ISSN 1003-8035 CN 11-2852/P

    探地雷达在湿陷性黄土挖填方高边坡土体性状探测中的应用

    王韵, 王红雨, 李其星, 亢文涛

    王韵,王红雨,李其星,等. 探地雷达在湿陷性黄土挖填方高边坡土体性状探测中的应用[J]. 中国地质灾害与防治学报,2023,34(2): 102-110. DOI: 10.16031/j.cnki.issn.1003-8035.202201008
    引用本文: 王韵,王红雨,李其星,等. 探地雷达在湿陷性黄土挖填方高边坡土体性状探测中的应用[J]. 中国地质灾害与防治学报,2023,34(2): 102-110. DOI: 10.16031/j.cnki.issn.1003-8035.202201008
    WANG Yun,WANG Hongyu,LI Qixing,et al. Application of the ground-penetrating radar technology in detection of soil properties of the high cutting and filling slopes in collapsible loess area[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2): 102-110. DOI: 10.16031/j.cnki.issn.1003-8035.202201008
    Citation: WANG Yun,WANG Hongyu,LI Qixing,et al. Application of the ground-penetrating radar technology in detection of soil properties of the high cutting and filling slopes in collapsible loess area[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2): 102-110. DOI: 10.16031/j.cnki.issn.1003-8035.202201008

    探地雷达在湿陷性黄土挖填方高边坡土体性状探测中的应用

    基金项目: 国家自然科学基金项目(41962016);妙岭750kV变电站科技进步项目(SGNXSB00BDJS2100567);宁夏大学研究生创新项目(GIP2021-26)
    详细信息
      作者简介:

      王 韵(1996-),女,重庆人,硕士研究生,主要从事边坡稳定性研究。E-mail:wy-slime@foxmail.com

      通讯作者:

      王红雨(1961-),男,宁夏银川人,博士,教授,主要从事水工及岩土工程研究。E-mail:why.nxts@163.com

    • 中图分类号: P642.22

    Application of the ground-penetrating radar technology in detection of soil properties of the high cutting and filling slopes in collapsible loess area

    • 摘要: 在湿陷性黄土丘陵山区通过平山造地开辟建筑场地,施工后高挖填方边坡变形特征及其交界线在坡面出露位置土体内部性状是边坡稳定性评价的关键环节。为掌握西电东送重要枢纽——同心妙岭变电站湿陷性黄土高边坡稳定性,在该场地挖、填方区域边坡顶端布设了长度为416 m和372 m的测线,同时在挖填交界线两侧分别布设了长度为15 m和20 m的测线,利用pulseEKKO PRO专业型探地雷达,在所选测线上以0.5 m间隔为测点实施相关探测工作。结果表明:高挖方边坡波谱特征图像和地勘报告相同位置处土层分布一致,反射波较杂乱,边坡内部存在卸荷裂缝、零星破碎带等现象;高填方边坡无裂缝、局部沉陷等异常反射波面,填土均匀,填土下伏自重湿陷性黄土,土体存在潜在危险;挖填交界区域有较明显的挖填方交界线,该交界线坡度较缓,过渡均匀;交界线左侧(挖方区)探测波形复杂,岩性种类多,土体密实度高,右侧(填方区)波形规则,土性单一,土体密实度低,挖填方土性的差异性易导致不均匀沉降。研究结果可为平山造地建筑场地的高边坡支护设计与施工提供基础资料。
      Abstract: Building sites are created by leveling hills and creating land in the hilly mountainous areas of collapsible loess. The deformation characteristics of the high slopes of excavation and filling and the internal properties of the soil at the exposed position of the boundary line are the key aspect of slope stability evaluation. To investigate the stability of the collapsible loess high slope for the Tongxin Miaoling transformer station from the important hub of the West-East power transmission project, this study conducted field detection tests using professional ground-penetrating radar (GPR) of model pulseEKKO PRO, Survey lines with lengths of 416 m and 372 m were laid at the top of the slope in the excavation area and the fill area. Meanwhile, survey lines of 15 m and 20 m in length were laid on both sides of the excavation and filling boundary. GPR is used to carry out detection work on all survey lines at 0.5 m intervals. The results show that the wave spectrum characteristics image of the high excavation slope is consistent with the soil distribution at the same location in the geological survey results. Meanwhile, its reflected wave is messier, which indicates that there are unloading cracks and sporadic fracture zones inside the slope. There is no abnormal reflective wave surface such as cracks and local subsidence on the high fill slope, and its filling soil is uniform. The original soil in the high fill slope area is self-weight collapsing loess, thus the soil of the high fill slope has potential risks. The boundary area of excavation and filling has a more obvious boundary line of excavation and filling, which has a slow slope and uniform transition. The detection waveform on the side of the boundary line is complex, with many types of lithology, and high soil compactness, while the right side has regular waveforms, single soil properties, low soil compactness, and differences in soil properties between excavation and filling.easily lead to unenen settlement. These results could provide a reference for the design and construction of the high side slope of the cutting hills to the backfill ditch project.
    • 查明与地质灾害有关的危险区域是地质灾害管理的重要工作,也是促进研究区人民生活和基础设施发展安全的重要依据[1],基于建模评价地质灾害易发性是重要而且有效的途径。

      应用经验式、数值模拟和统计方法对地质灾害易发性建模和评价,已经进行了许多研究[1-10]。其中,经验式方法基于现场观察和专家经验判断;数值模拟计算边坡的稳定性;统计方法部分基于实地观察和专家的先验知识,部分基于对地质灾害发生的权重或概率的统计计算,这类方法使用统计技术来评估诱发地质灾害的各种因素的相关作用,每个因素的重要性都是根据观察到的与地质灾害的关系来确定的。

      文中使用基于贝叶斯理论的证据权法,综合GIS技术评价研究区地质灾害易发性。证据权法是一种统计方法,最初应用于非空间、定量的医学诊断,以结合临床诊断的证据来预测疾病[11-12]。在地球科学中,该方法被广泛应用,如:矿产资源潜力评估和矿床预测[13-16],公路路基岩溶塌陷危险性评价[17]和滑坡易发性和危险性[1, 3, 18-23]

      文中选择云南高原滇中昆明盆地低山丘陵地带这一云南省地质灾害防治重点地区的典型代表,云南省省会昆明市的主要行政区之一,昆明市五华区作为研究对象,该区地质灾害易发性评价研究具有典型代表性,可向整个云南高原昆明盆地低山丘陵区和其他低山丘陵区推广,具有技术方法和社会经济意义。研究区面积381.6 km2,地势西北高东南低,昆明盆地内地形开阔低缓,北部山区地形崎岖,沟壑较发育。区域年降水量的80%以上集中在6—9月,年平均降水量608.4~887.0 mm。碳酸盐岩分布最广,约占全区面积的38.93%,其次为砂岩、泥岩、页岩,约占23.11%,岩浆岩主要为玄武岩,约占16.95%,主要分布在昆明盆地和其他小盆地的松散碎石土体约占11.36%,石英砂岩类约占7.56%,还发育一些岩脉;断裂构造较发育,以南北向构造为主[24-25]

      通过地质灾害风险普查获得了研究区地质灾害分布数据。根据调查分析,选择工程地质岩组、断裂构造、高程、坡度、坡向、坡面曲率、距公路距离和土地利用类型等8类因素纳入评价分析。地质数据收集自云南省地质局1∶20万昆明幅、武定幅区域地质调查报告和图件[24-25],12.5 m分辨率DEM(数字高程模型)收集自ASF,道路数据收集自OSM,土地利用类型数据收集自ESA(图1表1)。

      图  1  因素基础数据图
      Figure  1.  Basic data charts of factors
      表  1  数据简介
      Table  1.  Data introduction
      数据灾点及
      致灾要素
      类型来源
      地灾地灾点矢量点地质灾害风险普查
      地质工程地质岩组矢量面云南省地质局
      距断裂
      距离
      矢量线和缓冲区云南省地质局
      地形地貌高程栅格12.5 m DEM,
      https://asf.alaska.edu/
      坡度栅格根据DEM,应用ArcGIS提取
      坡向栅格根据DEM,应用ArcGIS提取
      坡面曲率栅格根据DEM,应用ArcGIS提取
      道路距公路
      距离
      矢量线缓冲区http://www.openstreetmap.org
      根据矢量线用ArcGIS制作
      土地利用
      类型
      土地利用
      类型
      栅格ESA WorldCover 10 m 2020,https://esa-worldcover.org/en
      下载: 导出CSV 
      | 显示表格

      现状发育地质灾害89处,滑坡73处,崩塌11处,泥石流4条,地面沉降1处,为小—中型,无大型,中型14处,小型75处,主要分布在研究区低山丘陵地貌区,盆地内仅发育1处(图2)。

      图  2  地质灾害分布图(底图为高程和山体阴影渲染)
      Figure  2.  Map of geological hazard distribution (The bottom was rendered by elevation and hillshade)

      选择指标“因子面积百分比A”“地灾数百分比B”和“比率(β=B/A)”表征地质灾害的空间分布特征、主控因素和成灾特征。β定义了地质灾害点在因素分级中相对于均匀分布的丰度,β>1表示相对丰度更高,β<1则相反。β>1的因素分级有(图3表2):高程1800~1850 m、1920~1950 m和1950~2000 m,坡度15°~25°、25°~35°和>35°,坡向北东、东、南东和北,坡面曲率−0.75~−0.28(凹形)、−0.28~−0.15(凹形)、−0.15~−0.05(凹形)和0.05~0.15(凸形),石英砂岩岩组和砂岩、泥岩、页岩岩组,距断层距离0~50 m、300~500 m和1000~2000 m,距主要公路距离0~50 m和50~100 m,草地和裸地/稀疏植被区域。这些因素分级内,发育了相对于均匀分布丰度更高的地质灾害,表征这些因素分级可能是研究区地质灾害的主控因素。

      图  3  各因素分级分区和地灾点数量相关性统计图
      Figure  3.  Statistical charts of correlation between the factors and the number of geological hazard points

      把研究区栅格单元化,利用条件概率计算证据因素图层所有单元对地质灾害发生的贡献权重[13-15, 26-27]。定义$ D $为已发生地质灾害的单元,$ \bar{D} $为未发生地质灾害的单元,$ B $为证据因素区内的单元,$ \bar{B} $为证据因素区外的单元。

      证据因素$ B $条件下$ D $的条件(后验)概率为:

      $$ { O}\left(D|B\right)={ O}\left(D\right)\frac{P\left(B\right|D)}{P(B|{\bar D})} $$ (1)

      式中:$ { O}\left(D\right) $—证据因素B的先验概率, ${{ O}}\left(D\right)=$ $\dfrac{\mathrm{事}\mathrm{件}\mathrm{将}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}{\mathrm{事}\mathrm{件}\mathrm{不}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}=\dfrac{P\left(D\right)}{1-P\left(D\right)}=$ $\dfrac{P\left(D\right)}{P({\bar D})} $

      $P\left(B\right|D)、 P(B|{\bar D})$——在地质灾害发生(D)和未发生 ($ \bar{D} $)时,证据因素B的条件 概率,取自然对数即是证据 权法中的正权重(证据因素 存在区的权重值)$ {W}^{+} $

      $$ {W}^+=\ln\frac{P\left(B\right|D)}{P\left(B|{\bar D}\right)} $$ (2)
      $$ P\left(B|D\right)=P\left(B\cap D\right)/P\left(D\right) $$ (3)
      $$ P(B|\bar{D})=P(B\cap \bar{D})/P(\bar{D}) $$ (4)

      $ D $$ B $的单元数N可表示为:

      $$ P\left(B|D\right)=N\left(B\cap D\right)/N\left(D\right) $$ (5)
      $$ P(B|\bar{D})=N(B\cap \bar{D})/N(\bar{D}) $$ (6)

      同式(1),在证据因素不存在的情况下($ \bar{B} $),$ D $的条件概率(后验)为:

      $$ {{ O}}(D|\bar{B})={{ O}}(D)\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (7)

      式中:$P(\bar{B}|D)/P(\bar{B}|\bar{D})$—取自然对数即是负权重(证据 因素不存在区的权重值)$ {W}^{-} $

      $$ {W}^-={\rm{ln}}\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (8)

      同式(3)—(6):

      $$ P(\bar{B}|D)=N(\bar{B}\cap D)/N(D) $$ (9)
      $$ P(\bar{B}|\bar{D})=N(\bar{B}\cap \bar{D})/N(\bar{D}) $$ (10)

      $N (B\cap D) + N (\bar{B}\cap D)=N(D)$$N (B\cap \bar{D}) + N (\bar{B}\cap \bar{D})= N(\bar{D})$,所以式(2)和式(8)可写为:

      $$ {W}^+={\rm{ln}}\left(\frac{N(B\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(B\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (11)
      $$ {W}^-={\rm{ln}}\left(\frac{N(\bar{B}\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(\bar{B}\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (12)

      根据式(11)和(12),使用ArcGIS空间分析工具执行权重$ {W}^{+} $$ {W}^{-} $计算。

      $ {W}^{+} $的大小表明证据因素的存在与地质灾害发生之间存在正相关关系。$ {W}^{-} $表示负相关,即证据因素存在抑制诱发地质灾害的作用。证据因素原始数据缺失区域的权重值取0。两个权重之间的差异$ {W}_{{\rm{f}}}={W}^{+}-{W}^{-} $,即综合权重,量化证据因素和地质灾害相关性大小。如果$ {W}_{{\rm{f}}} $为正,则证据因素对地质灾害有利,如果为负,则对滑坡不利。如果$ {W}_{{\rm{f}}} $接近于零,则表明证据因素与地质灾害的相关性不大。

      在上述权重值计算及分析的基础上,实施证据因素分类的优选,选择类间差异显著的证据因素类,归并不显著的证据因素类。选择近似学生化检验(Student-T)统计值进行显著性测试[15, 28]

      $$ {S tuden{t}}-{{T}}={W}_{{\rm{f}}}/{\sigma }_{{W}_{{\rm{f}}}}={W}_{{\rm{f}}}/\sqrt{{\sigma }_{{W}^+}^{2}+{\sigma }_{{W}^-}^{2}} $$ (13)

      式中:$ {\sigma }_{{W}^{+}}^{} $$ {\sigma }_{{W}^{-}}^{} $——分别是$ {W}^{+} $$ {W}^{-} $的标准差;

      Wf ——综合权重;

      ${\sigma }_{{W}_{{\rm{f}}}}$——综合权重标准差。

      当测试值的绝对值$|{S tuden{t}}-{ T}|$为1.96和2.326时,置信度达97.5%、99%,文中以$|{S tuden{t}}-{ T}|=2$作为阈值。先将证据因素划分为若干分级(分类),计算权重和标准差、${{S} tuden{t}}-{ T}$,将$|{S} tuden{t}-{ T} | < 2$的各分类视为显著性低并归为一类,保留$|{{S} tuden{t}}-{T}|\geqslant 2$的因素分类,然后重新计算归并后各分类的权重值。

      根据贝叶斯法则,任一单元$ K $为地质灾害的可能性,即对数后验概率可表示为[13-15, 26, 27]

      $$ F=\ln O\left(D|\sum _{i=1}^{n}{B}_{i}^{K\left(i\right)}\right)=\sum _{i=0}^{n}{W}_{i}^{K}+\ln O\left(D\right) $$ (14)

      式中:$ {B}_{i} $——第$ i $个证据因素层;

      $ K\left(i\right) $$ {W}_{i} $是第$ i $个证据因素存在或不存在的权 重,在第$ i $个证据因素层存在时是+,不存在 时是−。

      最后计算后验概率:

      $$ P=O/(1+O)=\exp\left(F\right)/\left(1+\exp\left(F\right)\right) $$ (15)

      后验概率的大小作为易发性高低的指标,值越大表示易发性越高,值越小表示易发性越低。

      证据权重计算结果(表2图4)与1.3节可相互印证。在地形高程方面,1800~1850 m、1920~1950 m和1950~2000 m段利于地质灾害发生,正权重0.5550、1.1758和0.6439。>35°和15°~25°的山体斜坡较易于地质灾害发生,正权重0.5436和0.3785。坡向因素各分级权重值均不高,表明坡向对地质灾害发生的驱动作用可能不太显著。坡面曲率结果显示,−0.75~−0.28(凹形)和−0.28~−0.15(凹形)两个凹形坡分级段较易于地质灾害发生,正权重0.5690和0.7577。工程地质岩组各岩组分类的正权重值总体不高,但砂岩、泥岩、页岩岩组的统计结果仍然表现出对地质灾害发生的较有利性,其正权重0.4474,高于排在第二位的石英砂岩岩组(正权重值为0.2947)。距断层距离和距主要公路距离因素统计结果均显示出了较明显的距离效应,即距断裂或主要公路远的地区与地质灾害发生负相关,距断裂0~50 m和距主要公路0~50 m、50~100 m易于地质灾害发生,其正权重0.7973、0.9820和0.5111。裸地或稀疏植被地区是易于地质灾害发生的区域,其正权重0.8719。

      表  2  因素证据权重计算结果表
      Table  2.  Calculation results of factor evidence weights
      因素因素分级因素面积
      百分比/%
      地灾数
      百分比/%
      正权重
      W+
      W+
      标准差${\sigma }_{{W}^{+}}^{} $
      负权重WW
      标准差${\sigma }_{{W}^{-}}^{} $
      综合权重
      $ {W}_{{\rm{f}}} $
      $ {W}_{{\rm{f}}} $的
      标准差${\sigma }_{{W}_{{\rm{f}}}} $
      StudentT分类
      归并
      归并后
      权重
      权重
      标准差
      高程/m<17350.010.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      1735~18000.360.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      1 800~1 8500.651.120.55501.0082−0.00480.10710.55981.01380.5522合并−0.27440.1607
      1 850~1 9009.5510.110.05740.3350−0.00630.11230.06360.35330.1801合并−0.27440.1607
      1 900~1 9206.814.49−0.41860.50150.02480.1090−0.44340.5133−0.8639合并−0.27440.1607
      1 920~1 9506.7321.351.17580.2329−0.17200.12001.34780.26205.144441.17580.2329
      1 950~2 00012.5023.600.64390.2202−0.13680.12180.78070.25163.103250.64390.2202
      2 000~2 10023.2511.24−0.73180.31690.14680.1131−0.87870.3365−2.611013−0.73180.3169
      2 100~2 20018.8620.220.07080.2369−0.01720.11920.08790.26520.3315合并−0.27440.1607
      2 200~2 30011.484.49−0.94360.50090.07670.1090−1.02030.5126−1.9903合并−0.27440.1607
      2 300~2 4007.023.37−0.73830.57860.03890.1084−0.77720.5887−1.3201合并−0.27440.1607
      2 400~2 5002.610.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      >2 5000.190.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
      坡度/(°)<518.724.49−1.42970.50060.16200.1091−1.59160.5123−3.10685−1.42970.5006
      5~1538.3237.08−0.02880.17490.01740.1343−0.04620.2205−0.2093合并0.02210.1450
      15~2528.7241.570.37850.16550.20230.13920.58080.21632.685330.37850.1655
      25~3511.6012.360.06880.3030−0.00930.11380.07820.32370.2416合并0.02210.1450
      >352.644.490.54360.5040−0.01950.10900.56320.51571.0921合并0.02210.1450
      坡向北东9.7211.240.14600.3179−0.01710.11300.16310.33740.4833合并−0.00010.1065
      12.7715.730.21070.2688−0.03490.11600.24560.29280.8388合并−0.00010.1065
      南东16.9219.100.12220.2438−0.02680.11840.14900.27100.5496合并−0.00010.1065
      13.1611.24−0.15920.31750.02210.1130−0.18130.3370−0.5379合并−0.00010.1065
      南西10.5710.11−0.04480.33480.00520.1123−0.05000.3532−0.1415合并−0.00010.1065
      西13.456.74−0.69540.40920.07540.1103−0.77070.4238−1.8186合并−0.00010.1065
      北西14.5812.36−0.16670.30270.02590.1138−0.19260.3234−0.5955合并−0.00010.1065
      8.8213.480.42900.2908−0.05290.11450.48190.31251.5423合并−0.00010.1065
      坡面
      曲率
      −0.75~−0.28(凹形)3.205.620.56900.4509−0.02550.10960.59450.46401.2812合并0.09600.1367
      −0.28~−0.15(凹形)10.6422.470.75770.2258−0.14320.12090.90090.25623.517110.75770.2258
      −0.15~−0.05(凹形)19.6626.970.31970.2054−0.09620.12460.41590.24031.7311合并0.09600.1367
      −0.05~0.05(平坦)34.1816.85−0.71190.25880.23620.1169−0.94820.2840−3.33886−0.71190.2588
      0.05~0.15(凸形)17.5321.350.19900.2307−0.04780.12010.24680.26010.9489合并0.09600.1367
      0.15~0.28(凸形)11.005.62−0.67660.44830.05930.1097−0.73590.4615−1.5945合并0.09600.1367
      0.28~0.69(凸形)3.781.12−1.21941.00140.02750.1071−1.24691.0071−1.2381合并0.09600.1367
      工程
      地质
      岩组
      松散碎石土体13.156.74−0.67360.40920.07200.1103−0.74560.4238−1.7592合并−0.18440.1329
      石英砂岩7.5510.110.29470.3354−0.02830.11230.32300.35370.9131合并−0.18440.1329
      砂岩、泥岩、页岩23.0835.960.44740.1781−0.18440.13300.63180.22222.843030.44740.1781
      白云岩、灰岩38.8837.08−0.04910.17490.03010.1343−0.07930.2205−0.3596合并−0.18440.1329
      玄武岩16.9410.11−0.52060.33430.08000.1124−0.60050.3526−1.7029合并−0.18440.1329
      侵入岩脉0.290.000.00000.00000.00000.00000.00000.00000.0000合并−0.18440.1329
      距断层
      距离/m
      0~505.6312.360.79730.3046−0.07460.11370.87190.32522.681430.79730.3046
      50~1005.865.62−0.04290.44920.00260.1096−0.04550.4624−0.0985合并−0.07460.1137
      100~30019.8719.10−0.03970.24360.00960.1184−0.04930.2709−0.1822合并−0.07460.1137
      300~50016.1120.220.22990.2371−0.05080.11920.28060.26541.0574合并−0.07460.1137
      500~100026.1217.98−0.37640.25080.10560.1177−0.48200.2770−1.7397合并−0.07460.1137
      1000~2 00022.7524.720.08400.2143−0.02610.12270.11010.24690.4457合并−0.07460.1137
      >20003.660.000.00000.00000.00000.00000.00000.00000.0000合并−0.07460.1137
      距主要
      公路
      距离/m
      0~5011.1129.210.98200.1986−0.22960.12651.21160.23545.146930.98200.1986
      50~1008.1413.480.51110.2909−0.06050.11450.57160.31261.8284合并−0.12570.1296
      100~30020.6220.22−0.01960.23680.00500.1192−0.02470.2651−0.0931合并−0.12570.1296
      300~50012.533.37−1.31950.57810.10050.1084−1.42010.5882−2.41444−1.31950.5781
      500~100017.2116.85−0.02100.25940.00430.1168−0.02530.2845−0.0889合并−0.12570.1296
      1000~2 00016.6710.11−0.50380.33430.07650.1124−0.58030.3527−1.6455合并−0.12570.1296
      >200013.726.74−0.71530.40920.07850.1103−0.79390.4238−1.8733合并−0.12570.1296
      土地
      利用
      类型
      林地54.7028.09−0.07940.14970.08830.1515−0.16760.2130−0.7870合并−0.12870.1183
      灌木0.140.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
      草地7.398.990.19790.3556−0.01760.11160.21550.37270.5783合并−0.12870.1183
      耕地16.5410.11−0.49550.33430.07490.1124−0.57040.3527−1.6174合并−0.12870.1183
      建筑12.8211.24−0.13320.31750.01820.1130−0.15140.3370−0.4492合并−0.12870.1183
      裸地或稀疏植被8.0941.570.87190.2452−0.12870.11831.00060.27233.674640.87190.2452
      开阔水域0.320.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
      下载: 导出CSV 
      | 显示表格

      采用接受者操作特性曲线(Receiver Operating Characteristic Curve,ROC)和ROC 曲线下与坐标轴围成的面积(Area Under Curve,AUC[29-32]评估模型拟合精度。模型拟合精度越好则AUC越接近1,0.7~0.9时表示较好。文中建立的证据权法模型的AUC为80.4%,拟合精度优异(图5)。

      图  4  因素证据权重计算结果图
      Figure  4.  Calculation results charts of factor evidence weights
      图  5  模型预测性能ROC曲线图
      Figure  5.  ROC curve of model prediction performance

      综合自然间断点分级和地质灾害分布,圈定了高易发区、中易发区和低易发区(表3图6),其中高易发区188.55 km2(占研究区总面积的49.41%),中易发区152.21 km2(占研究区总面积的39.88%),89.9%和9.1%的地灾点落入高易发区和中易发区,显示易发性分区符合已发地质灾害分布,模型预测性能较好。

      表  3  地质灾害易发性分区表
      Table  3.  Form of geological hazard susceptibility zoning
      易发性
      分区
      面积/
      km2
      占总面积/
      %
      编号面积/
      km2
      占大区/
      面积%
      灾点数灾点密度/
      (个·km−2)
      地质灾害
      高易发区(Ⅰ)
      188.5549.411152.3280.79640.41
      217.939.5190.50
      316.118.5480.94
      42.191.1610.46
      地质灾害
      中易发区(Ⅱ)
      152.2139.8811.300.85
      218.8212.3620.11
      315.039.8710.07
      412.928.49
      518.5112.1620.11
      69.125.99
      744.6629.34
      812.348.1110.08
      911.737.71
      107.785.11
      低易发区(Ⅲ)47.4012.42147.4010010.02
      下载: 导出CSV 
      | 显示表格
      图  6  地质灾害易发性栅格图
      Figure  6.  Grid map of geological hazard susceptibility

      结合地质环境因素特征分析西部高易发区(图6蓝色框范围内、图7)主要位于砂岩、泥岩和页岩岩组,断裂构造较密集,以山谷斜坡地貌为主,坡度15°~25°和>35°较陡峭斜坡范围成片发育且面积较广,主要公路建于本区山谷,裸地/稀疏植被和草地连片覆盖范围较大。预测圈定的高易发区的这些分布特征,与上文分析得到的地质灾害控制因素特征吻合,预测结果符合地质灾害空间分布特征。

      图  7  典型区因素和地质灾害分布图
      Figure  7.  Factors and geological hazards in typical zone

      (1)“因子面积百分比A”“地灾数百分比B”和“比率β”,以及各因素各分类地质灾害证据权重可以定量地分析各因素与地质灾害发生的相关性。

      (2)圈定高易发区188.55 km2(占总面积的49.41%),中易发区152.21 km2(占总面积的39.88%),易发性分区图具有较好的等级区分度。

      (3)通过证据权法绘制的地质灾害易发性图可以有效地预测该区地质灾害,模型拟合精度AUC=80.4%。89.9%和9.1%的地灾点落入高和中易发区,建模结果与实际地质灾害发育情况吻合度高,较好地揭示了研究区地质灾害易发性特征。

      (4)证据权法在研究区这类云南高原低山丘陵区有效性高,方法理论清晰,较为成熟,由数据驱动,参数定义明确,易于一线工程师推广使用。同时,该方法权重的估计和模型预测性能受预测因子选择、因子数据空间分辨率、因子分级影响较大,具体工作中宜对这些问题进行深入研究和统计分析。建议通过对因子分级进行显著性测试实施优选,减小对权重的高估或低估,提高模型效能。

    • 图  1   妙岭变电站场地示意图

      Figure  1.   Miaoling substation site

      图  2   探地雷达测线布置

      Figure  2.   GPR survey line layout

      图  3   挖方边坡探地雷达波谱图

      Figure  3.   GPR spectrum of excavation slope

      图  4   挖方边坡地质剖面图

      Figure  4.   Geological section of excavation slope

      图  5   填方边坡探地雷达波谱图

      Figure  5.   GPR spectrum of filling slope

      图  6   填方边坡地质剖面图

      Figure  6.   Geological section of filling slope

      图  7   挖填方交界区域探地雷达波谱图

      Figure  7.   GPR spectrum of the excavation and filling boundary area

    • [1] 张茂省,谭新平,董英,等. 黄土高原平山造地工程环境效应浅析—以延安新区为例[J]. 地质论评,2019,65(6):1409 − 1421. [ZHANG Maosheng,TAN Xinping,DONG Ying,et al. Initial analysis on environmental effect of cutting hills to backfill ditch project on Loess Plateau:Take Yan’an New District as an example[J]. Geological Review,2019,65(6):1409 − 1421. (in Chinese with English abstract) DOI: 10.16509/j.georeview.2019.06.008
      [2] 刘琨,卢育霞,徐舜华. 黄土丘陵沟壑区挖填场地动力响应特征研究[J]. 防灾减灾工程学报,2021,41(5):1096 − 1104. [LIU Kun,LU Yuxia,XU Shunhua. Study on characteristics of dynamic response at digging-filling sites in the loess hilly and gully region[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(5):1096 − 1104. (in Chinese with English abstract) DOI: 10.13409/j.cnki.jdpme.201908017
      [3] 黄伟杰, 蔡军君, 熊翠红. 净值分析在电力工程进度控制中的应用—以某1000 kV变电站为例[J]. 武汉大学学报(工学版), 2018, 51(增刊1): 387 − 392

      HUANG Weijie, CAI Junjun, XIONG Cuihong. Application of earned value analysis to electric power construction schedule control: Take a 1 000 kV substation as an example[J]. Engineering Journal of Wuhan University, 2018, 51(Sup 1): 387 − 392. (in Chinese with English abstract)

      [4] 蔺晓燕, 杨泽, 李萍, 等. 地层划分对黄土高边坡稳定性分析的影响研究[J]. 岩土工程学报, 2021, 43(增刊1): 76 − 80

      LIN Xiaoyan, YANG Ze, LI Ping, et al. Effects of stratigraphic division on stability analysis of high loess slopes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(Sup 1): 76 − 80. (in Chinese with English abstract)

      [5] 孔令伟,陈正汉. 特殊土与边坡技术发展综述[J]. 土木工程学报,2012,45(5):141 − 161. [KONG Lingwei,CHEN Zhenghan. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal,2012,45(5):141 − 161. (in Chinese with English abstract)
      [6] 龚伟翔, 张晓超, 裴向军, 等. 基于高陡交填界面软弱带影响下黄土填方边坡失稳模式研究[J/OL]. 工程地质学报: 1 − 11(2021-5-13)[2021-10-23]

      GONG Weixiang, ZHANG Xiaochao, PEI Xiangjun, et al. Study on the instability model of loess filled slope based on the influence of weak zone of high and steep filling interface[J/OL]. Journal of Engineering Geology: 1 − 11(2021-5-13)[2021-10-23]. (in Chinese with English abstract)

      [7] 毛洪运,朱江鸿,喻小,等. 强夯法消除风积粉细砂湿陷性研究[J]. 工程地质学报,2019,27(4):745 − 752. [MAO Hongyun,ZHU Jianghong,YU Xiao,et al. Dynamic compaction study of eliminating the collapsibility of eolian deposit fine sand[J]. Journal of Engineering Geology,2019,27(4):745 − 752. (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2018-113
      [8] 毛正君,张瑾鸽,仲佳鑫,等. 梯田型黄土滑坡隐患发育特征与成因分析—以宁夏南部黄土丘陵区为例[J]. 中国地质灾害与防治学报,2022,33(6):142 − 152. [MAO Zhengjun,ZHANG Jinge,ZHONG Jiaxin,et al. Analysis of basic characteristics and deformation mechanism of loess potential landslide of terrace: Taking loess hilly region in southern Ningxia as an example[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):142 − 152. (in Chinese with English abstract)
      [9] 马闫,王家鼎,彭淑君,等. 黄土贴坡高填方变形破坏机制研究[J]. 岩土工程学报,2016,38(3):518 − 528. [MA Yan,WANG Jiading,PENG Shujun,et al. Deformation and failure mechanism of high sticking loess slope[J]. Chinese Journal of Geotechnical Engineering,2016,38(3):518 − 528. (in Chinese with English abstract) DOI: 10.11779/CJGE201603016
      [10] 蒲小武,王兰民,吴志坚,等. 兰州丘陵沟壑区挖方黄土高边坡面临的工程地质问题及稳定性分析[J]. 地震工程学报,2016,38(5):787 − 794. [PU Xiaowu,WANG Lanmin,WU Zhijian,et al. Engineering geological problems of loess high excavation slope in loess hilly and gully region of Lanzhou and its stability analysis[J]. China Earthquake Engineering Journal,2016,38(5):787 − 794. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0844.2016.05.0787
      [11] 吕远强,董转运. 公路黄土路堑、路堤的湿陷性评价分析[J]. 工程勘察,2010,38(9):28 − 31. [LYU Yuanqiang,DONG Zhuanyun. Analysis of appraisement collapsibility on loess embankment and cutting of road[J]. Geotechnical Investigation & Surveying,2010,38(9):28 − 31. (in Chinese with English abstract)
      [12] 梁小龙,王建业,白泽朝,等. 基于PS-InSAR技术的黄土大厚度挖方区回弹变形规律分析[J]. 测绘通报,2020(3):163 − 166. [LIANG Xiaolong,WANG Jianye,BAI Zechao,et al. Research on rebound deformation using PS-InSAR technology in loess plateau area[J]. Bulletin of Surveying and Mapping,2020(3):163 − 166. (in Chinese with English abstract)
      [13]

      WANG J D,XU Y J,MA Y,et al. Study on the deformation and failure modes of filling slope in loess filling engineering:A case study at a loess mountain airport[J]. Landslides,2018,15(12):2423 − 2435. DOI: 10.1007/s10346-018-1046-5

      [14] 江丽,吴栋,李春林,等. 地质雷达在边坡稳定性检测和预警中的应用[J]. 人民长江,2012,43(5):51 − 53. [JIANG Li,WU Dong,LI Chunlin,et al. Application of GPR in slope stability monitoring and pre-warning[J]. Yangtze River,2012,43(5):51 − 53. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4179.2012.05.012
      [15]

      STEELMAN C M,KENNEDY C S,PARKER B L. Geophysical conceptualization of a fractured sedimentary bedrock riverbed using ground-penetrating radar and induced electrical conductivity[J]. Journal of Hydrology,2015,521:433 − 446. DOI: 10.1016/j.jhydrol.2014.12.001

      [16]

      ZAJC M,POGAČNIK Ž,GOSAR A. Ground penetrating radar and structural geological mapping investigation of Karst and tectonic features in flyschoid rocks as geological hazard for exploitation[J]. International Journal of Rock Mechanics and Mining Sciences,2014,67:78 − 87. DOI: 10.1016/j.ijrmms.2014.01.011

      [17]

      ZHANG J,LIN H,DOOLITTLE J. Soil layering and preferential flow impacts on seasonal changes of GPR signals in two contrasting soils[J]. Geoderma,2014,213:560 − 569. DOI: 10.1016/j.geoderma.2013.08.035

      [18] 蒲虹宇,张立峰,何毅,等. 甘肃通渭黄土滑坡二维形变时序监测[J]. 中国地质灾害与防治学报,2022,33(6):114 − 124. [PU Hongyu,ZHANG Lifeng,HE Yi,et al. Time-series monitoring of two-dimensional deformation of Tongwei loess landslide in Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):114 − 124. (in Chinese with English abstract)
      [19] 王永强,曹竹,谭钦文,等. 露天矿滑坡体的探地雷达检测技术[J]. 煤炭学报,2011,36(7):1093 − 1097. [WANG Yongqiang,CAO Zhu,TAN Qinwen,et al. GPR detection of open-pit landslide[J]. Journal of China Coal Society,2011,36(7):1093 − 1097. (in Chinese with English abstract) DOI: 10.13225/j.cnki.jccs.2011.07.028
      [20]

      XIE P,WEN H J,XIAO P,et al. Evaluation of ground-penetrating radar (GPR) and geology survey for slope stability study in mantled Karst region[J]. Environmental Earth Sciences,2018,77(4):122. DOI: 10.1007/s12665-018-7306-9

      [21]

      HAN X L,LIU J T,ZHANG J,et al. Identifying soil structure along headwater hillslopes using ground penetrating radar based technique[J]. Journal of Mountain Science,2016,13(3):405 − 415. DOI: 10.1007/s11629-014-3279-7

      [22] 程久龙,潘冬明,李伟,等. 强电磁干扰区灾害性采空区探地雷达精细探测研究[J]. 煤炭学报,2010,35(2):227 − 231. [CHENG Jiulong,PAN Dongming,LI Wei,et al. Study on the detecting of hazard abandoned workings by ground penetrating radar on strong electromagnetic interference area[J]. Journal of China Coal Society,2010,35(2):227 − 231. (in Chinese with English abstract)
      [23] 王韵,王红雨,常留成,等. 基于探地雷达的水库坝前淤积土沉积规律研究[J]. 水土保持学报,2021,35(4):152 − 158. [WANG Yun,WANG Hongyu,CHANG Liucheng,et al. Study on sedimentation regulation of silted soil in the front of reservoir dam based on GPR[J]. Journal of Soil and Water Conservation,2021,35(4):152 − 158. (in Chinese with English abstract)
      [24] 蔡少峰. 探地雷达在河流水下地形及基岩探测中的试验研究[J]. 工程地球物理学报,2019,16(5):680 − 685. [CAI Shaofeng. The experimental study on ground penetrating radar in underwater topography and bedrock detection[J]. Chinese Journal of Engineering Geophysics,2019,16(5):680 − 685. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-7940.2019.05.021
      [25] 李勉,杨二,李平,等. 黄土丘陵区小流域淤地坝泥沙沉积特征[J]. 农业工程学报,2017,33(3):161 − 167. [LI Mian,YANG Er,LI Ping,et al. Characteristics of sediment deposition in check dam in small watershed in Loess Hilly Area[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(3):161 − 167. (in Chinese with English abstract) DOI: 10.11975/j.issn.1002-6819.2017.03.022
      [26]

      JOL H M,BRISTOW C S. GPR in sediments:Advice on data collection,basic processing and interpretation,a good practice Guide[J]. Geological Society,London,Special Publications,2003,211(1):9 − 27. DOI: 10.1144/GSL.SP.2001.211.01.02

      [27] 蒲川豪,许强,赵宽耀,等. 基于遥感分析的延安新区平山造城工程地面沉降及植被恢复特征研究[J]. 工程地质学报,2020,28(3):597 − 609. [PU Chuanhao,XU Qiang,ZHAO Kuanyao,et al. Remote sensing analysis of land subsidence and vegetation restoration characteristics in excavation and filling areas of mountain region for urban extension in Yan'an[J]. Journal of Engineering Geology,2020,28(3):597 − 609. (in Chinese with English abstract)
      [28] 骆祖江, 成磊, 张兴旺, 等. 悬挂式止水帷幕深基坑降水方案模拟优化[J]. 吉林大学学报(地球科学版),2022,52(6):1946 − 1956. [LUO Zujiang, CHENG Lei, ZHANG Xingwang, et al. Simulation and optimization of dewatering scheme for suspended impervious curtain in deep foundation pit[J]. Journal of Jilin University (Earth Science Edition),2022,52(6):1946 − 1956. (in Chinese with English abstract)
      [29] 秦胜伍,张延庆,张领帅,等. 基于Stacking模型融合的深基坑地面沉降预测[J]. 吉林大学学报(地球科学版),2021,51(5):1316 − 1323. [QIN Shengwu,ZHANG Yanqing,ZHANG Lingshuai,et al. Prediction of ground settlement around deep foundation pit based on stacking model fusion[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1316 − 1323. (in Chinese with English abstract)
    • 期刊类型引用(23)

      1. 马明明,伍尚前,谢猛,童鹏,袁晓波. 决策树分类在铁路沿线桉树提取及滑坡隐患识别中的应用——以贵广高铁广西段为例. 中国地质灾害与防治学报. 2025(01): 37-45 . 本站查看
      2. 刘亚静,刘红健. 基于信息量-随机森林模型的地震带地质灾害易发性评价:以松潘-较场地震带为例. 科学技术与工程. 2024(01): 143-154 . 百度学术
      3. 黄海,江思义,李海良,李春玲,吴秋菊. 岩溶地区危岩和岩质崩塌易发性评价研究——以广西贺州市平桂区为例. 成都理工大学学报(自然科学版). 2024(01): 137-151 . 百度学术
      4. 刘玥,申玉松,李旭,张迪. 基于不同耦合模型的区域地质灾害易发性评价——以河南商城县为例. 中国地质调查. 2024(01): 83-92 . 百度学术
      5. 高茂宁,魏冠军,雷传金,张沛. 顾及时序InSAR的海东市辖区滑坡敏感性评价. 地理空间信息. 2024(05): 97-101 . 百度学术
      6. 石文君,王宇栋,解晋航,李章杰,梁形形. 基于多种模型对比的寻甸县地质灾害易发性分析. 矿产勘查. 2024(06): 1092-1102 . 百度学术
      7. 寸得欣,令狐昌卫,马一奇,尹林虎,陈庆松,刘振南,涂春霖. 基于GIS和加权信息量模型的富源县地质灾害易发性评价. 科学技术与工程. 2024(18): 7563-7573 . 百度学术
      8. 冯振,陈亮,王立朝,侯圣山,田怡帆,刘明学. 区域地质灾害易发性评价的证据权法原理与实践. 地质通报. 2024(07): 1255-1265 . 百度学术
      9. 张宇,简季,郝利娜,杨鑫. 基于IV-MLP耦合模型的龙陵县滑坡易发性评价. 物探化探计算技术. 2024(05): 618-626 . 百度学术
      10. 桂富羽,史正涛,喜文飞,付尧,郭峻杞. 基于证据权模型的滑坡灾害易发性评价研究——以普洱市为例. 城市勘测. 2024(05): 188-193+198 . 百度学术
      11. 梁峰,江攀和. 基于IVM-CF耦合模型的贵定县滑坡地质灾害易发性评价. 水利水电技术(中英文). 2024(S2): 669-677 . 百度学术
      12. 裴鹏程,黄帅,袁静,张智康. 走滑断层作用下上覆土层的变形破坏机理. 中国地质灾害与防治学报. 2024(06): 115-127 . 本站查看
      13. 赖波,赵风顺,江金进,江山,江宁,李俊生. 基于AHP-信息量法的珠海市地质灾害风险评价. 华南地质. 2023(01): 147-156 . 百度学术
      14. 阮征,周少伟,姚胜,田垚. 黄土高原腹地地质灾害致灾因素分析及易发性评价. 科技导报. 2023(10): 115-124 . 百度学术
      15. 王伟中,李树兴,杨成,许涛,宋飞,曹小红,李浩然,王伟华. 基于GIS和证据权模型的山阳县地质灾害易发性评价. 新疆地质. 2023(02): 262-269 . 百度学术
      16. 黄鑫,吴珍云,丁德建,李希星,石祖峰,祝民强,孙彬涵. 基于信息量-逻辑回归模型的江西省婺源县地质灾害易发性评价. 东华理工大学学报(自然科学版). 2023(03): 259-268 . 百度学术
      17. 曾斌,吕权儒,寇磊,艾东,许汇源,袁晶晶. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价. 中国地质灾害与防治学报. 2023(04): 105-113 . 本站查看
      18. 胡杨,张紫昭,林世河. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价. 工程地质学报. 2023(04): 1350-1363 . 百度学术
      19. 张潇远,苏巧梅,赵财胜,朱月琴,李凯新,范锦龙,白东升. 一种利用贝叶斯算法优化XGBoost的滑坡易发性评价方法. 测绘科学. 2023(06): 140-150 . 百度学术
      20. 张华湘,孙乾征,樊善兴,杨子林. 滑坡易发性评价方法和精度比较——以贵州省大方县为例. 贵州地质. 2023(03): 302-309+295 . 百度学术
      21. 龚芯磊,张斌,高金利,杨洪森. 基于斜坡单元尺度AHP-信息量模型的重点区域地质灾害风险评价——以贵州省紫云县中部重点区为例. 贵州地质. 2023(03): 310-320 . 百度学术
      22. 谭燕,崔雨,金华丽,方龙建,葛鹏,付乐意. 基于信息量模型及层次分析法的镇江丹徒区滑坡崩塌地质灾害易发性评价. 昆明冶金高等专科学校学报. 2023(04): 7-15 . 百度学术
      23. 董凯,王永卿,蒲秀勇,梁凯丽. 基于信息量法的广西南宁市武鸣区地质灾害易发性评价. 农业灾害研究. 2023(09): 300-303 . 百度学术

      其他类型引用(8)

    图(7)
    计量
    • 文章访问数:  5590
    • HTML全文浏览量:  2215
    • PDF下载量:  615
    • 被引次数: 31
    出版历程
    • 收稿日期:  2022-01-09
    • 修回日期:  2022-03-13
    • 网络出版日期:  2022-12-29
    • 刊出日期:  2023-04-24

    目录

    /

    返回文章
    返回