
      地质
      岩组
      松散碎石土体13.156.74−0.67360.40920.07200.1103−0.74560.4238−1.7592合并−0.18440.1329
      石英砂岩7.5510.110.29470.3354−0.02830.11230.32300.35370.9131合并−0.18440.1329
      砂岩、泥岩、页岩23.0835.960.44740.1781−0.18440.13300.63180.22222.843030.44740.1781
      白云岩、灰岩38.8837.08−0.04910.17490.03010.1343−0.07930.2205−0.3596合并−0.18440.1329
      玄武岩16.9410.11−0.52060.33430.08000.1124−0.60050.3526−1.7029合并−0.18440.1329
      侵入岩脉0.290.000.00000.00000.00000.00000.00000.00000.0000合并−0.18440.1329
      距断层
      距离/m
      0~505.6312.360.79730.3046−0.07460.11370.87190.32522.681430.79730.3046
      50~1005.865.62−0.04290.44920.00260.1096−0.04550.4624−0.0985合并−0.07460.1137
      100~30019.8719.10−0.03970.24360.00960.1184−0.04930.2709−0.1822合并−0.07460.1137
      300~50016.1120.220.22990.2371−0.05080.11920.28060.26541.0574合并−0.07460.1137
      500~100026.1217.98−0.37640.25080.10560.1177−0.48200.2770−1.7397合并−0.07460.1137
      1000~2 00022.7524.720.08400.2143−0.02610.12270.11010.24690.4457合并−0.07460.1137
      >20003.660.000.00000.00000.00000.00000.00000.00000.0000合并−0.07460.1137
      距主要
      公路
      距离/m
      0~5011.1129.210.98200.1986−0.22960.12651.21160.23545.146930.98200.1986
      50~1008.1413.480.51110.2909−0.06050.11450.57160.31261.8284合并−0.12570.1296
      100~30020.6220.22−0.01960.23680.00500.1192−0.02470.2651−0.0931合并−0.12570.1296
      300~50012.533.37−1.31950.57810.10050.1084−1.42010.5882−2.41444−1.31950.5781
      500~100017.2116.85−0.02100.25940.00430.1168−0.02530.2845−0.0889合并−0.12570.1296
      1000~2 00016.6710.11−0.50380.33430.07650.1124−0.58030.3527−1.6455合并−0.12570.1296
      >200013.726.74−0.71530.40920.07850.1103−0.79390.4238−1.8733合并−0.12570.1296
      土地
      利用
      类型
      林地54.7028.09−0.07940.14970.08830.1515−0.16760.2130−0.7870合并−0.12870.1183
      灌木0.140.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
      草地7.398.990.19790.3556−0.01760.11160.21550.37270.5783合并−0.12870.1183
      耕地16.5410.11−0.49550.33430.07490.1124−0.57040.3527−1.6174合并−0.12870.1183
      建筑12.8211.24−0.13320.31750.01820.1130−0.15140.3370−0.4492合并−0.12870.1183
      裸地或稀疏植被8.0941.570.87190.2452−0.12870.11831.00060.27233.674640.87190.2452
      开阔水域0.320.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
      下载: 导出CSV 
      | 显示表格

      采用接受者操作特性曲线(Receiver Operating Characteristic Curve,ROC)和ROC 曲线下与坐标轴围成的面积(Area Under Curve,AUC[29-32]评估模型拟合精度。模型拟合精度越好则AUC越接近1,0.7~0.9时表示较好。文中建立的证据权法模型的AUC为80.4%,拟合精度优异(图5)。

      图  4  因素证据权重计算结果图
      Figure  4.  Calculation results charts of factor evidence weights
      图  5  模型预测性能ROC曲线图
      Figure  5.  ROC curve of model prediction performance

      综合自然间断点分级和地质灾害分布,圈定了高易发区、中易发区和低易发区(表3图6),其中高易发区188.55 km2(占研究区总面积的49.41%),中易发区152.21 km2(占研究区总面积的39.88%),89.9%和9.1%的地灾点落入高易发区和中易发区,显示易发性分区符合已发地质灾害分布,模型预测性能较好。

      表  3  地质灾害易发性分区表
      Table  3.  Form of geological hazard susceptibility zoning
      易发性
      分区
      面积/
      km2
      占总面积/
      %
      编号面积/
      km2
      占大区/
      面积%
      灾点数灾点密度/
      (个·km−2)
      地质灾害
      高易发区(Ⅰ)
      188.5549.411152.3280.79640.41
      217.939.5190.50
      316.118.5480.94
      42.191.1610.46
      地质灾害
      中易发区(Ⅱ)
      152.2139.8811.300.85
      218.8212.3620.11
      315.039.8710.07
      412.928.49
      518.5112.1620.11
      69.125.99
      744.6629.34
      812.348.1110.08
      911.737.71
      107.785.11
      低易发区(Ⅲ)47.4012.42147.4010010.02
      下载: 导出CSV 
      | 显示表格
      图  6  地质灾害易发性栅格图
      Figure  6.  Grid map of geological hazard susceptibility

      结合地质环境因素特征分析西部高易发区(图6蓝色框范围内、图7)主要位于砂岩、泥岩和页岩岩组,断裂构造较密集,以山谷斜坡地貌为主,坡度15°~25°和>35°较陡峭斜坡范围成片发育且面积较广,主要公路建于本区山谷,裸地/稀疏植被和草地连片覆盖范围较大。预测圈定的高易发区的这些分布特征,与上文分析得到的地质灾害控制因素特征吻合,预测结果符合地质灾害空间分布特征。

      图  7  典型区因素和地质灾害分布图
      Figure  7.  Factors and geological hazards in typical zone

      (1)“因子面积百分比A”“地灾数百分比B”和“比率β”,以及各因素各分类地质灾害证据权重可以定量地分析各因素与地质灾害发生的相关性。

      (2)圈定高易发区188.55 km2(占总面积的49.41%),中易发区152.21 km2(占总面积的39.88%),易发性分区图具有较好的等级区分度。

      (3)通过证据权法绘制的地质灾害易发性图可以有效地预测该区地质灾害,模型拟合精度AUC=80.4%。89.9%和9.1%的地灾点落入高和中易发区,建模结果与实际地质灾害发育情况吻合度高,较好地揭示了研究区地质灾害易发性特征。

      (4)证据权法在研究区这类云南高原低山丘陵区有效性高,方法理论清晰,较为成熟,由数据驱动,参数定义明确,易于一线工程师推广使用。同时,该方法权重的估计和模型预测性能受预测因子选择、因子数据空间分辨率、因子分级影响较大,具体工作中宜对这些问题进行深入研究和统计分析。建议通过对因子分级进行显著性测试实施优选,减小对权重的高估或低估,提高模型效能。

    • 图  1   研究区概况图

      注:a为研究区地理位置;b为研究区高程;c为4条沟相对位置。

      Figure  1.   Overview of the study area

      图  2   平武县多年月平均降水量

      Figure  2.   Annual average monthly rainfall in Pingwu County

      图  3   颗粒级配分析曲线

      Figure  3.   Particle size distribution analysis curve

      图  4   阿祖沟堆积扇位置受灾前后对比

      Figure  4.   Comparison of accumulation fan positions in Azu debris flow gully before and after the disaster

      图  5   研究区受灾范围示意图

      Figure  5.   Schematic diagram of disaster scope in the study area

      图  6   干流桥涵堵塞回水淹没村庄示意图

      Figure  6.   Schematic diagram of village inundation due to backwater from main stream bridges and culverts blockage

      图  7   干流公路桥涵与主河位置

      注:a为主河改道前;b为主河改道后。

      Figure  7.   Location of road bridges and culverts with respect to main river

      图  8   野外调查时沟道内堆积的大量漂木

      Figure  8.   Driftwood accumulated in debris flow gully during field survey

      图  9   4条泥石流沟植被覆盖度对比

      Figure  9.   Comparison of vegetation coverage in four debris flow gullies

      图  10   Fast Flood模拟结果

      注:a为干流无桥涵时淹没范围;b为干流有桥涵时淹没范围;c为淹没范围对比。

      Figure  10.   Comparison of Fast Flood simulation results

      表  1   研究区4条泥石流沟地形地貌特征参数

      Table  1   Topographic and geomorphologic characteristics parametes of four debris flow gullies in the study area

      流域名称 流域面积
      /km2
      主沟长度
      /km
      平均纵
      比降/‰
      最高海拔
      /m
      最低海拔
      /m
      最大高差
      /m
      阿祖沟 4.10 3.10 244 3110 2353 757
      麻石扎三号沟 2.43 3.20 294 3302 2361 941
      夺补河五号沟 1.80 2.54 311 3147 2357 791
      杂排沟 6.16 5.45 223 3543 2330 1213
      下载: 导出CSV

      表  2   研究区4条泥石流沟雨洪法相关参数计算结果

      Table  2   Calculation results of storm flood method related parameters in four debris flow gullies in the study area

      流域 P/% $ \psi $ $ \tau$/h $ n $ $ s $/(mm·h−1 $ {D}_{{\mathrm{c}}} $ $ {Q}_{{\mathrm{w}}} $/(m3·s−1 $ {Q}_{{\mathrm{c}}} $/(m3·s−1 $ Q $/(104 m3 $ {Q}_{{\mathrm{H}}} $/(104 m3
      阿祖沟 1 0.91 0.97 0.8 59.20 2.8 63.26 302.82 19.19 7.91
      2 0.90 1.01 0.8 51.60 2.6 52.35 232.71 14.74 6.08
      5 0.87 1.08 0.79 42.00 2.4 39.16 160.70 10.18 4.20
      麻石扎三号沟 1 0.94 1.07 0.8 59.20 2.8 35.57 174.58 8.30 3.57
      2 0.93 1.12 0.8 51.60 2.6 29.61 134.97 6.41 2.76
      5 0.91 1.19 0.79 42.00 2.4 22.41 94.27 4.48 1.93
      夺补河五号沟 1 0.94 0.90 0.8 59.20 2.8 30.42 140.24 6.66 2.63
      2 0.93 0.94 0.8 51.60 2.6 25.33 108.46 5.15 2.03
      5 0.92 1.00 0.79 42.00 2.4 19.19 75.84 3.60 1.42
      杂排沟 1 0.93 1.58 0.8 59.20 2.8 65.48 282.62 17.91 6.30
      2 0.92 1.65 0.8 51.60 2.6 54.50 218.44 13.84 4.87
      5 0.90 1.76 0.79 42.00 2.4 41.17 152.30 9.65 3.39
         注:$ \psi $为洪峰径流系数,$ \tau $为流域汇流时间,s为暴雨雨力。
      下载: 导出CSV

      表  3   研究区4条泥石流沟形态调查法相关参数计算结果

      Table  3   Calculation results of morphological survey method related parameters in four debris flow gullies in the study area

      流域 $ x $/% $ {\gamma }_{{\mathrm{c}}} $/(g·cm−3 $ R $/m $ {W}_{{\mathrm{c}}} $/m2 $ {V}_{{\mathrm{c}}} $/(m·s−1 $ {Q}_{{\mathrm{c}}}' $/(m3·s−1 $ Q' $/(104 m3 $ {Q}_{{\mathrm{H}}}' $/(104 m3
      阿祖沟 1.15 1.68 2.0 41.00 8.40 344.39 16.37 6.79
      麻石扎三号沟 1.37 1.71 2.2 16.28 9.64 156.86 7.45 3.20
      夺补河五号沟 0.82 1.65 1.7 13.86 8.77 121.47 5.77 2.27
      杂排沟 0.52 1.61 2.0 21.76 8.51 185.18 11.73 4.12
        注:R为水力半径。
      下载: 导出CSV

      表  4   研究区4条泥石流沟堆积扇特征及危害对象

      Table  4   Characteristics and vulnerable objects of accumulation fans in four debris flow gullies in the study area

      流域 堆积扇面积/(104 m2 平均堆积厚度/m 堆积体积/(104 m3 主要危害对象
      阿祖沟 5.95 2.5 14.88 九绵高速项目部驻地、民工驻地、钢筋加工中心
      麻石扎三号沟 3.14 1.5 4.72 G247国道
      夺补河五号沟 3.43 1.3 4.45 九绵高速预制梁场、拌合站、白马隧道洞口驻地
      杂排沟 4.14 2.3 9.52 G247国道、在建九绵高速、沟口民宿
      下载: 导出CSV

      表  5   泥石流堵河相关参数与计算结果

      Table  5   Related parameters and calculation results of debris flow blocking river

      流域 $ {Q}_{{\mathrm{c}}} $/(m3·s−1 $ {\gamma }_{{\mathrm{c}}} $/(g·cm−3 $ {V}_{{\mathrm{c}}} $/(m·s−1 $ \mathrm{\alpha } $/(°) J/‰ $ {C}_{\gamma } $ 堵河情况
      阿祖沟 232.71 1.68 8.40 60 244 1.19 不堵
      麻石扎三号沟 134.97 1.71 9.64 120 294 0.81 不堵
      夺补河五号沟 108.46 1.65 8.77 80 311 0.65 不堵
      杂排沟 218.44 1.61 8.51 120 223 1.09 不堵
      下载: 导出CSV
    • [1] 陈宁生,周海波,卢阳,等. 西南山区泥石流防治工程效益浅析[J]. 成都理工大学学报(自然科学版),2013,40(1):50 − 58. [CHEN Ningsheng,ZHOU Haibo,LU Yang,et al. Analysis of benefits of debris flow control projects in southwest mountain areas of China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2013,40(1):50 − 58. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-9727.2013.01.008

      CHEN Ningsheng, ZHOU Haibo, LU Yang, et al. Analysis of benefits of debris flow control projects in southwest mountain areas of China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(1): 50 − 58. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-9727.2013.01.008

      [2] 赵聪,梁京涛,铁永波,等. 西藏雅鲁藏布江峡谷特大巨型泥石流活动与泥沙输移特征研究[J]. 中国地质灾害与防治学报,2024,35(4):45 − 55. [ZHAO Cong,LIANG Jingtao,TIE Yongbo,et al. Study on the activities of the massive debris flows and sediment transport characteristics in the Grand Bend of the Yarlung Zangbo River Gorge, Xizang[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):45 − 55. (in Chinese with English abstract)]

      ZHAO Cong, LIANG Jingtao, TIE Yongbo, et al. Study on the activities of the massive debris flows and sediment transport characteristics in the Grand Bend of the Yarlung Zangbo River Gorge, Xizang[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 45 − 55. (in Chinese with English abstract)

      [3] 史继帅, 姜亮, 翟胜强. 四川甘洛县黑西洛沟 “8•31” 泥石流动力过程[J]. 中国地质灾害与防治学报,2024,35(3):52 − 60. [SHI Jishuai, JIANG Liang, ZHAI Shengqiang. Dynamic process of “8•31” debris flow in Heixiluogou, Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):52 − 60. (in Chinese with English abstract)]

      SHI Jishuai, JIANG Liang, ZHAI Shengqiang. Dynamic process of “8•31” debris flow in Heixiluogou, Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 52 − 60. (in Chinese with English abstract)

      [4] 谢湘平,王小军,李忠丽,等. 漂木对泥石流输移过程影响试验研究[J]. 水利水电技术(中英文),2022,53(5):179 − 189. [XIE Xiangping,WANG Xiaojun,LI Zhongli,et al. Experimental study of influence from driftwood on debris flow transport process[J]. Water Resources and Hydropower Engineering,2022,53(5):179 − 189. (in Chinese with English abstract)]

      XIE Xiangping, WANG Xiaojun, LI Zhongli, et al. Experimental study of influence from driftwood on debris flow transport process[J]. Water Resources and Hydropower Engineering, 2022, 53(5): 179 − 189. (in Chinese with English abstract)

      [5] 于国强,张霞,顾小凡,等.基底侵蚀作用对黄土坡面泥流动力过程影响机制研究[J/OL].中国地质,(2024-07-05)[2024-07-28]. [YU Guoqiang,ZHANG Xia,GU Xiaofan,et al. Influence of the basal erosion on kinetic process of loess slope debris flow[J/OL].Geology in China,(2024-07-05)[2024-07-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240704.1646.002.html. (in Chinese with English abstract)]

      YU Guoqiang, ZHANG Xia, GU Xiaofan, et al. Influence of the basal erosion on kinetic process of loess slope debris flow[J/OL].Geology in China, (2024-07-05)[2024-07-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20240704.1646.002.html. (in Chinese with English abstract)

      [6] 李钰,甘滨蕊,王协康,等. 四川省甘洛县2019年群发性山洪泥石流灾害的形成机理[J]. 水土保持通报,2020,40(6):281 − 287. [LI Yu,GAN Binrui,WANG Xiekang,et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County,Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation,2020,40(6):281 − 287. (in Chinese with English abstract)]

      LI Yu, GAN Binrui, WANG Xiekang, et al. Formation mechanism of group flash flood/debris flow disasters in Ganluo County, Sichuan Province in 2019[J]. Bulletin of Soil and Water Conservation, 2020, 40(6): 281 − 287. (in Chinese with English abstract)

      [7] 张宪政,铁永波,宁志杰, 等. 四川汶川县板子沟 “6•26” 特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质,2023,50(5):134 − 145. [ZHANG Xianzheng,TIE Yongbo,NING Zhijie,et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi Catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology,2023,50(5):134 − 145. (in Chinese with English abstract)]

      ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Characteristics and activity analysis of the catastrophic “6•26” debris flow in the Banzi Catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134 − 145. (in Chinese with English abstract)

      [8] 陈剑刚,费高高,王喜安,等. 漂木对山洪泥石流运动致灾影响研究进展[J]. 水利水电科技进展,2022,42(3):104 − 111. [CHEN Jiangang,FEI Gaogao,WANG Xi’an,et al. Advances on disaster effects of drift wood in flash flood debris flows[J]. Advances in Science and Technology of Water Resources,2022,42(3):104 − 111. (in Chinese with English abstract)]

      CHEN Jiangang, FEI Gaogao, WANG Xi’an, et al. Advances on disaster effects of drift wood in flash flood debris flows[J]. Advances in Science and Technology of Water Resources, 2022, 42(3): 104 − 111. (in Chinese with English abstract)

      [9] 袁东,张广泽,王栋,等. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报,2023,42(5):743 − 752. [YUAN Dong,ZHANG Guangze,WANG Dong,et al. Development characteristics of debris flow in traffic corridors in western mountainous areas and route selection countermeasures[J]. Geological Bulletin of China,2023,42(5):743 − 752. (in Chinese with English abstract)]

      YUAN Dong, ZHANG Guangze, WANG Dong, et al. Development characteristics of debris flow in traffic corridors in western mountainous areas and route selection countermeasures[J]. Geological Bulletin of China, 2023, 42(5): 743 − 752. (in Chinese with English abstract)

      [10]

      CHEN Jiangang,LIU Wenrun,ZHAO Wanyu,et al. Magnitude amplification of flash floods caused by large woody in Keze gully in Jiuzhaigou National Park,China[J]. Geomatics,Natural Hazards and Risk,2021,12(1):2277 − 2299. DOI: 10.1080/19475705.2021.1961882

      [11] 陈晓清,崔鹏,韦方强. 良好植被区泥石流防治初探[J]. 山地学报,2006,24(3):333 − 339. [CHEN Xiaoqing,CUI Peng,WEI Fangqiang. Study of control debris flow in high-covered vegetation region[J]. Journal of Mountain Science,2006,24(3):333 − 339. (in Chinese with English abstract)]

      CHEN Xiaoqing, CUI Peng, WEI Fangqiang. Study of control debris flow in high-covered vegetation region[J]. Journal of Mountain Science, 2006, 24(3): 333 − 339. (in Chinese with English abstract)

      [12] 崔鹏,陈晓清,柳素清,等. 风景区泥石流防治特点与技术[J]. 地学前缘,2007,14(6):172 − 180. [CUI Peng,CHEN Xiaoqing,LIU Suqing,et al. Techniques of debris flow prevention in National Parks[J]. Earth Science Frontiers,2007,14(6):172 − 180. (in Chinese with English abstract)] DOI: 10.1016/S1872-5791(08)60009-3

      CUI Peng, CHEN Xiaoqing, LIU Suqing, et al. Techniques of debris flow prevention in National Parks[J]. Earth Science Frontiers, 2007, 14(6): 172 − 180. (in Chinese with English abstract) DOI: 10.1016/S1872-5791(08)60009-3

      [13] 高克昌,孟国才,韦方强,等. 德宏“7•5” 特大滑坡泥石流灾害分析及其对策[J]. 防灾减灾工程学报,2005,25(3):251 − 257. [GAO Kechang,MENG Guocai,WEI Fangqiang,et al. Analysis and counter-measure for the large-scale landslide-debris flow hazard in Dehong,Yunnan,China[J]. Journal of Disaster Pnevention and Mitigation Engineering,2005,25(3):251 − 257. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-2132.2005.03.004

      GAO Kechang, MENG Guocai, WEI Fangqiang, et al. Analysis and counter-measure for the large-scale landslide-debris flow hazard in Dehong, Yunnan, China[J]. Journal of Disaster Pnevention and Mitigation Engineering, 2005, 25(3): 251 − 257. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-2132.2005.03.004

      [14] 谢湘平,王小军,闫春岭. 漂木灾害研究现状及研究展望[J]. 山地学报,2020,38(4):552 − 560. [XIE Xiangping,WANG Xiaojun,YAN Chunling. A review of the research on woody debris related disaster and its prospect[J]. Mountain Research,2020,38(4):552 − 560. (in Chinese with English abstract)]

      XIE Xiangping, WANG Xiaojun, YAN Chunling. A review of the research on woody debris related disaster and its prospect[J]. Mountain Research, 2020, 38(4): 552 − 560. (in Chinese with English abstract)

      [15] 黄勋,唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展,2016,31(10):1047 − 1055. [HUANG Xun,TANG Chuan. Quantitative risk assessment of catastrophic debris flows through numerical simulation[J]. Advances in Earth Science,2016,31(10):1047 − 1055. (in Chinese with English abstract)]

      HUANG Xun, TANG Chuan. Quantitative risk assessment of catastrophic debris flows through numerical simulation[J]. Advances in Earth Science, 2016, 31(10): 1047 − 1055. (in Chinese with English abstract)

      [16] 杨强,王高峰,李金柱,等. 白龙江中上游泥石流形成条件与成灾模式探讨[J]. 中国地质灾害与防治学报,2022,33(6):70 − 79. [YANG Qiang,WANG Gaofeng,LI Jinzhu,et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):70 − 79. (in Chinese with English abstract)]

      YANG Qiang, WANG Gaofeng, LI Jinzhu, et al. Formation conditions and the disaster modes of debris flows along middle and upper reaches of the Bailongjiang River Basin[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 70 − 79. (in Chinese with English abstract)

      [17] 屈永平,唐川,刘洋,等. 四川省都江堰市龙池地区“8•13” 泥石流堆积扇调查和分析[J]. 水利学报,2015,46(2):197 − 207. [QU Yongping,TANG Chuan,LIU Yang,et al. Survey and analysis of the“8•13” debris flows fan in Longchi Town of Dujiangyan City,Sichuan Province[J]. Journal of Hydraulic Engineering,2015,46(2):197 − 207. (in Chinese with English abstract)]

      QU Yongping, TANG Chuan, LIU Yang, et al. Survey and analysis of the“8•13” debris flows fan in Longchi Town of Dujiangyan City, Sichuan Province[J]. Journal of Hydraulic Engineering, 2015, 46(2): 197 − 207. (in Chinese with English abstract)

      [18] 蒋涛,崔圣华,许向宁,等. 基于遥感解译的典型强震区泥石流物源发育及演化——以四川都汶高速沿线为例[J]. 地质通报,2024,43(7):1243 − 1254. [JIANG Tao,CUI Shenghua,XU Xiangning,et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing:A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China,2024,43(7):1243 − 1254. (in Chinese with English abstract)]

      JIANG Tao, CUI Shenghua, XU Xiangning, et al. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen expressway[J]. Geological Bulletin of China, 2024, 43(7): 1243 − 1254. (in Chinese with English abstract)

      [19] 陈宁生,田树峰,张勇,等. 泥石流灾害的物源控制与高性能减灾[J]. 地学前缘,2021,28(4):337 − 348. [CHEN Ningsheng,TIAN Shufeng,ZHANG Yong,et al. Soil mass domination in debris-flow disasters and strategy for hazard mitigation[J]. Earth Science Frontiers,2021,28(4):337 − 348. (in Chinese with English abstract)]

      CHEN Ningsheng, TIAN Shufeng, ZHANG Yong, et al. Soil mass domination in debris-flow disasters and strategy for hazard mitigation[J]. Earth Science Frontiers, 2021, 28(4): 337 − 348. (in Chinese with English abstract)

      [20] 游勇,陈兴长,柳金峰. 四川绵竹清平乡文家沟“8•13” 特大泥石流灾害[J]. 灾害学,2011,26(4):68 − 72. [YOU Yong,CHEN Xingchang LIU Jinfeng. “8•13” extra large debris flow disaster in Wenjia gully of Qingping Township,Mianzhu,Sichuan Province[J]. Journal of Catastrophology,2011,26(4):68 − 72. (in Chinese with English abstract)]

      YOU Yong, CHEN Xingchang LIU Jinfeng. “8•13” extra large debris flow disaster in Wenjia gully of Qingping Township, Mianzhu, Sichuan Province[J]. Journal of Catastrophology, 2011, 26(4): 68 − 72. (in Chinese with English abstract)

      [21]

      OKAMOTO T,TAKEBAYASHI H,SANJOU M,et al. Log jam formation at bridges and the effect on floodplain flow:A flume experiment[J]. Journal of Flood Risk Management,2020,13(S1).

      [22]

      WANG Daozheng,WANG Xingang,CHEN Xiaoqing,et al. Analysis of factors influencing the large wood transport and block-outburst in debris flow based on physical model experiment[J]. Geomorphology,2022,398:108054. DOI: 10.1016/j.geomorph.2021.108054

      [23]

      CHEN Huayong,RUAN Hechun,CHEN Jiangang,et al. Review of investigations on hazard chains triggered by river-blocking debris flows and dam-break floods[J]. Frontiers in Earth Science,2022,10:830044. DOI: 10.3389/feart.2022.830044

      [24] 郭岐山,肖建兵,关新芳. 平武县石坎河小流域震后泥石流活动特征及工程防治建议[J]. 中国地质灾害与防治学报,2018,29(3):31 − 37. [GUO Qishan,XIAO Jianbing,GUAN Xinfang. The characteristics of debris flow activities and its optimal timing for the control in Shikan River Basin,Pingwu Country[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):31 − 37. (in Chinese with English abstract)]

      GUO Qishan, XIAO Jianbing, GUAN Xinfang. The characteristics of debris flow activities and its optimal timing for the control in Shikan River Basin, Pingwu Country[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(3): 31 − 37. (in Chinese with English abstract)

      [25] 钟燕川,郭海燕,徐金霞,等. 四川省泥石流活动与降水因子特征[J]. 水土保持研究,2018,25(6):390 − 396. [ZHONG Yanchuan,GUO Haiyan,XU Jinxia,et al. Characteristics of debris flow and precipitation in Sichuan Province[J]. Research of Soil and Water Conservation,2018,25(6):390 − 396. (in Chinese with English abstract)]

      ZHONG Yanchuan, GUO Haiyan, XU Jinxia, et al. Characteristics of debris flow and precipitation in Sichuan Province[J]. Research of Soil and Water Conservation, 2018, 25(6): 390 − 396. (in Chinese with English abstract)

      [26] 陈宁生,崔鹏,刘中港,等. 基于黏土颗粒含量的泥石流容重计算[J]. 中国科学E辑:技术科学,2003,33(增刊1):164 − 174. [CHEN Ningsheng,CUI Peng,LIU Zhonggang,et al. Calculation of debris flow bulk density based on clay particle content[J]. Scientia Sinica (Technologica),2003,33(Sup 1):164 − 174. (in Chinese)]

      CHEN Ningsheng, CUI Peng, LIU Zhonggang, et al. Calculation of debris flow bulk density based on clay particle content[J]. Scientia Sinica (Technologica), 2003, 33(Sup 1): 164 − 174. (in Chinese)

      [27] 中国地质灾害防治工程行业协会. 泥石流灾害防治工程勘查规范(试行):T/CAGHP 006—2018[S]. 武汉:中国地质大学出版社,2018. [China Geological Disaster Prevention Engineering Industry Association. Code for Exploration of debris flow Disaster Prevention Projects (Trial) : T/CAGHP 006-2018 [S]. Wuhan: China University of Geosciences Press, 2018.(in Chinese)]

      China Geological Disaster Prevention Engineering Industry Association. Code for Exploration of debris flow Disaster Prevention Projects (Trial) : T/CAGHP 006-2018 [S]. Wuhan: China University of Geosciences Press, 2018.(in Chinese)

      [28] 陈德明,王兆印,何耘. 泥石流入汇对河流影响的实验研究[J]. 泥沙研究,2002(3):22 − 28. [CHEN Deming,WANG Zhaoyin,HE Yun. Experimental study on the fluvial process of debris flow discharging into a river[J]. Journal of Sediment Research,2002(3):22 − 28. (in Chinese with English abstract)]

      CHEN Deming, WANG Zhaoyin, HE Yun. Experimental study on the fluvial process of debris flow discharging into a river[J]. Journal of Sediment Research, 2002(3): 22 − 28. (in Chinese with English abstract)

      [29]

      SCHMOCKER L,HAGER W H. Probability of drift blockage at bridge decks[J]. Journal of Hydraulic Engineering,2011,137(4):470 − 479. DOI: 10.1061/(ASCE)HY.1943-7900.0000319

      [30]

      RUIZ-VILLANUEVA V,WYŻGA B,MIKUŚ P,et al. Large wood clogging during floods in a gravel-bed river:The Długopole bridge in the Czarny Dunajec River,Poland[J]. Earth Surface Processes and Landforms,2017,42(3):516 − 530. DOI: 10.1002/esp.4091

      [31]

      RUIZ-VILLANUEVA V,BADOUX A,RICKENMANN D,et al. Impacts of a large flood along a mountain river basin:The importance of channel widening and estimating the large wood budget in the upper Emme River (Switzerland)[J]. Earth Surface Dynamics,2018,6(4):1115 − 1137. DOI: 10.5194/esurf-6-1115-2018

      [32]

      DE CICCO P N,PARIS E,SOLARI L,et al. Bridge pier shape influence on wood accumulation:Outcomes from flume experiments and numerical modelling[J]. Journal of Flood Risk Management,2020,13(2).

      [33]

      COMITI F,LUCÍA A,RICKENMANN D. Large wood recruitment and transport during large floods:A review[J]. Geomorphology,2016,269:23 − 39. DOI: 10.1016/j.geomorph.2016.06.016

      [34] 谢湘平,韦方强,谢涛,等. 山洪中漂木在拦砂坝前堵塞堆积实验[J]. 山地学报,2014,32(2):249 − 254. [XIE Xiangping,WEI Fangqiang,XIE Tao,et al. Experiment on the clogging and deposition of woody debris flowing with torrents in front of debris dams[J]. Mountain Research,2014,32(2):249 − 254. (in Chinese with English abstract)]

      XIE Xiangping, WEI Fangqiang, XIE Tao, et al. Experiment on the clogging and deposition of woody debris flowing with torrents in front of debris dams[J]. Mountain Research, 2014, 32(2): 249 − 254. (in Chinese with English abstract)

      [35] 谢湘平,王小军,屈新,等. 缝隙坝对携带漂木的泥石流减灾效果实验研究[J]. 工程地质学报,2020,28(6):1300 − 1310. [XIE Xiangping,WANG Xiaojun,QU Xin,et al. Experimental study on mitigation effect of slit dam to debris flow with driftwood[J]. Journal of Engineering Geology,2020,28(6):1300 − 1310. (in Chinese with English abstract)]

      XIE Xiangping, WANG Xiaojun, QU Xin, et al. Experimental study on mitigation effect of slit dam to debris flow with driftwood[J]. Journal of Engineering Geology, 2020, 28(6): 1300 − 1310. (in Chinese with English abstract)

    • 期刊类型引用(23)

      1. 马明明,伍尚前,谢猛,童鹏,袁晓波. 决策树分类在铁路沿线桉树提取及滑坡隐患识别中的应用——以贵广高铁广西段为例. 中国地质灾害与防治学报. 2025(01): 37-45 . 本站查看
      2. 刘亚静,刘红健. 基于信息量-随机森林模型的地震带地质灾害易发性评价:以松潘-较场地震带为例. 科学技术与工程. 2024(01): 143-154 . 百度学术
      3. 黄海,江思义,李海良,李春玲,吴秋菊. 岩溶地区危岩和岩质崩塌易发性评价研究——以广西贺州市平桂区为例. 成都理工大学学报(自然科学版). 2024(01): 137-151 . 百度学术
      4. 刘玥,申玉松,李旭,张迪. 基于不同耦合模型的区域地质灾害易发性评价——以河南商城县为例. 中国地质调查. 2024(01): 83-92 . 百度学术
      5. 高茂宁,魏冠军,雷传金,张沛. 顾及时序InSAR的海东市辖区滑坡敏感性评价. 地理空间信息. 2024(05): 97-101 . 百度学术
      6. 石文君,王宇栋,解晋航,李章杰,梁形形. 基于多种模型对比的寻甸县地质灾害易发性分析. 矿产勘查. 2024(06): 1092-1102 . 百度学术
      7. 寸得欣,令狐昌卫,马一奇,尹林虎,陈庆松,刘振南,涂春霖. 基于GIS和加权信息量模型的富源县地质灾害易发性评价. 科学技术与工程. 2024(18): 7563-7573 . 百度学术
      8. 冯振,陈亮,王立朝,侯圣山,田怡帆,刘明学. 区域地质灾害易发性评价的证据权法原理与实践. 地质通报. 2024(07): 1255-1265 . 百度学术
      9. 张宇,简季,郝利娜,杨鑫. 基于IV-MLP耦合模型的龙陵县滑坡易发性评价. 物探化探计算技术. 2024(05): 618-626 . 百度学术
      10. 桂富羽,史正涛,喜文飞,付尧,郭峻杞. 基于证据权模型的滑坡灾害易发性评价研究——以普洱市为例. 城市勘测. 2024(05): 188-193+198 . 百度学术
      11. 梁峰,江攀和. 基于IVM-CF耦合模型的贵定县滑坡地质灾害易发性评价. 水利水电技术(中英文). 2024(S2): 669-677 . 百度学术
      12. 裴鹏程,黄帅,袁静,张智康. 走滑断层作用下上覆土层的变形破坏机理. 中国地质灾害与防治学报. 2024(06): 115-127 . 本站查看
      13. 赖波,赵风顺,江金进,江山,江宁,李俊生. 基于AHP-信息量法的珠海市地质灾害风险评价. 华南地质. 2023(01): 147-156 . 百度学术
      14. 阮征,周少伟,姚胜,田垚. 黄土高原腹地地质灾害致灾因素分析及易发性评价. 科技导报. 2023(10): 115-124 . 百度学术
      15. 王伟中,李树兴,杨成,许涛,宋飞,曹小红,李浩然,王伟华. 基于GIS和证据权模型的山阳县地质灾害易发性评价. 新疆地质. 2023(02): 262-269 . 百度学术
      16. 黄鑫,吴珍云,丁德建,李希星,石祖峰,祝民强,孙彬涵. 基于信息量-逻辑回归模型的江西省婺源县地质灾害易发性评价. 东华理工大学学报(自然科学版). 2023(03): 259-268 . 百度学术
      17. 曾斌,吕权儒,寇磊,艾东,许汇源,袁晶晶. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价. 中国地质灾害与防治学报. 2023(04): 105-113 . 本站查看
      18. 胡杨,张紫昭,林世河. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价. 工程地质学报. 2023(04): 1350-1363 . 百度学术
      19. 张潇远,苏巧梅,赵财胜,朱月琴,李凯新,范锦龙,白东升. 一种利用贝叶斯算法优化XGBoost的滑坡易发性评价方法. 测绘科学. 2023(06): 140-150 . 百度学术
      20. 张华湘,孙乾征,樊善兴,杨子林. 滑坡易发性评价方法和精度比较——以贵州省大方县为例. 贵州地质. 2023(03): 302-309+295 . 百度学术
      21. 龚芯磊,张斌,高金利,杨洪森. 基于斜坡单元尺度AHP-信息量模型的重点区域地质灾害风险评价——以贵州省紫云县中部重点区为例. 贵州地质. 2023(03): 310-320 . 百度学术
      22. 谭燕,崔雨,金华丽,方龙建,葛鹏,付乐意. 基于信息量模型及层次分析法的镇江丹徒区滑坡崩塌地质灾害易发性评价. 昆明冶金高等专科学校学报. 2023(04): 7-15 . 百度学术
      23. 董凯,王永卿,蒲秀勇,梁凯丽. 基于信息量法的广西南宁市武鸣区地质灾害易发性评价. 农业灾害研究. 2023(09): 300-303 . 百度学术

      其他类型引用(8)

    图(10)  /  表(5)
    计量
    • 文章访问数:  159
    • HTML全文浏览量:  58
    • PDF下载量:  70
    • 被引次数: 31
    出版历程
    • 收稿日期:  2023-12-06
    • 修回日期:  2024-01-30
    • 网络出版日期:  2024-04-24
    • 刊出日期:  2024-10-24

    目录

    /

    返回文章
    返回