ISSN 1003-8035 CN 11-2852/P

    四川宜宾市地质灾害隐患与地层岩性-地质构造关系分析

    刘文, 余天彬, 王猛, 代力, 黄细超, 董继红

    刘文,余天彬,王猛,等. 四川宜宾市地质灾害隐患与地层岩性-地质构造关系分析[J]. 中国地质灾害与防治学报,2023,34(3): 118-126. DOI: 10.16031/j.cnki.issn.1003-8035.202206011
    引用本文: 刘文,余天彬,王猛,等. 四川宜宾市地质灾害隐患与地层岩性-地质构造关系分析[J]. 中国地质灾害与防治学报,2023,34(3): 118-126. DOI: 10.16031/j.cnki.issn.1003-8035.202206011
    LIU Wen,YU Tianbin,WANG Meng,et al. Analysis on the relationship between geological hazard and lithology , geological structure in Yibin City of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3): 118-126. DOI: 10.16031/j.cnki.issn.1003-8035.202206011
    Citation: LIU Wen,YU Tianbin,WANG Meng,et al. Analysis on the relationship between geological hazard and lithology , geological structure in Yibin City of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3): 118-126. DOI: 10.16031/j.cnki.issn.1003-8035.202206011

    四川宜宾市地质灾害隐患与地层岩性-地质构造关系分析

    基金项目: 四川省地质灾害隐患遥感识别监测(2022年)及高分遥感应用服务项目(N5100012022001470)
    详细信息
      作者简介:

      刘 文(1990-),男,硕士,工程师,主要从事遥感地质与地质灾害调查工作。E-mail:liuwen2009.hi@163.com

      通讯作者:

      王 猛(1980-),男,硕士,高级工程师,主要从事地质灾害遥感应用方面的研究。E-mail: wangmengscrs@qq.com

    • 中图分类号: P694

    Analysis on the relationship between geological hazard and lithology , geological structure in Yibin City of Sichuan Province

    • 摘要: 针对宜宾市地质灾害数量大、类型多、分布不均等问题,以宜宾市地质灾害隐患与地层岩性-地质构造耦合关系为切入点,在资料搜集、遥感解译、野外调查的基础上,分析总结了地层岩性、地质构造对地质灾害隐患的控制效应,可为宜宾市地质灾害防灾减灾工作的分区部署提供科学支撑。研究结果表明:宜宾市地质灾害隐患与地层岩性关系密切,滑坡(含不稳定斜坡)、崩塌、地面塌陷在软硬相间的块状-层状碎屑岩岩组中广泛分布,较坚硬层状-块状碳酸盐岩岩组与软硬相间碎屑岩岩组的过渡部位亦有利于崩塌的发育,泥石流则分布在易被风化、可提供丰富物源的岩组中。区域地质构造控制了地质灾害隐患的整体分布,主要表现为褶皱、断层走向与地质灾害隐患整体展布具有一致性。对于不同的局部构造环境,地质灾害隐患发育程度明显不同,在褶皱构造中地质灾害隐患主要分布在距褶皱核部2 km以外的区域,距离褶皱核部越远,地质灾害隐患点密度有逐渐增大的趋势;在断层构造中距断层面越近地质灾害隐患点密度越大,距离在1 km以内断层对地质灾害隐患的控制效应尤为明显。大致以高县凤滩村—江安县和平村为界,研究区北部应重点关注滑坡(含不稳定斜坡)地质灾害隐患,建议采取群测群防的防治措施,南部应重点关注崩塌、地面塌陷地质灾害隐患,建议采取专业监测、搬迁避让的防治措施。
      Abstract: Based on the large number, diverse types and uneven distribution of geological disasters in Yibin City, this study takes the coupling relationship between geological disaster and lithology - structure as a starting point. Through data collection, remote sensing interpretation and field investigation, this study analyzed and summarized the control effects of formation lithology and geological structure on geological disasters. The findings can provide scientific support for the zoning and deployment of geological disaster prevention and mitigation in Yibin City. The results show that geological disasters in Yibin City are closely related to lithology. Landslides (including unstable slopes), collapses, and ground collapses are widely distributed in soft and hard massive layered clastic rock formations. Additionally, the transition zone between hard layered massive carbonate rock formation and soft hard clastic rock formation is conducive to the development of collapse. Debris flows are distributed in rock formations that are easily weathered and can provide rich material sources. Regional geological structure also influences the overall distribution of geological disasters, particularly the consistency between the strike of folds and faults and the overall distribution of geological disasters. The degree of geological disaster development varies with different local tectonic environments. In fold structures, geological disasters are primarily concentrated within 2 km of the fold core, with density increasing gradually as the distance from the fold core increases. In the fault structure, the density of geological disasters points increases as one approaches the fault plane, with the control effect of faults on geological disasters particularly evident within 1 km. This study recommends that the northern part of the study area, specifically Fengtan Village in Gaoxian County and Heping Village in Jiang’an County, prioritize landslide prevention and control measures, such as group prevention and group strategy. In contrast, the southern part should prioritize measures to prevent and control collapses and ground collapses, such as professional monitoring, relocation, and avoidance.
    • 查明与地质灾害有关的危险区域是地质灾害管理的重要工作,也是促进研究区人民生活和基础设施发展安全的重要依据[1],基于建模评价地质灾害易发性是重要而且有效的途径。

      应用经验式、数值模拟和统计方法对地质灾害易发性建模和评价,已经进行了许多研究[1-10]。其中,经验式方法基于现场观察和专家经验判断;数值模拟计算边坡的稳定性;统计方法部分基于实地观察和专家的先验知识,部分基于对地质灾害发生的权重或概率的统计计算,这类方法使用统计技术来评估诱发地质灾害的各种因素的相关作用,每个因素的重要性都是根据观察到的与地质灾害的关系来确定的。

      文中使用基于贝叶斯理论的证据权法,综合GIS技术评价研究区地质灾害易发性。证据权法是一种统计方法,最初应用于非空间、定量的医学诊断,以结合临床诊断的证据来预测疾病[11-12]。在地球科学中,该方法被广泛应用,如:矿产资源潜力评估和矿床预测[13-16],公路路基岩溶塌陷危险性评价[17]和滑坡易发性和危险性[1, 3, 18-23]

      文中选择云南高原滇中昆明盆地低山丘陵地带这一云南省地质灾害防治重点地区的典型代表,云南省省会昆明市的主要行政区之一,昆明市五华区作为研究对象,该区地质灾害易发性评价研究具有典型代表性,可向整个云南高原昆明盆地低山丘陵区和其他低山丘陵区推广,具有技术方法和社会经济意义。研究区面积381.6 km2,地势西北高东南低,昆明盆地内地形开阔低缓,北部山区地形崎岖,沟壑较发育。区域年降水量的80%以上集中在6—9月,年平均降水量608.4~887.0 mm。碳酸盐岩分布最广,约占全区面积的38.93%,其次为砂岩、泥岩、页岩,约占23.11%,岩浆岩主要为玄武岩,约占16.95%,主要分布在昆明盆地和其他小盆地的松散碎石土体约占11.36%,石英砂岩类约占7.56%,还发育一些岩脉;断裂构造较发育,以南北向构造为主[24-25]

      通过地质灾害风险普查获得了研究区地质灾害分布数据。根据调查分析,选择工程地质岩组、断裂构造、高程、坡度、坡向、坡面曲率、距公路距离和土地利用类型等8类因素纳入评价分析。地质数据收集自云南省地质局1∶20万昆明幅、武定幅区域地质调查报告和图件[24-25],12.5 m分辨率DEM(数字高程模型)收集自ASF,道路数据收集自OSM,土地利用类型数据收集自ESA(图1表1)。

      图  1  因素基础数据图
      Figure  1.  Basic data charts of factors
      表  1  数据简介
      Table  1.  Data introduction
      数据灾点及
      致灾要素
      类型来源
      地灾地灾点矢量点地质灾害风险普查
      地质工程地质岩组矢量面云南省地质局
      距断裂
      距离
      矢量线和缓冲区云南省地质局
      地形地貌高程栅格12.5 m DEM,
      https://asf.alaska.edu/
      坡度栅格根据DEM,应用ArcGIS提取
      坡向栅格根据DEM,应用ArcGIS提取
      坡面曲率栅格根据DEM,应用ArcGIS提取
      道路距公路
      距离
      矢量线缓冲区http://www.openstreetmap.org
      根据矢量线用ArcGIS制作
      土地利用
      类型
      土地利用
      类型
      栅格ESA WorldCover 10 m 2020,https://esa-worldcover.org/en
      下载: 导出CSV 
      | 显示表格

      现状发育地质灾害89处,滑坡73处,崩塌11处,泥石流4条,地面沉降1处,为小—中型,无大型,中型14处,小型75处,主要分布在研究区低山丘陵地貌区,盆地内仅发育1处(图2)。

      图  2  地质灾害分布图(底图为高程和山体阴影渲染)
      Figure  2.  Map of geological hazard distribution (The bottom was rendered by elevation and hillshade)

      选择指标“因子面积百分比A”“地灾数百分比B”和“比率(β=B/A)”表征地质灾害的空间分布特征、主控因素和成灾特征。β定义了地质灾害点在因素分级中相对于均匀分布的丰度,β>1表示相对丰度更高,β<1则相反。β>1的因素分级有(图3表2):高程1800~1850 m、1920~1950 m和1950~2000 m,坡度15°~25°、25°~35°和>35°,坡向北东、东、南东和北,坡面曲率−0.75~−0.28(凹形)、−0.28~−0.15(凹形)、−0.15~−0.05(凹形)和0.05~0.15(凸形),石英砂岩岩组和砂岩、泥岩、页岩岩组,距断层距离0~50 m、300~500 m和1000~2000 m,距主要公路距离0~50 m和50~100 m,草地和裸地/稀疏植被区域。这些因素分级内,发育了相对于均匀分布丰度更高的地质灾害,表征这些因素分级可能是研究区地质灾害的主控因素。

      图  3  各因素分级分区和地灾点数量相关性统计图
      Figure  3.  Statistical charts of correlation between the factors and the number of geological hazard points

      把研究区栅格单元化,利用条件概率计算证据因素图层所有单元对地质灾害发生的贡献权重[13-15, 26-27]。定义$ D $为已发生地质灾害的单元,$ \bar{D} $为未发生地质灾害的单元,$ B $为证据因素区内的单元,$ \bar{B} $为证据因素区外的单元。

      证据因素$ B $条件下$ D $的条件(后验)概率为:

      $$ { O}\left(D|B\right)={ O}\left(D\right)\frac{P\left(B\right|D)}{P(B|{\bar D})} $$ (1)

      式中:$ { O}\left(D\right) $—证据因素B的先验概率, ${{ O}}\left(D\right)=$ $\dfrac{\mathrm{事}\mathrm{件}\mathrm{将}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}{\mathrm{事}\mathrm{件}\mathrm{不}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}=\dfrac{P\left(D\right)}{1-P\left(D\right)}=$ $\dfrac{P\left(D\right)}{P({\bar D})} $

      $P\left(B\right|D)、 P(B|{\bar D})$——在地质灾害发生(D)和未发生 ($ \bar{D} $)时,证据因素B的条件 概率,取自然对数即是证据 权法中的正权重(证据因素 存在区的权重值)$ {W}^{+} $

      $$ {W}^+=\ln\frac{P\left(B\right|D)}{P\left(B|{\bar D}\right)} $$ (2)
      $$ P\left(B|D\right)=P\left(B\cap D\right)/P\left(D\right) $$ (3)
      $$ P(B|\bar{D})=P(B\cap \bar{D})/P(\bar{D}) $$ (4)

      $ D $$ B $的单元数N可表示为:

      $$ P\left(B|D\right)=N\left(B\cap D\right)/N\left(D\right) $$ (5)
      $$ P(B|\bar{D})=N(B\cap \bar{D})/N(\bar{D}) $$ (6)

      同式(1),在证据因素不存在的情况下($ \bar{B} $),$ D $的条件概率(后验)为:

      $$ {{ O}}(D|\bar{B})={{ O}}(D)\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (7)

      式中:$P(\bar{B}|D)/P(\bar{B}|\bar{D})$—取自然对数即是负权重(证据 因素不存在区的权重值)$ {W}^{-} $

      $$ {W}^-={\rm{ln}}\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (8)

      同式(3)—(6):

      $$ P(\bar{B}|D)=N(\bar{B}\cap D)/N(D) $$ (9)
      $$ P(\bar{B}|\bar{D})=N(\bar{B}\cap \bar{D})/N(\bar{D}) $$ (10)

      $N (B\cap D) + N (\bar{B}\cap D)=N(D)$$N (B\cap \bar{D}) + N (\bar{B}\cap \bar{D})= N(\bar{D})$,所以式(2)和式(8)可写为:

      $$ {W}^+={\rm{ln}}\left(\frac{N(B\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(B\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (11)
      $$ {W}^-={\rm{ln}}\left(\frac{N(\bar{B}\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(\bar{B}\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (12)

      根据式(11)和(12),使用ArcGIS空间分析工具执行权重$ {W}^{+} $$ {W}^{-} $计算。

      $ {W}^{+} $的大小表明证据因素的存在与地质灾害发生之间存在正相关关系。$ {W}^{-} $表示负相关,即证据因素存在抑制诱发地质灾害的作用。证据因素原始数据缺失区域的权重值取0。两个权重之间的差异$ {W}_{{\rm{f}}}={W}^{+}-{W}^{-} $,即综合权重,量化证据因素和地质灾害相关性大小。如果$ {W}_{{\rm{f}}} $为正,则证据因素对地质灾害有利,如果为负,则对滑坡不利。如果$ {W}_{{\rm{f}}} $接近于零,则表明证据因素与地质灾害的相关性不大。

      在上述权重值计算及分析的基础上,实施证据因素分类的优选,选择类间差异显著的证据因素类,归并不显著的证据因素类。选择近似学生化检验(Student-T)统计值进行显著性测试[15, 28]

      $$ {S tuden{t}}-{{T}}={W}_{{\rm{f}}}/{\sigma }_{{W}_{{\rm{f}}}}={W}_{{\rm{f}}}/\sqrt{{\sigma }_{{W}^+}^{2}+{\sigma }_{{W}^-}^{2}} $$ (13)

      式中:$ {\sigma }_{{W}^{+}}^{} $$ {\sigma }_{{W}^{-}}^{} $——分别是$ {W}^{+} $$ {W}^{-} $的标准差;

      Wf ——综合权重;

      ${\sigma }_{{W}_{{\rm{f}}}}$——综合权重标准差。

      当测试值的绝对值$|{S tuden{t}}-{ T}|$为1.96和2.326时,置信度达97.5%、99%,文中以$|{S tuden{t}}-{ T}|=2$作为阈值。先将证据因素划分为若干分级(分类),计算权重和标准差、${{S} tuden{t}}-{ T}$,将$|{S} tuden{t}-{ T} | < 2$的各分类视为显著性低并归为一类,保留$|{{S} tuden{t}}-{T}|\geqslant 2$的因素分类,然后重新计算归并后各分类的权重值。

      根据贝叶斯法则,任一单元$ K $为地质灾害的可能性,即对数后验概率可表示为[13-15, 26, 27]

      $$ F=\ln O\left(D|\sum _{i=1}^{n}{B}_{i}^{K\left(i\right)}\right)=\sum _{i=0}^{n}{W}_{i}^{K}+\ln O\left(D\right) $$ (14)

      式中:$ {B}_{i} $——第$ i $个证据因素层;

      $ K\left(i\right) $$ {W}_{i} $是第$ i $个证据因素存在或不存在的权 重,在第$ i $个证据因素层存在时是+,不存在 时是−。

      最后计算后验概率:

      $$ P=O/(1+O)=\exp\left(F\right)/\left(1+\exp\left(F\right)\right) $$ (15)

      后验概率的大小作为易发性高低的指标,值越大表示易发性越高,值越小表示易发性越低。

      证据权重计算结果(表2图4)与1.3节可相互印证。在地形高程方面,1800~1850 m、1920~1950 m和1950~2000 m段利于地质灾害发生,正权重0.5550、1.1758和0.6439。>35°和15°~25°的山体斜坡较易于地质灾害发生,正权重0.5436和0.3785。坡向因素各分级权重值均不高,表明坡向对地质灾害发生的驱动作用可能不太显著。坡面曲率结果显示,−0.75~−0.28(凹形)和−0.28~−0.15(凹形)两个凹形坡分级段较易于地质灾害发生,正权重0.5690和0.7577。工程地质岩组各岩组分类的正权重值总体不高,但砂岩、泥岩、页岩岩组的统计结果仍然表现出对地质灾害发生的较有利性,其正权重0.4474,高于排在第二位的石英砂岩岩组(正权重值为0.2947)。距断层距离和距主要公路距离因素统计结果均显示出了较明显的距离效应,即距断裂或主要公路远的地区与地质灾害发生负相关,距断裂0~50 m和距主要公路0~50 m、50~100 m易于地质灾害发生,其正权重0.7973、0.9820和0.5111。裸地或稀疏植被地区是易于地质灾害发生的区域,其正权重0.8719。

      表  2  因素证据权重计算结果表
      Table  2.  Calculation results of factor evidence weights
      因素因素分级因素面积
      百分比/%
      地灾数
      百分比/%
      正权重
      W+
      W+
      标准差${\sigma }_{{W}^{+}}^{} $
      负权重WW
      标准差${\sigma }_{{W}^{-}}^{} $
      综合权重
      $ {W}_{{\rm{f}}} $
      $ {W}_{{\rm{f}}} $的
      标准差${\sigma }_{{W}_{{\rm{f}}}} $
      StudentT分类
      归并
      归并后
      权重
      权重
      标准差
      高程/m<17350.010.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      1735~18000.360.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      1 800~1 8500.651.120.55501.0082−0.00480.10710.55981.01380.5522合并−0.27440.1607
      1 850~1 9009.5510.110.05740.3350−0.00630.11230.06360.35330.1801合并−0.27440.1607
      1 900~1 9206.814.49−0.41860.50150.02480.1090−0.44340.5133−0.8639合并−0.27440.1607
      1 920~1 9506.7321.351.17580.2329−0.17200.12001.34780.26205.144441.17580.2329
      1 950~2 00012.5023.600.64390.2202−0.13680.12180.78070.25163.103250.64390.2202
      2 000~2 10023.2511.24−0.73180.31690.14680.1131−0.87870.3365−2.611013−0.73180.3169
      2 100~2 20018.8620.220.07080.2369−0.01720.11920.08790.26520.3315合并−0.27440.1607
      2 200~2 30011.484.49−0.94360.50090.07670.1090−1.02030.5126−1.9903合并−0.27440.1607
      2 300~2 4007.023.37−0.73830.57860.03890.1084−0.77720.5887−1.3201合并−0.27440.1607
      2 400~2 5002.610.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      >2 5000.190.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      坡度/(°)<518.724.49−1.42970.50060.16200.1091−1.59160.5123−3.10685−1.42970.5006
      5~1538.3237.08−0.02880.17490.01740.1343−0.04620.2205−0.2093合并0.02210.1450
      15~2528.7241.570.37850.16550.20230.13920.58080.21632.685330.37850.1655
      25~3511.6012.360.06880.3030−0.00930.11380.07820.32370.2416合并0.02210.1450
      >352.644.490.54360.5040−0.01950.10900.56320.51571.0921合并0.02210.1450
      坡向北东9.7211.240.14600.3179−0.01710.11300.16310.33740.4833合并−0.00010.1065
      12.7715.730.21070.2688−0.03490.11600.24560.29280.8388合并−0.00010.1065
      南东16.9219.100.12220.2438−0.02680.11840.14900.27100.5496合并−0.00010.1065
      13.1611.24−0.15920.31750.02210.1130−0.18130.3370−0.5379合并−0.00010.1065
      南西10.5710.11−0.04480.33480.00520.1123−0.05000.3532−0.1415合并−0.00010.1065
      西13.456.74−0.69540.40920.07540.1103−0.77070.4238−1.8186合并−0.00010.1065
      北西14.5812.36−0.16670.30270.02590.1138−0.19260.3234−0.5955合并−0.00010.1065
      8.8213.480.42900.2908−0.05290.11450.48190.31251.5423合并−0.00010.1065
      坡面
      曲率
      −0.75~−0.28(凹形)3.205.620.56900.4509−0.02550.10960.59450.46401.2812合并0.09600.1367
      −0.28~−0.15(凹形)10.6422.470.75770.2258−0.14320.12090.90090.25623.517110.75770.2258
      −0.15~−0.05(凹形)19.6626.970.31970.2054−0.09620.12460.41590.24031.7311合并0.09600.1367
      −0.05~0.05(平坦)34.1816.85−0.71190.25880.23620.1169−0.94820.2840−3.33886−0.71190.2588
      0.05~0.15(凸形)17.5321.350.19900.2307−0.04780.12010.24680.26010.9489合并0.09600.1367
      0.15~0.28(凸形)11.005.62−0.67660.44830.05930.1097−0.73590.4615−1.5945合并0.09600.1367
      0.28~0.69(凸形)3.781.12−1.21941.00140.02750.1071−1.24691.0071−1.2381合并0.09600.1367
      工程
      地质
      岩组
      松散碎石土体13.156.74−0.67360.40920.07200.1103−0.74560.4238−1.7592合并−0.18440.1329
      石英砂岩7.5510.110.29470.3354−0.02830.11230.32300.35370.9131合并−0.18440.1329
      砂岩、泥岩、页岩23.0835.960.44740.1781−0.18440.13300.63180.22222.843030.44740.1781
      白云岩、灰岩38.8837.08−0.04910.17490.03010.1343−0.07930.2205−0.3596合并−0.18440.1329
      玄武岩16.9410.11−0.52060.33430.08000.1124−0.60050.3526−1.7029合并−0.18440.1329
      侵入岩脉0.290.000.00000.00000.00000.00000.00000.00000.0000合并−0.18440.1329
      距断层
      距离/m
      0~505.6312.360.79730.3046−0.07460.11370.87190.32522.681430.79730.3046
      50~1005.865.62−0.04290.44920.00260.1096−0.04550.4624−0.0985合并−0.07460.1137
      100~30019.8719.10−0.03970.24360.00960.1184−0.04930.2709−0.1822合并−0.07460.1137
      300~50016.1120.220.22990.2371−0.05080.11920.28060.26541.0574合并−0.07460.1137
      500~100026.1217.98−0.37640.25080.10560.1177−0.48200.2770−1.7397合并−0.07460.1137
      1000~2 00022.7524.720.08400.2143−0.02610.12270.11010.24690.4457合并−0.07460.1137
      >20003.660.000.00000.00000.00000.00000.00000.00000.0000合并−0.07460.1137
      距主要
      公路
      距离/m
      0~5011.1129.210.98200.1986−0.22960.12651.21160.23545.146930.98200.1986
      50~1008.1413.480.51110.2909−0.06050.11450.57160.31261.8284合并−0.12570.1296
      100~30020.6220.22−0.01960.23680.00500.1192−0.02470.2651−0.0931合并−0.12570.1296
      300~50012.533.37−1.31950.57810.10050.1084−1.42010.5882−2.41444−1.31950.5781
      500~100017.2116.85−0.02100.25940.00430.1168−0.02530.2845−0.0889合并−0.12570.1296
      1000~2 00016.6710.11−0.50380.33430.07650.1124−0.58030.3527−1.6455合并−0.12570.1296
      >200013.726.74−0.71530.40920.07850.1103−0.79390.4238−1.8733合并−0.12570.1296
      土地
      利用
      类型
      林地54.7028.09−0.07940.14970.08830.1515−0.16760.2130−0.7870合并−0.12870.1183
      灌木0.140.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
      草地7.398.990.19790.3556−0.01760.11160.21550.37270.5783合并−0.12870.1183
      耕地16.5410.11−0.49550.33430.07490.1124−0.57040.3527−1.6174合并−0.12870.1183
      建筑12.8211.24−0.13320.31750.01820.1130−0.15140.3370−0.4492合并−0.12870.1183
      裸地或稀疏植被8.0941.570.87190.2452−0.12870.11831.00060.27233.674640.87190.2452
      开阔水域0.320.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
      下载: 导出CSV 
      | 显示表格

      采用接受者操作特性曲线(Receiver Operating Characteristic Curve,ROC)和ROC 曲线下与坐标轴围成的面积(Area Under Curve,AUC[29-32]评估模型拟合精度。模型拟合精度越好则AUC越接近1,0.7~0.9时表示较好。文中建立的证据权法模型的AUC为80.4%,拟合精度优异(图5)。

      图  4  因素证据权重计算结果图
      Figure  4.  Calculation results charts of factor evidence weights
      图  5  模型预测性能ROC曲线图
      Figure  5.  ROC curve of model prediction performance

      综合自然间断点分级和地质灾害分布,圈定了高易发区、中易发区和低易发区(表3图6),其中高易发区188.55 km2(占研究区总面积的49.41%),中易发区152.21 km2(占研究区总面积的39.88%),89.9%和9.1%的地灾点落入高易发区和中易发区,显示易发性分区符合已发地质灾害分布,模型预测性能较好。

      表  3  地质灾害易发性分区表
      Table  3.  Form of geological hazard susceptibility zoning
      易发性
      分区
      面积/
      km2
      占总面积/
      %
      编号面积/
      km2
      占大区/
      面积%
      灾点数灾点密度/
      (个·km−2)
      地质灾害
      高易发区(Ⅰ)
      188.5549.411152.3280.79640.41
      217.939.5190.50
      316.118.5480.94
      42.191.1610.46
      地质灾害
      中易发区(Ⅱ)
      152.2139.8811.300.85
      218.8212.3620.11
      315.039.8710.07
      412.928.49
      518.5112.1620.11
      69.125.99
      744.6629.34
      812.348.1110.08
      911.737.71
      107.785.11
      低易发区(Ⅲ)47.4012.42147.4010010.02
      下载: 导出CSV 
      | 显示表格
      图  6  地质灾害易发性栅格图
      Figure  6.  Grid map of geological hazard susceptibility

      结合地质环境因素特征分析西部高易发区(图6蓝色框范围内、图7)主要位于砂岩、泥岩和页岩岩组,断裂构造较密集,以山谷斜坡地貌为主,坡度15°~25°和>35°较陡峭斜坡范围成片发育且面积较广,主要公路建于本区山谷,裸地/稀疏植被和草地连片覆盖范围较大。预测圈定的高易发区的这些分布特征,与上文分析得到的地质灾害控制因素特征吻合,预测结果符合地质灾害空间分布特征。

      图  7  典型区因素和地质灾害分布图
      Figure  7.  Factors and geological hazards in typical zone

      (1)“因子面积百分比A”“地灾数百分比B”和“比率β”,以及各因素各分类地质灾害证据权重可以定量地分析各因素与地质灾害发生的相关性。

      (2)圈定高易发区188.55 km2(占总面积的49.41%),中易发区152.21 km2(占总面积的39.88%),易发性分区图具有较好的等级区分度。

      (3)通过证据权法绘制的地质灾害易发性图可以有效地预测该区地质灾害,模型拟合精度AUC=80.4%。89.9%和9.1%的地灾点落入高和中易发区,建模结果与实际地质灾害发育情况吻合度高,较好地揭示了研究区地质灾害易发性特征。

      (4)证据权法在研究区这类云南高原低山丘陵区有效性高,方法理论清晰,较为成熟,由数据驱动,参数定义明确,易于一线工程师推广使用。同时,该方法权重的估计和模型预测性能受预测因子选择、因子数据空间分辨率、因子分级影响较大,具体工作中宜对这些问题进行深入研究和统计分析。建议通过对因子分级进行显著性测试实施优选,减小对权重的高估或低估,提高模型效能。

    • 图  1   研究区地质简图(据1∶20万地质图修改)

      Figure  1.   Geological map of the study area (modified based on 1∶200 000 geological map)

      图  2   研究区构造纲要图

      注:1-观音镇背斜;2-徐场向斜;3-孔滩背斜;4-打段向斜;5-青杠坪背斜;6-蟠龙场向斜;7-宜宾背斜;8-龙花滩向斜;9-青山峥背斜;10-南广背斜;11-同心寨向斜;12-同心场向斜;13-宋家场背斜;14-马家场向斜;15-广福坪背斜;16-蒋祝山向斜;17-天官堂背斜;18-五指山背斜;19-兰坝—中和庄向斜;20-锦屏山向斜;21-田坝向斜;22-黄楠塾背斜;23-老鹰咀向斜;24-来复渡向斜;25-贾村背斜;26-沙溪沟向斜;27-老翁场背斜;28-相岭—象鼻场向斜;29-珙长背斜;30-高县向斜;31-东阳乡鼻状背斜;32-凤凰山向斜;33-罗场向斜;34-筠连鼻状背斜;35-水茨坝向斜;37-武家坝向斜;37-巡司背斜;38-乐义背斜;39-走马背斜;40-联合向斜;41-仙雾山向斜;42-蒿坝向斜;43-高龙背斜;44-兴胜背斜;45-九丝城向斜;46-大雪山—王家背斜;(1)-华莹山大断裂;(2)-柏树溪断层;(3)-两河村—团林断层;(4)-联合—王家断层;(5)-毛桥断层;(6)-芭蕉湾断层;(7)-观斗山断层;(8)-巡司断层;(9)-君田坝断层;(10)-柏胜—后溪断层;(11)-西关门断层;(12)-乐义断层;(13)-民主—双河口断层;(14)-白杨湾断层;(15)-丰乐断层;(16)-大增湾断层;(17)-海平子—半坡头断层;(18)-老河坝-中都断层;(19)-多岗漕断层;(20)-四剧断层;(21)-联合—王家分支断层;(22)-九龙断层;(23)-香樟断层;(24)-水泥坝断层;(25)-柏胜—后溪分支断层;(26)-南井断层。

      Figure  2.   Sketch tectonic map of the study area

      图  3   研究区地质灾害隐患与褶皱构造直方图

      Figure  3.   Histogram of geological disasters and fold structure distribution in the study area

      图  4   研究区地质灾害隐患与断裂构造直方图

      Figure  4.   Histogram of geological disasters and fault structure distribution in the study area

      表  1   研究区地质灾害类型和数量统计表

      Table  1   Type and quantity statistics of geological disaster in the study area

      类型 大型/处 中型/处 小型/处 合计/处 百分比/%
      滑坡(含不稳定斜坡) 9 152 722 883 64.97
      崩塌 5 102 291 398 29.29
      地面塌陷 2 0 60 62 4.56
      泥石流 0 4 12 16 1.18
      下载: 导出CSV

      表  2   研究区不同工程地质岩组中地质灾害发育情况

      Table  2   Geological disasters development in different engineering geological lithologies in the study area

      工程地质岩类及岩组 滑坡(含不
      稳定斜坡)/处
      崩塌
      /处
      地面
      塌陷/处
      泥石流
      /起
      岩类 岩组 地层及代号
      岩浆岩类 坚硬的块状玄武岩岩组 峨眉山玄武岩组(P2β 8 4 1 0
      碎屑岩类 较硬的块状砂岩岩组 打儿函组(K1d)、窝头山组(K1w 59 20 0 0
      软硬相间的块状-层状砂岩、泥岩、页岩岩组 三合组(K2s)、天马山组(K1t)、蓬莱镇组(J3p)、
      上沙溪庙组(J2s)、下沙溪庙组(J2xs
      341 72 1 3
      软硬相间的层状砂岩、粉砂岩、泥岩、页岩岩组 高坎坝组(K2g)、新田沟组(J2x 3 1 0 0
      软硬相间的块状-层状砂岩、粉砂岩、
      泥页岩夹灰岩岩组
      珍珠冲组(J1z)、自流井组(J1-2z)、
      长兴组(P2c)、龙潭组(P2l
      97 32 16 2
      软硬相间的块状砂岩夹泥页岩岩组 须家河组(T3xj 54 14 2 3
      软硬相间的层状粉砂岩、页岩、灰岩岩组 湄潭组(O1m 28 7 0 0
      软硬相间的层状页岩夹灰岩、砂岩岩组 飞仙关组(T1f 70 80 37 0
      软硬相间的层状粉砂岩、页岩夹泥灰岩、灰岩岩组 罗惹坪组(S1lr 22 10 0 0
      软弱的层状页岩夹泥灰岩岩组 龙马溪组(S1l)、五峰组(O3w)、中上志留统(S2-3 34 25 0 1
      软弱的层状页岩、泥岩岩组 遂宁组(J3s)、梁山组(P1l 92 12 1 3
      碳酸盐岩类 软硬相间的层状白云岩、灰岩夹粉砂岩、泥岩岩组 雷口坡组(T2l、)、嘉陵江组(T1j 31 29 0 4
      较坚硬的层状白云岩、白云质灰岩岩组 娄山关群(∈2-3ls)、高台组(∈2g 17 20 1 0
      较坚硬的层状-块状灰岩岩组 栖霞组(P1q)、茅口组(P1m 15 69 3 0
      软硬相间的块状—层状灰岩夹粉砂岩、
      泥页岩岩组
      临湘组(O2l)、宝塔组(O2b)、
      桐梓组(O1t)、红花园组(O1h
      10 3 0 0
      松散岩类 砾、砂、砂土、亚黏土类 全新统(Qhal)、更新统(Qpal 2 0 0 0
      下载: 导出CSV
    • [1] 王思敬. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报,2002,10(2):115 − 117. [WANG Sijing. Coupling of earth’s endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology,2002,10(2):115 − 117. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2002.02.001

      WANG Sijing. Coupling of earth’s endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology, 2002, 10(2): 115-117. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2002.02.001

      [2] 白永健,铁永波,倪化勇,等. 鲜水河流域地质灾害时空分布规律及孕灾环境研究[J]. 灾害学,2014,29(4):69 − 75. [BAI Yongjian,TIE Yongbo,NI Huayong,et al. Temporal-spatial distribution and environment pregnant of geohazards in Xianshui River of Sichuan,China[J]. Journal of Catastrophology,2014,29(4):69 − 75. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2014.04.014

      BAI Yongjian, TIE Yongbo, NI Huayong, et al. Temporal-spatial distribution and environment pregnant of geohazards in Xianshui River of Sichuan, China[J]. Journal of Catastrophology, 2014, 29(4): 69-75. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2014.04.014

      [3] 马秋红. 秦巴山区地层岩性与地质构造对地质灾害发育的控制作用分析[D]. 西安: 长安大学, 2011

      MA Qiuhong. Analysis for control function of formation lithology and geologic structure for the geological hazards in Qinling-Bashan mountains[D]. Xi’an: Changan University, 2011. (in Chinese with English abstract)

      [4] 徐伟,冉涛,田凯. 西南红层地区地质灾害发育规律与成灾模式:以云南彝良县为例[J]. 中国地质灾害与防治学报,2021,32(6):127 − 133. [XU Wei,RAN Tao,TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China:A case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):127 − 133. (in Chinese with English abstract)

      XU Wei, RAN Tao, TIAN Kai. Developing law and disaster modes of geohazards in red bed region of southwestern China: a case study of Yiliang County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 127-133. (in Chinese with English abstract)

      [5] 刘云,康卉君. 江西崩塌滑坡泥石流灾害空间时间分布特征分析[J]. 中国地质灾害与防治学报,2020,31(4):107 − 112. [LIU Yun,KANG Huijun. Spatial-temporal distribution of landslide,rockfall and debris flow hazards in Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):107 − 112. (in Chinese with English abstract)

      LIU Yun, KANG Huijun. Spatial-temporal distribution of landslide, rockfall and debris flow hazards in Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 107-112. (in Chinese with English abstract)

      [6] 曾琳洁,张涛,冯文凯. 河南南召县地质灾害形成条件与分布规律[J]. 中国地质灾害与防治学报,2014,25(1):82 − 89. [ZENG Linjie,ZHANG Tao,FENG Wenkai. Formation conditions and distribution law about geological disasters in Nanzhao County,Henan Province[J]. The Chinese Journal of Geological Hazard and Control,2014,25(1):82 − 89. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2014.01.013

      ZENG Linjie, ZHANG Tao, FENG Wenkai. Formation conditions and distribution law about geological disasters in Nanzhao County, Henan Province[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25(1): 82-89. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2014.01.013

      [7] 房浩,李媛,杨旭东,等. 2010—2015年全国地质灾害发育分布特征分析[J]. 中国地质灾害与防治学报,2018,29(5):1 − 6. [FANG Hao,LI Yuan,YANG Xudong,et al. Distribution characters of geo-hazards in China during the period of 2010—2015[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):1 − 6. (in Chinese with English abstract)

      FANG Hao, LI Yuan, YANG Xudong, et al. Distribution characters of geo-hazards in China during the period of 2010—2015[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 1-6. (in Chinese with English abstract)

      [8] 廖小平,徐风光,蔡旭东,等. 香丽高速公路边坡地质灾害发育特征与易发性区划[J]. 中国地质灾害与防治学报,2021,32(5):121 − 129. [LIAO Xiaoping,XU Fengguang,CAI Xudong,et al. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):121 − 129. (in Chinese with English abstract)

      LIAO Xiaoping, XU Fengguang, CAI Xudong, et al. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 121-129. (in Chinese with English abstract)

      [9] 秦宇龙,吴建亮,詹涵钰,等. 川西甘孜地区活动断裂与地质灾害分布相关性探讨[J]. 地质力学学报,2021,27(3):463 − 474. [QIN Yulong,WU Jianliang,ZHAN Hanyu,et al. Discussion on the correlation between active fault and geological disaster distribution in the Ganzi area,western Sichuan Province,China[J]. Journal of Geomechanics,2021,27(3):463 − 474. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2021.27.03.042

      QIN Yulong, WU Jianliang, ZHAN Hanyu, et al. Discussion on the correlation between active fault and geological disaster distribution in the Ganzi area, western Sichuan Province, China[J]. Journal of Geomechanics, 2021, 27(3): 463-474. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2021.27.03.042

      [10] 冯卫,毕银强,唐亚明,等. 甘肃礼县至罗家堡断裂带沿线地质灾害分布规律及断层效应研究[J]. 自然灾害学报,2021,30(2):183 − 190. [FENG Wei,BI Yinqiang,TANG Yaming,et al. Research on the distribution law of geological disasters and fault effect along the Lixian-Luojiabu fault zone in Gansu[J]. Journal of Natural Disasters,2021,30(2):183 − 190. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2021.0219

      FENG Wei, BI Yinqiang, TANG Yaming, et al. Research on the distribution law of geological disasters and fault effect along the Lixian-Luojiabu fault zone in Gansu[J]. Journal of Natural Disasters, 2021, 30(2): 183-190. (in Chinese with English abstract) DOI: 10.13577/j.jnd.2021.0219

      [11] 聂进,王孔伟,路永强. 湖北省竹溪县地质灾害成因机理与局部构造关系[J]. 三峡大学学报(自然科学版),2020,42(1):52 − 56. [NIE Jin,WANG Kongwei,LU Yongqiang. Relationship between cause mechanism of geological disaster and local structure in Zhuxi County of Hubei Province[J]. Journal of China Three Gorges University (Natural Sciences),2020,42(1):52 − 56. (in Chinese with English abstract)

      NIE Jin, WANG Kongwei, LU Yongqiang. Relationship between cause mechanism of geological disaster and local structure in Zhuxi County of Hubei Province[J]. Journal of China Three Gorges University (Natural Sciences), 2020, 42(1): 52-56. (in Chinese with English abstract)

      [12] 涂美义, 李德果. 湖北省地质灾害与地质构造耦合关系研究[J]. 人民长江, 2012, 43(增刊2): 1 − 3

      TU Meiyi, LI Deguo. Study on coupling relationship between geological disasters and geological structures in Hubei Province[J]. Yangtze River, 2012, 43(Sup 2): 1 − 3. (in Chinese with English abstract)

      [13] 黄润秋,李为乐. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报,2009,17(1):19 − 28. [HUANG Runqiu,LI Weile. Fault effect analysis of geo-hazard triggered by Wenchaun earthquake[J]. Journal of Engineering Geology,2009,17(1):19 − 28. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.01.003

      HUANG Runqiu, LI Weile. Fault effect analysis of geo-hazard triggered by wenchaun earthquake[J]. Journal of Engineering Geology, 2009, 17(1): 19-28. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.01.003

      [14] 郭进京,韩文峰,李雪峰. 西秦岭断裂构造格架和活动特征对地质灾害的控制作用分析[J]. 地质调查与研究,2009,32(4):241 − 248. [GUO Jinjing,HAN Wenfeng,LI Xuefeng. Analysis for control function of the fault framework and its active characteristics for the geological hazards in the west Qinling[J]. Geological Survey and Research,2009,32(4):241 − 248. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-4135.2009.04.001

      GUO Jinjing, HAN Wenfeng, LI Xuefeng. Analysis for control function of the fault framework and its active characteristics for the geological hazards in the west Qinling[J]. Geological Survey and Research, 2009, 32(4): 241-248. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-4135.2009.04.001

      [15] 廖勇,徐闯,陈军,等. 四川长宁“6·17”地震诱发的次生地质灾害类型及其发育特征[J]. 中国地质灾害与防治学报,2021,32(1):77 − 83. [LIAO Yong,XU Chuang,CHEN Jun,et al. Types and their characteristics of geological hazards triggered by“6·17” earthquake in Changning,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):77 − 83. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.11

      LIAO Yong, XU Chuang, CHEN Jun, et al. Types and their characteristics of geological hazards triggered by“6·17” earthquake in Changning, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 77-83. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.11

      [16] 尹欣欣,郭安宁,赵韬,等. 四川长宁MS6.0地震区域构造应力场特征分析[J]. 地震工程学报,2019,41(5):1215 − 1220. [YIN Xinxin,GUO Anning,ZHAO Tao,et al. Characteristics of the regional tectonic stress field of the Changning MS6.0 earthquake,Sichuan Province[J]. China Earthquake Engineering Journal,2019,41(5):1215 − 1220. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2019.05.1215

      YIN Xinxin, GUO Anning, ZHAO Tao, et al. Characteristics of the regional tectonic stress field of the Changning MS6.0 earthquake, Sichuan Province[J]. China Earthquake Engineering Journal, 2019, 41(5): 1215-1220. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2019.05.1215

      [17] 宫悦,王宇玺,梁明剑,等. 2019年四川长宁6.0级地震序列时空演化特征及其地震构造环境研究[J]. 地震,2020,40(4):90 − 102. [GONG Yue,WANG Yuxi,LIANG Mingjian,et al. Study on the spatio-temporal evolution characteristics and seismic structure environment of the 2019 M6.0 Changning Sichuan earthquake sequence[J]. Earthquake,2020,40(4):90 − 102. (in Chinese with English abstract) DOI: 10.12196/j.issn.1000-3274.2020.04.007

      GONG Yue, WANG Yuxi, LIANG Mingjian, et al. Study on the spatio-temporal evolution characteristics and seismic structure environment of the 2019 M6.0 Changning Sichuan earthquake sequence[J]. Earthquake, 2020, 40(4): 90-102. (in Chinese with English abstract) DOI: 10.12196/j.issn.1000-3274.2020.04.007

      [18] 常祖峰,张艳凤,王光明,等. 2019年四川长宁MS6.0地震的地质构造成因:区域性构造节理贯通、破裂结果[J]. 地球学报,2020,41(4):469 − 480. [CHANG Zufeng,ZHANG Yanfeng,WANG Guangming,et al. The geological genesis of the 2019 Changning MS6.0 earthquake in Sichuan: Connecting and rupturing of regional structural joints[J]. Acta Geoscientica Sinica,2020,41(4):469 − 480. (in Chinese with English abstract) DOI: 10.3975/cagsb.2020.030202

      CHANG Zufeng, ZHANG Yanfeng, WANG Guangming, et al. The geological genesis of the 2019 Changning MS6.0 earthquake in Sichuan: connecting and rupturing of regional structural joints[J]. Acta Geoscientica Sinica, 2020, 41(4): 469-480. (in Chinese with English abstract) DOI: 10.3975/cagsb.2020.030202

      [19] 胡承林. 宜宾市地质灾害成因及特征浅析[J]. 资源与人居环境,2013(9):30 − 31. [HU Chenglin. Analysis on causes and characteristics of geological disasters in Yibin City[J]. Resources Environment Inhabitant,2013(9):30 − 31. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-822X.2013.09.014

      HU Chenglin. Analysis on causes and characteristics of geological disasters in Yibin city[J]. Resources Environment Inhabitant, 2013(9): 30-31. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-822X.2013.09.014

      [20] 肖汉全. 宜宾市地质灾害及其防治对策[J]. 四川地质科技情报,1997(3):30 − 32. [XIAO Hanquan. Geological disasters and their control countermeasures in Yibin City[J]. Sichuan Geological Science and Technology Information,1997(3):30 − 32. (in Chinese with English abstract)

      XIAO Hanquan. Geological disasters and their control countermeasures in Yibin City[J]. Sichuan Geological Science and technology information, 1997, (3): 30-32. (in Chinese with English abstract)

      [21] 辜学达, 刘啸虎. 四川省岩石地层[M]. 武汉: 中国地质大学出版社, 1997

      GU Xueda, LIU Xiaohu. Stratigraphy(lithostratic) of Sichuan Province[M]. Wuhan: China University of Geosciences Press, 1997. (in Chinese with English abstract)

      [22]

      ABRAHAMSON N A,SOMERVILLE P G. Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake[J]. Bulletin of the Seismological Society of America,1996,86(1B):93 − 99. DOI: 10.1785/BSSA08601B0S93

      [23] 张田田,杨为民,万飞鹏. 浑河断裂带地质灾害发育特征及其成因机制[J]. 吉林大学学报(地球科学版),2022,52(1):149 − 161. [ZHANG Tiantian, YANG Weimin, WAN Feipeng. Characteristics and Formation Mechanism of Geohazards in Hunhe Fault Zone[J]. Journal of Jilin University (Earth Science Edition),2022,52(1):149 − 161. (in Chinese)

      [ZHANG Tiantian, YANG Weimin, WAN Feipeng. Characteristics and Formation Mechanism of Geohazards in Hunhe Fault Zone [J]. Journal of Jilin University (Earth Science Edition), 2022, 52(1): 149-161.(in Chinese)

      [24] 曲雪妍,李媛, 房浩, 等. 基于时空维度耦合的地质灾害发育程度评价研究[J]. 水文地质工程地质,2022,49(1):137 − 145. [QU Xueyan,LI Yuan,FANG Hao,et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology,2022,49(1):137 − 145. (in Chinese with English abstract)

      QU Xueyan, LI Yuan, FANG Hao, et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 137-145.(in Chinese with English abstract)

    • 期刊类型引用(23)

      1. 马明明,伍尚前,谢猛,童鹏,袁晓波. 决策树分类在铁路沿线桉树提取及滑坡隐患识别中的应用——以贵广高铁广西段为例. 中国地质灾害与防治学报. 2025(01): 37-45 . 本站查看
      2. 刘亚静,刘红健. 基于信息量-随机森林模型的地震带地质灾害易发性评价:以松潘-较场地震带为例. 科学技术与工程. 2024(01): 143-154 . 百度学术
      3. 黄海,江思义,李海良,李春玲,吴秋菊. 岩溶地区危岩和岩质崩塌易发性评价研究——以广西贺州市平桂区为例. 成都理工大学学报(自然科学版). 2024(01): 137-151 . 百度学术
      4. 刘玥,申玉松,李旭,张迪. 基于不同耦合模型的区域地质灾害易发性评价——以河南商城县为例. 中国地质调查. 2024(01): 83-92 . 百度学术
      5. 高茂宁,魏冠军,雷传金,张沛. 顾及时序InSAR的海东市辖区滑坡敏感性评价. 地理空间信息. 2024(05): 97-101 . 百度学术
      6. 石文君,王宇栋,解晋航,李章杰,梁形形. 基于多种模型对比的寻甸县地质灾害易发性分析. 矿产勘查. 2024(06): 1092-1102 . 百度学术
      7. 寸得欣,令狐昌卫,马一奇,尹林虎,陈庆松,刘振南,涂春霖. 基于GIS和加权信息量模型的富源县地质灾害易发性评价. 科学技术与工程. 2024(18): 7563-7573 . 百度学术
      8. 冯振,陈亮,王立朝,侯圣山,田怡帆,刘明学. 区域地质灾害易发性评价的证据权法原理与实践. 地质通报. 2024(07): 1255-1265 . 百度学术
      9. 张宇,简季,郝利娜,杨鑫. 基于IV-MLP耦合模型的龙陵县滑坡易发性评价. 物探化探计算技术. 2024(05): 618-626 . 百度学术
      10. 桂富羽,史正涛,喜文飞,付尧,郭峻杞. 基于证据权模型的滑坡灾害易发性评价研究——以普洱市为例. 城市勘测. 2024(05): 188-193+198 . 百度学术
      11. 梁峰,江攀和. 基于IVM-CF耦合模型的贵定县滑坡地质灾害易发性评价. 水利水电技术(中英文). 2024(S2): 669-677 . 百度学术
      12. 裴鹏程,黄帅,袁静,张智康. 走滑断层作用下上覆土层的变形破坏机理. 中国地质灾害与防治学报. 2024(06): 115-127 . 本站查看
      13. 赖波,赵风顺,江金进,江山,江宁,李俊生. 基于AHP-信息量法的珠海市地质灾害风险评价. 华南地质. 2023(01): 147-156 . 百度学术
      14. 阮征,周少伟,姚胜,田垚. 黄土高原腹地地质灾害致灾因素分析及易发性评价. 科技导报. 2023(10): 115-124 . 百度学术
      15. 王伟中,李树兴,杨成,许涛,宋飞,曹小红,李浩然,王伟华. 基于GIS和证据权模型的山阳县地质灾害易发性评价. 新疆地质. 2023(02): 262-269 . 百度学术
      16. 黄鑫,吴珍云,丁德建,李希星,石祖峰,祝民强,孙彬涵. 基于信息量-逻辑回归模型的江西省婺源县地质灾害易发性评价. 东华理工大学学报(自然科学版). 2023(03): 259-268 . 百度学术
      17. 曾斌,吕权儒,寇磊,艾东,许汇源,袁晶晶. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价. 中国地质灾害与防治学报. 2023(04): 105-113 . 本站查看
      18. 胡杨,张紫昭,林世河. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价. 工程地质学报. 2023(04): 1350-1363 . 百度学术
      19. 张潇远,苏巧梅,赵财胜,朱月琴,李凯新,范锦龙,白东升. 一种利用贝叶斯算法优化XGBoost的滑坡易发性评价方法. 测绘科学. 2023(06): 140-150 . 百度学术
      20. 张华湘,孙乾征,樊善兴,杨子林. 滑坡易发性评价方法和精度比较——以贵州省大方县为例. 贵州地质. 2023(03): 302-309+295 . 百度学术
      21. 龚芯磊,张斌,高金利,杨洪森. 基于斜坡单元尺度AHP-信息量模型的重点区域地质灾害风险评价——以贵州省紫云县中部重点区为例. 贵州地质. 2023(03): 310-320 . 百度学术
      22. 谭燕,崔雨,金华丽,方龙建,葛鹏,付乐意. 基于信息量模型及层次分析法的镇江丹徒区滑坡崩塌地质灾害易发性评价. 昆明冶金高等专科学校学报. 2023(04): 7-15 . 百度学术
      23. 董凯,王永卿,蒲秀勇,梁凯丽. 基于信息量法的广西南宁市武鸣区地质灾害易发性评价. 农业灾害研究. 2023(09): 300-303 . 百度学术

      其他类型引用(8)

    图(4)  /  表(2)
    计量
    • 文章访问数:  1179
    • HTML全文浏览量:  677
    • PDF下载量:  257
    • 被引次数: 31
    出版历程
    • 收稿日期:  2022-06-07
    • 修回日期:  2022-07-04
    • 录用日期:  2022-08-16
    • 网络出版日期:  2023-05-05
    • 刊出日期:  2023-06-24

    目录

    /

    返回文章
    返回