Interpretation method for regional co-seismic collapses based on multi-feature fusion of optical remote sensing
-
摘要: 同震崩塌滑坡的解译及定位是震区灾后恢复工作中需要重点解决的问题,如何在灾害快速、自动解译的基础上,不断提高解译精度,是目前同震崩塌滑坡解译的研究热点之一,也是促使地质灾害早期识别向智能化、科学化发展的必要前提。文章在团队前期所提出的遥感影像局部阈值二值化方法的基础上,针对同震崩塌滑坡解译结果假阳率偏高的问题,分析了假阳性地物的光学和几何特点,提出了融合目标区域光学影像灰度特征、区域坡度信息、NDVI指数特征及解译地物主轴特征的同震崩塌滑坡多特征融合解译方法。为验证所提出模型的准确性,以2014年云南鲁甸地震龙头山镇为研究区,利用震后获取的高分一号(GF-1)卫星影像数据及数字高程模型对该同震崩塌滑坡进行了解译识别,结果表明,文中提出的方法准确解译出了同震崩塌滑坡区域,并有效去除了假阳性地物干扰,提高了解译精度。Abstract: Interpretation of co-seismic collapse landslides is a key problem that needs to be solved in the post-disaster recovery work in earthquake areas. The issue regarding continuously improvement of interpretation accuracy for rapid and automatic interpretation of disasters is currently a hot topic, which is also a prerequisite to promote the development of early recognition of geological disasters towards intelligence and scientific. Based on the local threshold binarization method of remote sensing image proposed by the team in the early stage, this paper analyzes the optical and geometric characteristics of false positive features and proposes a fusion for the high false positive rate of the interpreted results of co-seismic mountain collapse. The multi-feature fusion interpretation method of the co-seismic mountain collapse with the gray feature of the optical image of the target area, the regional slope information, the NDVI feature and the interpretation of the main axis feature of the ground feature. In order to verify the accuracy of the proposed model, based on the 2014 Ludian earthquake in Yunnan, a case study was carried out in the Longtoushan town area. The Gaofen-1 (GF-1) satellite image data obtained after the earthquake and the digital elevation model were used for the earthquake in this area. The interpretation and recognition of the collapse of the cracked mountain shows that the method proposed in this paper accurately interprets the collapsed area of the cracked mountain body, effectively removes the false positive ground object interference, and improves the accuracy of interpretation.
-
0. 引言
查明与地质灾害有关的危险区域是地质灾害管理的重要工作,也是促进研究区人民生活和基础设施发展安全的重要依据[1],基于建模评价地质灾害易发性是重要而且有效的途径。
应用经验式、数值模拟和统计方法对地质灾害易发性建模和评价,已经进行了许多研究[1-10]。其中,经验式方法基于现场观察和专家经验判断;数值模拟计算边坡的稳定性;统计方法部分基于实地观察和专家的先验知识,部分基于对地质灾害发生的权重或概率的统计计算,这类方法使用统计技术来评估诱发地质灾害的各种因素的相关作用,每个因素的重要性都是根据观察到的与地质灾害的关系来确定的。
文中使用基于贝叶斯理论的证据权法,综合GIS技术评价研究区地质灾害易发性。证据权法是一种统计方法,最初应用于非空间、定量的医学诊断,以结合临床诊断的证据来预测疾病[11-12]。在地球科学中,该方法被广泛应用,如:矿产资源潜力评估和矿床预测[13-16],公路路基岩溶塌陷危险性评价[17]和滑坡易发性和危险性[1, 3, 18-23]。
1. 研究区和数据
1.1 研究区概况
文中选择云南高原滇中昆明盆地低山丘陵地带这一云南省地质灾害防治重点地区的典型代表,云南省省会昆明市的主要行政区之一,昆明市五华区作为研究对象,该区地质灾害易发性评价研究具有典型代表性,可向整个云南高原昆明盆地低山丘陵区和其他低山丘陵区推广,具有技术方法和社会经济意义。研究区面积381.6 km2,地势西北高东南低,昆明盆地内地形开阔低缓,北部山区地形崎岖,沟壑较发育。区域年降水量的80%以上集中在6—9月,年平均降水量608.4~887.0 mm。碳酸盐岩分布最广,约占全区面积的38.93%,其次为砂岩、泥岩、页岩,约占23.11%,岩浆岩主要为玄武岩,约占16.95%,主要分布在昆明盆地和其他小盆地的松散碎石土体约占11.36%,石英砂岩类约占7.56%,还发育一些岩脉;断裂构造较发育,以南北向构造为主[24-25]。
1.2 数据收集
通过地质灾害风险普查获得了研究区地质灾害分布数据。根据调查分析,选择工程地质岩组、断裂构造、高程、坡度、坡向、坡面曲率、距公路距离和土地利用类型等8类因素纳入评价分析。地质数据收集自云南省地质局1∶20万昆明幅、武定幅区域地质调查报告和图件[24-25],12.5 m分辨率DEM(数字高程模型)收集自ASF,道路数据收集自OSM,土地利用类型数据收集自ESA(图1、表1)。
表 1 数据简介Table 1. Data introduction数据 灾点及
致灾要素类型 来源 地灾 地灾点 矢量点 地质灾害风险普查 地质 工程地质岩组 矢量面 云南省地质局 距断裂
距离矢量线和缓冲区 云南省地质局 地形地貌 高程 栅格 12.5 m DEM,
https://asf.alaska.edu/坡度 栅格 根据DEM,应用ArcGIS提取 坡向 栅格 根据DEM,应用ArcGIS提取 坡面曲率 栅格 根据DEM,应用ArcGIS提取 道路 距公路
距离矢量线缓冲区 http://www.openstreetmap.org,
根据矢量线用ArcGIS制作土地利用
类型土地利用
类型栅格 ESA WorldCover 10 m 2020,https://esa-worldcover.org/en 1.3 地质灾害发育特征
现状发育地质灾害89处,滑坡73处,崩塌11处,泥石流4条,地面沉降1处,为小—中型,无大型,中型14处,小型75处,主要分布在研究区低山丘陵地貌区,盆地内仅发育1处(图2)。
选择指标“因子面积百分比A”“地灾数百分比B”和“比率(β=B/A)”表征地质灾害的空间分布特征、主控因素和成灾特征。β定义了地质灾害点在因素分级中相对于均匀分布的丰度,β>1表示相对丰度更高,β<1则相反。β>1的因素分级有(图3、表2):高程1800~1850 m、1920~1950 m和1950~2000 m,坡度15°~25°、25°~35°和>35°,坡向北东、东、南东和北,坡面曲率−0.75~−0.28(凹形)、−0.28~−0.15(凹形)、−0.15~−0.05(凹形)和0.05~0.15(凸形),石英砂岩岩组和砂岩、泥岩、页岩岩组,距断层距离0~50 m、300~500 m和1000~2000 m,距主要公路距离0~50 m和50~100 m,草地和裸地/稀疏植被区域。这些因素分级内,发育了相对于均匀分布丰度更高的地质灾害,表征这些因素分级可能是研究区地质灾害的主控因素。
2. 方法
2.1 权重计算
把研究区栅格单元化,利用条件概率计算证据因素图层所有单元对地质灾害发生的贡献权重[13-15, 26-27]。定义
$ D $ 为已发生地质灾害的单元,$ \bar{D} $ 为未发生地质灾害的单元,$ B $ 为证据因素区内的单元,$ \bar{B} $ 为证据因素区外的单元。证据因素
$ B $ 条件下$ D $ 的条件(后验)概率为:$$ { O}\left(D|B\right)={ O}\left(D\right)\frac{P\left(B\right|D)}{P(B|{\bar D})} $$ (1) 式中:
$ { O}\left(D\right) $ —证据因素B的先验概率,${{ O}}\left(D\right)=$ $\dfrac{\mathrm{事}\mathrm{件}\mathrm{将}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}{\mathrm{事}\mathrm{件}\mathrm{不}\mathrm{会}\mathrm{发}\mathrm{生}\mathrm{的}\mathrm{概}\mathrm{率}}=\dfrac{P\left(D\right)}{1-P\left(D\right)}=$ $\dfrac{P\left(D\right)}{P({\bar D})} $ ;$P\left(B\right|D)、 P(B|{\bar D})$ ——在地质灾害发生(D)和未发生 ($ \bar{D} $ )时,证据因素B的条件 概率,取自然对数即是证据 权法中的正权重(证据因素 存在区的权重值)$ {W}^{+} $ 。$$ {W}^+=\ln\frac{P\left(B\right|D)}{P\left(B|{\bar D}\right)} $$ (2) $$ P\left(B|D\right)=P\left(B\cap D\right)/P\left(D\right) $$ (3) $$ P(B|\bar{D})=P(B\cap \bar{D})/P(\bar{D}) $$ (4) 用
$ D $ 和$ B $ 的单元数N可表示为:$$ P\left(B|D\right)=N\left(B\cap D\right)/N\left(D\right) $$ (5) $$ P(B|\bar{D})=N(B\cap \bar{D})/N(\bar{D}) $$ (6) 同式(1),在证据因素不存在的情况下(
$ \bar{B} $ ),$ D $ 的条件概率(后验)为:$$ {{ O}}(D|\bar{B})={{ O}}(D)\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (7) 式中:
$P(\bar{B}|D)/P(\bar{B}|\bar{D})$ —取自然对数即是负权重(证据 因素不存在区的权重值)$ {W}^{-} $ 。$$ {W}^-={\rm{ln}}\frac{P(\bar{B}|D)}{P(\bar{B}|\bar{D})} $$ (8) 同式(3)—(6):
$$ P(\bar{B}|D)=N(\bar{B}\cap D)/N(D) $$ (9) $$ P(\bar{B}|\bar{D})=N(\bar{B}\cap \bar{D})/N(\bar{D}) $$ (10) $N (B\cap D) + N (\bar{B}\cap D)=N(D)$ ,$N (B\cap \bar{D}) + N (\bar{B}\cap \bar{D})= N(\bar{D})$ ,所以式(2)和式(8)可写为:$$ {W}^+={\rm{ln}}\left(\frac{N(B\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(B\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (11) $$ {W}^-={\rm{ln}}\left(\frac{N(\bar{B}\cap D)}{N(B\cap D)+N(\bar{B}\cap D)}/\frac{N(\bar{B}\cap \bar{D})}{N(B\cap \bar{D})+N(\bar{B}\cap \bar{D})}\right) $$ (12) 根据式(11)和(12),使用ArcGIS空间分析工具执行权重
$ {W}^{+} $ 和$ {W}^{-} $ 计算。$ {W}^{+} $ 的大小表明证据因素的存在与地质灾害发生之间存在正相关关系。$ {W}^{-} $ 表示负相关,即证据因素存在抑制诱发地质灾害的作用。证据因素原始数据缺失区域的权重值取0。两个权重之间的差异$ {W}_{{\rm{f}}}={W}^{+}-{W}^{-} $ ,即综合权重,量化证据因素和地质灾害相关性大小。如果$ {W}_{{\rm{f}}} $ 为正,则证据因素对地质灾害有利,如果为负,则对滑坡不利。如果$ {W}_{{\rm{f}}} $ 接近于零,则表明证据因素与地质灾害的相关性不大。2.2 因素分级(分类)的显著性测试
在上述权重值计算及分析的基础上,实施证据因素分类的优选,选择类间差异显著的证据因素类,归并不显著的证据因素类。选择近似学生化检验(Student-T)统计值进行显著性测试[15, 28]:
$$ {S tuden{t}}-{{T}}={W}_{{\rm{f}}}/{\sigma }_{{W}_{{\rm{f}}}}={W}_{{\rm{f}}}/\sqrt{{\sigma }_{{W}^+}^{2}+{\sigma }_{{W}^-}^{2}} $$ (13) 式中:
$ {\sigma }_{{W}^{+}}^{} $ 、$ {\sigma }_{{W}^{-}}^{} $ ——分别是$ {W}^{+} $ 和$ {W}^{-} $ 的标准差;Wf ——综合权重;
${\sigma }_{{W}_{{\rm{f}}}}$ ——综合权重标准差。当测试值的绝对值
$|{S tuden{t}}-{ T}|$ 为1.96和2.326时,置信度达97.5%、99%,文中以$|{S tuden{t}}-{ T}|=2$ 作为阈值。先将证据因素划分为若干分级(分类),计算权重和标准差、${{S} tuden{t}}-{ T}$ ,将$|{S} tuden{t}-{ T} | < 2$ 的各分类视为显著性低并归为一类,保留$|{{S} tuden{t}}-{T}|\geqslant 2$ 的因素分类,然后重新计算归并后各分类的权重值。2.3 证据综合
根据贝叶斯法则,任一单元
$ K $ 为地质灾害的可能性,即对数后验概率可表示为[13-15, 26, 27]:$$ F=\ln O\left(D|\sum _{i=1}^{n}{B}_{i}^{K\left(i\right)}\right)=\sum _{i=0}^{n}{W}_{i}^{K}+\ln O\left(D\right) $$ (14) 式中:
$ {B}_{i} $ ——第$ i $ 个证据因素层;$ K\left(i\right) $ —$ {W}_{i} $ 是第$ i $ 个证据因素存在或不存在的权 重,在第$ i $ 个证据因素层存在时是+,不存在 时是−。最后计算后验概率:
$$ P=O/(1+O)=\exp\left(F\right)/\left(1+\exp\left(F\right)\right) $$ (15) 后验概率的大小作为易发性高低的指标,值越大表示易发性越高,值越小表示易发性越低。
3. 结果与讨论
3.1 证据权重计算结果和相关性分析
证据权重计算结果(表2、图4)与1.3节可相互印证。在地形高程方面,1800~1850 m、1920~1950 m和1950~2000 m段利于地质灾害发生,正权重0.5550、1.1758和0.6439。>35°和15°~25°的山体斜坡较易于地质灾害发生,正权重0.5436和0.3785。坡向因素各分级权重值均不高,表明坡向对地质灾害发生的驱动作用可能不太显著。坡面曲率结果显示,−0.75~−0.28(凹形)和−0.28~−0.15(凹形)两个凹形坡分级段较易于地质灾害发生,正权重0.5690和0.7577。工程地质岩组各岩组分类的正权重值总体不高,但砂岩、泥岩、页岩岩组的统计结果仍然表现出对地质灾害发生的较有利性,其正权重0.4474,高于排在第二位的石英砂岩岩组(正权重值为0.2947)。距断层距离和距主要公路距离因素统计结果均显示出了较明显的距离效应,即距断裂或主要公路远的地区与地质灾害发生负相关,距断裂0~50 m和距主要公路0~50 m、50~100 m易于地质灾害发生,其正权重0.7973、0.9820和0.5111。裸地或稀疏植被地区是易于地质灾害发生的区域,其正权重0.8719。
表 2 因素证据权重计算结果表Table 2. Calculation results of factor evidence weights因素 因素分级 因素面积
百分比/%地灾数
百分比/%正权重
W+W+的
标准差${\sigma }_{{W}^{+}}^{} $负权重W− W−的
标准差${\sigma }_{{W}^{-}}^{} $综合权重
$ {W}_{{\rm{f}}} $$ {W}_{{\rm{f}}} $的
标准差${\sigma }_{{W}_{{\rm{f}}}} $Student−T 分类
归并归并后
权重权重
标准差高程/m <1735 0.01 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 合并 −0.2744 0.1607 1735~1800 0.36 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 合并 −0.2744 0.1607 1 800~1 850 0.65 1.12 0.5550 1.0082 −0.0048 0.1071 0.5598 1.0138 0.5522 合并 −0.2744 0.1607 1 850~1 900 9.55 10.11 0.0574 0.3350 −0.0063 0.1123 0.0636 0.3533 0.1801 合并 −0.2744 0.1607 1 900~1 920 6.81 4.49 −0.4186 0.5015 0.0248 0.1090 −0.4434 0.5133 −0.8639 合并 −0.2744 0.1607 1 920~1 950 6.73 21.35 1.1758 0.2329 −0.1720 0.1200 1.3478 0.2620 5.1444 4 1.1758 0.2329 1 950~2 000 12.50 23.60 0.6439 0.2202 −0.1368 0.1218 0.7807 0.2516 3.1032 5 0.6439 0.2202 2 000~2 100 23.25 11.24 −0.7318 0.3169 0.1468 0.1131 −0.8787 0.3365 −2.6110 13 −0.7318 0.3169 2 100~2 200 18.86 20.22 0.0708 0.2369 −0.0172 0.1192 0.0879 0.2652 0.3315 合并 −0.2744 0.1607 2 200~2 300 11.48 4.49 −0.9436 0.5009 0.0767 0.1090 −1.0203 0.5126 −1.9903 合并 −0.2744 0.1607 2 300~2 400 7.02 3.37 −0.7383 0.5786 0.0389 0.1084 −0.7772 0.5887 −1.3201 合并 −0.2744 0.1607 2 400~2 500 2.61 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 合并 −0.2744 0.1607 >2 500 0.19 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 合并 −0.2744 0.1607 坡度/(°) <5 18.72 4.49 −1.4297 0.5006 0.1620 0.1091 −1.5916 0.5123 −3.1068 5 −1.4297 0.5006 5~15 38.32 37.08 −0.0288 0.1749 0.0174 0.1343 −0.0462 0.2205 −0.2093 合并 0.0221 0.1450 15~25 28.72 41.57 0.3785 0.1655 −0.2023 0.1392 0.5808 0.2163 2.6853 3 0.3785 0.1655 25~35 11.60 12.36 0.0688 0.3030 −0.0093 0.1138 0.0782 0.3237 0.2416 合并 0.0221 0.1450 >35 2.64 4.49 0.5436 0.5040 −0.0195 0.1090 0.5632 0.5157 1.0921 合并 0.0221 0.1450 坡向 北东 9.72 11.24 0.1460 0.3179 −0.0171 0.1130 0.1631 0.3374 0.4833 合并 −0.0001 0.1065 东 12.77 15.73 0.2107 0.2688 −0.0349 0.1160 0.2456 0.2928 0.8388 合并 −0.0001 0.1065 南东 16.92 19.10 0.1222 0.2438 −0.0268 0.1184 0.1490 0.2710 0.5496 合并 −0.0001 0.1065 南 13.16 11.24 −0.1592 0.3175 0.0221 0.1130 −0.1813 0.3370 −0.5379 合并 −0.0001 0.1065 南西 10.57 10.11 −0.0448 0.3348 0.0052 0.1123 −0.0500 0.3532 −0.1415 合并 −0.0001 0.1065 西 13.45 6.74 −0.6954 0.4092 0.0754 0.1103 −0.7707 0.4238 −1.8186 合并 −0.0001 0.1065 北西 14.58 12.36 −0.1667 0.3027 0.0259 0.1138 −0.1926 0.3234 −0.5955 合并 −0.0001 0.1065 北 8.82 13.48 0.4290 0.2908 −0.0529 0.1145 0.4819 0.3125 1.5423 合并 −0.0001 0.1065 坡面
曲率−0.75~−0.28(凹形) 3.20 5.62 0.5690 0.4509 −0.0255 0.1096 0.5945 0.4640 1.2812 合并 0.0960 0.1367 −0.28~−0.15(凹形) 10.64 22.47 0.7577 0.2258 −0.1432 0.1209 0.9009 0.2562 3.5171 1 0.7577 0.2258 −0.15~−0.05(凹形) 19.66 26.97 0.3197 0.2054 −0.0962 0.1246 0.4159 0.2403 1.7311 合并 0.0960 0.1367 −0.05~0.05(平坦) 34.18 16.85 −0.7119 0.2588 0.2362 0.1169 −0.9482 0.2840 −3.3388 6 −0.7119 0.2588 0.05~0.15(凸形) 17.53 21.35 0.1990 0.2307 −0.0478 0.1201 0.2468 0.2601 0.9489 合并 0.0960 0.1367 0.15~0.28(凸形) 11.00 5.62 −0.6766 0.4483 0.0593 0.1097 −0.7359 0.4615 −1.5945 合并 0.0960 0.1367 0.28~0.69(凸形) 3.78 1.12 −1.2194 1.0014 0.0275 0.1071 −1.2469 1.0071 −1.2381 合并 0.0960 0.1367 工程
地质
岩组松散碎石土体 13.15 6.74 −0.6736 0.4092 0.0720 0.1103 −0.7456 0.4238 −1.7592 合并 −0.1844 0.1329 石英砂岩 7.55 10.11 0.2947 0.3354 −0.0283 0.1123 0.3230 0.3537 0.9131 合并 −0.1844 0.1329 砂岩、泥岩、页岩 23.08 35.96 0.4474 0.1781 −0.1844 0.1330 0.6318 0.2222 2.8430 3 0.4474 0.1781 白云岩、灰岩 38.88 37.08 −0.0491 0.1749 0.0301 0.1343 −0.0793 0.2205 −0.3596 合并 −0.1844 0.1329 玄武岩 16.94 10.11 −0.5206 0.3343 0.0800 0.1124 −0.6005 0.3526 −1.7029 合并 −0.1844 0.1329 侵入岩脉 0.29 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 合并 −0.1844 0.1329 距断层
距离/m0~50 5.63 12.36 0.7973 0.3046 −0.0746 0.1137 0.8719 0.3252 2.6814 3 0.7973 0.3046 50~100 5.86 5.62 −0.0429 0.4492 0.0026 0.1096 −0.0455 0.4624 −0.0985 合并 −0.0746 0.1137 100~300 19.87 19.10 −0.0397 0.2436 0.0096 0.1184 −0.0493 0.2709 −0.1822 合并 −0.0746 0.1137 300~500 16.11 20.22 0.2299 0.2371 −0.0508 0.1192 0.2806 0.2654 1.0574 合并 −0.0746 0.1137 500~1000 26.12 17.98 −0.3764 0.2508 0.1056 0.1177 −0.4820 0.2770 −1.7397 合并 −0.0746 0.1137 1000~2 000 22.75 24.72 0.0840 0.2143 −0.0261 0.1227 0.1101 0.2469 0.4457 合并 −0.0746 0.1137 >2000 3.66 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 合并 −0.0746 0.1137 距主要
公路
距离/m0~50 11.11 29.21 0.9820 0.1986 −0.2296 0.1265 1.2116 0.2354 5.1469 3 0.9820 0.1986 50~100 8.14 13.48 0.5111 0.2909 −0.0605 0.1145 0.5716 0.3126 1.8284 合并 −0.1257 0.1296 100~300 20.62 20.22 −0.0196 0.2368 0.0050 0.1192 −0.0247 0.2651 −0.0931 合并 −0.1257 0.1296 300~500 12.53 3.37 −1.3195 0.5781 0.1005 0.1084 −1.4201 0.5882 −2.4144 4 −1.3195 0.5781 500~1000 17.21 16.85 −0.0210 0.2594 0.0043 0.1168 −0.0253 0.2845 −0.0889 合并 −0.1257 0.1296 1000~2 000 16.67 10.11 −0.5038 0.3343 0.0765 0.1124 −0.5803 0.3527 −1.6455 合并 −0.1257 0.1296 >2000 13.72 6.74 −0.7153 0.4092 0.0785 0.1103 −0.7939 0.4238 −1.8733 合并 −0.1257 0.1296 土地
利用
类型林地 54.70 28.09 −0.0794 0.1497 0.0883 0.1515 −0.1676 0.2130 −0.7870 合并 −0.1287 0.1183 灌木 0.14 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 合并 −0.1287 0.1183 草地 7.39 8.99 0.1979 0.3556 −0.0176 0.1116 0.2155 0.3727 0.5783 合并 −0.1287 0.1183 耕地 16.54 10.11 −0.4955 0.3343 0.0749 0.1124 −0.5704 0.3527 −1.6174 合并 −0.1287 0.1183 建筑 12.82 11.24 −0.1332 0.3175 0.0182 0.1130 −0.1514 0.3370 −0.4492 合并 −0.1287 0.1183 裸地或稀疏植被 8.09 41.57 0.8719 0.2452 −0.1287 0.1183 1.0006 0.2723 3.6746 4 0.8719 0.2452 开阔水域 0.32 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 合并 −0.1287 0.1183 3.2 模型ROC曲线和AUC
采用接受者操作特性曲线(Receiver Operating Characteristic Curve,ROC)和ROC 曲线下与坐标轴围成的面积(Area Under Curve,AUC)[29-32]评估模型拟合精度。模型拟合精度越好则AUC越接近1,0.7~0.9时表示较好。文中建立的证据权法模型的AUC为80.4%,拟合精度优异(图5)。
3.3 易发性评价结果
综合自然间断点分级和地质灾害分布,圈定了高易发区、中易发区和低易发区(表3、图6),其中高易发区188.55 km2(占研究区总面积的49.41%),中易发区152.21 km2(占研究区总面积的39.88%),89.9%和9.1%的地灾点落入高易发区和中易发区,显示易发性分区符合已发地质灾害分布,模型预测性能较好。
表 3 地质灾害易发性分区表Table 3. Form of geological hazard susceptibility zoning易发性
分区面积/
km2占总面积/
%编号 面积/
km2占大区/
面积%灾点数 灾点密度/
(个·km−2)地质灾害
高易发区(Ⅰ)188.55 49.41 Ⅰ1 152.32 80.79 64 0.41 Ⅰ2 17.93 9.51 9 0.50 Ⅰ3 16.11 8.54 8 0.94 Ⅰ4 2.19 1.16 1 0.46 地质灾害
中易发区(Ⅱ)152.21 39.88 Ⅱ1 1.30 0.85 − − Ⅱ2 18.82 12.36 2 0.11 Ⅱ3 15.03 9.87 1 0.07 Ⅱ4 12.92 8.49 − − Ⅱ5 18.51 12.16 2 0.11 Ⅱ6 9.12 5.99 − − Ⅱ7 44.66 29.34 − − Ⅱ8 12.34 8.11 1 0.08 Ⅱ9 11.73 7.71 − − Ⅱ10 7.78 5.11 − − 低易发区(Ⅲ) 47.40 12.42 Ⅲ1 47.40 100 1 0.02 结合地质环境因素特征分析西部高易发区(图6蓝色框范围内、图7)主要位于砂岩、泥岩和页岩岩组,断裂构造较密集,以山谷斜坡地貌为主,坡度15°~25°和>35°较陡峭斜坡范围成片发育且面积较广,主要公路建于本区山谷,裸地/稀疏植被和草地连片覆盖范围较大。预测圈定的高易发区的这些分布特征,与上文分析得到的地质灾害控制因素特征吻合,预测结果符合地质灾害空间分布特征。
4. 结论
(1)“因子面积百分比A”“地灾数百分比B”和“比率β”,以及各因素各分类地质灾害证据权重可以定量地分析各因素与地质灾害发生的相关性。
(2)圈定高易发区188.55 km2(占总面积的49.41%),中易发区152.21 km2(占总面积的39.88%),易发性分区图具有较好的等级区分度。
(3)通过证据权法绘制的地质灾害易发性图可以有效地预测该区地质灾害,模型拟合精度AUC=80.4%。89.9%和9.1%的地灾点落入高和中易发区,建模结果与实际地质灾害发育情况吻合度高,较好地揭示了研究区地质灾害易发性特征。
(4)证据权法在研究区这类云南高原低山丘陵区有效性高,方法理论清晰,较为成熟,由数据驱动,参数定义明确,易于一线工程师推广使用。同时,该方法权重的估计和模型预测性能受预测因子选择、因子数据空间分辨率、因子分级影响较大,具体工作中宜对这些问题进行深入研究和统计分析。建议通过对因子分级进行显著性测试实施优选,减小对权重的高估或低估,提高模型效能。
-
表 1 原始数据参数信息表
Table 1 Information of the input data
原始数据 谱段范围/μm 空间分辨率/m 高分一号(GF-1)
卫星影像数据0.45~0.90 2.00 0.45~0.52 8.00 0.52~0.59 0.63~0.69 0.77~0.89 数字高程模型DEM − 30.00 -
[1] 范一大,吴玮,王薇,等. 中国灾害遥感研究进展[J]. 遥感学报,2016,20(5):1170 − 1184. [FAN Yida,WU Wei,WANG Wei,et al. Research progress of disaster remote sensing in China[J]. Journal of Remote Sensing,2016,20(5):1170 − 1184. (in Chinese with English abstract) [2] 常昊,张吕. 云南鲁甸Ms6.5级地震震区滑坡易发性分析[J]. 中国地质灾害与防治学报,2017,28(2):38 − 48. [CHANG Hao,ZHANG Lyu. Analysis of Susceptibility causes of landslides triggered by earthquake in Ludian Ms6.5 earthquake region[J]. The Chinese Journal of Geological Hazard and Control,2017,28(2):38 − 48. (in Chinese with English abstract) [3] 曹颖,黄江培,钱佳威,等. 利用时移层析成像方法揭示与2014年云南鲁甸MS6.5地震有关的P波速度变化[J]. 地球物理学报,2021,64(5):1569 − 1584. [CAO Ying,HUANG Jiangpei,QIAN Jiawei,et al. Application of time-lapse seismic tomography based on double-difference tomography to reveal P wave velocity changes related to the 2014 Ludian MS6.5 earthquake[J]. Chinese Journal of Geophysics,2021,64(5):1569 − 1584. (in Chinese with English abstract) [4] 韩继冲,张朝,曹娟. 基于逻辑回归的地震滑坡易发性评价—以汶川地震、鲁甸地震为例[J]. 灾害学,2021,36(2):193 − 199. [HAN Jichong,ZHANG Zhao,CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology,2021,36(2):193 − 199. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2021.02.034 [5] 胡华,吴轩,张越. 基于模拟试验的强降雨条件下花岗岩残积土斜坡滑塌破坏机理分析[J]. 中国地质灾害与防治学报,2021,32(5):92 − 97. [HU Hua,WU Xuan,ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):92 − 97. (in Chinese with English abstract) [6] 魏正发,张俊才,曹小岩,等. 青海西宁南北山滑坡、崩塌成因及影响分析[J]. 中国地质灾害与防治学报,2021,32(4):47 − 55. [WEI Zhengfa,ZHANG Juncai,CAO Xiaoyan,et al. Causes and influential factor analysis of landslides and rockfalls in north & south mountain areas of Xining City,Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):47 − 55. (in Chinese with English abstract) [7] 龙玉洁,李为乐,黄润秋,等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报·信息科学版,2020,45(11):1792 − 1800. [LONG Yujie,LI Weile,HUANG Runqiu,et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1792 − 1800. (in Chinese with English abstract) [8] 孙国庆,陈方,于博,等. 2001—2017年尼泊尔中部地区滑坡变化及其影响因素[J]. 中国科学院大学学报,2020,37(3):308 − 316. [SUN Guoqing,CHEN Fang,YU Bo,et al. Landslide change and its influence factors in central Nepal from 2001 to 2017[J]. Journal of University of Chinese Academy of Sciences,2020,37(3):308 − 316. (in Chinese with English abstract) DOI: 10.7523/j.issn.2095-6134.2020.03.003 [9] 许冲,戴福初,陈剑,等. 汶川Ms8.0地震重灾区次生地质灾害遥感精细解译[J]. 遥感学报,2009,13(4):754 − 762. [XU Chong,DAI Fuchu,CHEN Jian,et al. Remote sensing fine interpretation of secondary geological disasters in the hardest hit areas of Wenchuan Ms8.0 earthquake[J]. Journal of Remote Sensing,2009,13(4):754 − 762. (in Chinese) DOI: 10.11834/jrs.20090416 [10] LU P,QIN Y Y,LI Z B,et al. Landslide mapping from multi-sensor data through improved change detection-based Markov random field[J]. Remote Sensing of Environment,2019,231:111235. DOI: 10.1016/j.rse.2019.111235
[11] LI Z B,SHI W Z,LU P,et al. Landslide mapping from aerial photographs using change detection-based Markov random field[J]. Remote Sensing of Environment,2016,187:76 − 90. DOI: 10.1016/j.rse.2016.10.008
[12] STUMPF A,KERLE N. Object-oriented mapping of landslides using Random Forests[J]. Remote Sensing of Environment,2011,115(10):2564 − 2577. DOI: 10.1016/j.rse.2011.05.013
[13] VAN DEN EECKHAUT M,KERLE N,POESEN J,et al. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data[J]. Geomorphology,2012,173/174:30 − 42. DOI: 10.1016/j.geomorph.2012.05.024
[14] MARTHA T R,KERLE N,JETTEN V,et al. Characterising spectral,spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods[J]. Geomorphology,2010,116(1/2):24 − 36.
[15] SUN W Y,TIAN Y S,MU X M,et al. Loess landslide inventory map based on GF-1 satellite imagery[J]. Remote Sensing,2017,9(4):314. DOI: 10.3390/rs9040314
[16] LESHCHINSKY B A,OLSEN M J,TANYU B F. Contour Connection Method for automated identification and classification of landslide deposits[J]. Computers & Geosciences,2015,74:27 − 38.
[17] LI Y G,CHEN G Q,HAN Z,et al. A hybrid automatic thresholding approach using panchromatic imagery for rapid mapping of landslides[J]. GIScience & Remote Sensing,2014,51(6):710 − 730.
[18] HAN Z,SU B,LI Y G,et al. An enhanced image binarization method incorporating with Monte-Carlo simulation[J]. Journal of Central South University,2019,26(6):1661 − 1671. DOI: 10.1007/s11771-019-4120-9
[19] HAN Z,LI Y G,DU Y F,et al. Noncontact detection of earthquake-induced landslides by an enhanced image binarization method incorporating with Monte-Carlo simulation[J]. Geomatics,Natural Hazards and Risk,2019,10(1):219 − 241. DOI: 10.1080/19475705.2018.1520745
[20] CASTELLANOS F J,GALLEGO A J,CALVO-ZARAGOZA J. Unsupervised neural domain adaptation for document image binarization[J]. Pattern Recognition,2021,119:108099. DOI: 10.1016/j.patcog.2021.108099
[21] XIONG W,ZHOU L,YUE L,et al. An enhanced binarization framework for degraded historical document images[J]. EURASIP Journal on Image and Video Processing,2021,2021(1):13. DOI: 10.1186/s13640-021-00556-4
[22] 皮新宇,曾永年,贺城墙. 融合多源遥感数据的高分辨率城市植被覆盖度估算[J]. 遥感学报,2021,25(6):1216 − 1226. [PI Xinyu,ZENG Yongnian,HE Chengqiang. High-resolution urban vegetation coverage estimation based on multi-source remote sensing data fusion[J]. National Remote Sensing Bulletin,2021,25(6):1216 − 1226. (in Chinese with English abstract) [23] ASHOK A,RANI H P,JAYAKUMAR K V. Monitoring of dynamic wetland changes using NDVI and NDWI based landsat imagery[J]. Remote Sensing Applications:Society and Environment,2021,23:100547. DOI: 10.1016/j.rsase.2021.100547
[24] 陈安,李景吉,黎文婷,等. 2001—2018年雅砻江流域植被NDVI时空动态及其对气候变化的响应[J]. 水土保持研究,2022,29(1):169 − 175. [CHEN An,LI Jingji,LI Wenting,et al. Spatiotemporal of NDVI in the Yalong River basin from 2001 to 2018 and its response to climate change[J]. Research of Soil and Water Conservation,2022,29(1):169 − 175. (in Chinese with English abstract) [25] SHEN J X,EVANS F. The potential of landsat NDVI sequences to explain wheat yield variation in fields in western Australia[J]. Remote Sensing,2021,13(11):2202. DOI: 10.3390/rs13112202
[26] 岳思聪,赵荣椿,王庆. 基于象素主轴方向灰度变化特征的特征点检测算法[J]. 西北工业大学学报,2008,26(2):162 − 167. [YUE Sicong,ZHAO Rongchun,WANG Qing. Feature point detection using intensity variations along pixel principal orientation axes[J]. Journal of Northwestern Polytechnical University,2008,26(2):162 − 167. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-2758.2008.02.006 [27] 杨雨奇,高晓光,冯晓毅,等. 基于主轴分析和团块特征提取的ISAR目标检测方法[J]. 西北工业大学学报,2010,28(5):689 − 694. [YANG Yuqi,GAO Xiaoguang,FENG Xiaoyi,et al. A new method for ISAR target detection based on chief axis analysis and block feature extraction[J]. Journal of Northwestern Polytechnical University,2010,28(5):689 − 694. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-2758.2010.05.010 [28] 郝军保,邵磊. 惯性主轴方向的最佳判别[J]. 连云港职业大学学报,1993,6(1):92 − 95. [HAO Junbao,SHAO Lei. The best discrimination of the direction of inertia spindle[J]. Journal of Lianyungang Technical College,1993,6(1):92 − 95. (in Chinese) [29] 蔡建乐. 用特征矩阵的伴随矩阵求解惯量主轴方向[J]. 大学物理,1995,14(9):21 − 22. [CAI Jianle. A calculation for the principal axes of inertia by adjoint matrix of eigen matrix[J]. College Physics,1995,14(9):21 − 22. (in Chinese with English abstract) [30] 罗斌. 灰度图象的惯性主轴方向特征[J]. 安徽大学学报(自然科学版),1998,22(4):40 − 42. [LUO Bin. Least inertia moment axis of grey scale image[J]. Journal of Anhui University (Natural Sciences),1998,22(4):40 − 42. (in Chinese with English abstract) [31] 周智勇. 基于Landsat遥感影像的围场县植被覆盖时空格局变化[J]. 水文地质工程地质,2020,47(6):81 − 90. [ZHOU Zhiyong. Change in temporal-spatial pattern of vegetation coverage in Weichang County based on Landsat remote sensing image[J]. Hydrogeology & Engineering Geology,2020,47(6):81 − 90. (in Chinese with English abstract) [32] 贺军亮,韦锐,李丽,等. 基于时间序列植被指数资料的承德市植被覆盖时空演变分析[J]. 水文地质工程地质,2020,47(6):91 − 98. [HE Junliang,WEI Rui,LI Li,et al. Temporal and spatial evolution of vegetation cover in Chengde based ontime series NDVI data[J]. Hydrogeology & Engineering Geology,2020,47(6):91 − 98. (in Chinese with English abstract) [33] 杜春雨,范文义. 叶面积指数与植被指数关系研究[J]. 林业勘查设计,2013(2):77 − 80. [DU Chunyu,FAN Wenyi. Research and analysis of the correlation between leaf area index and vegetation index[J]. Forest Investigation Design,2013(2):77 − 80. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-4505.2013.02.035 [34] 潘霞,高永,汪季,等. 植被指数遥感演化研究进展[J]. 北方园艺,2018(20):162 − 169. [PAN Xia,GAO Yong,WANG Ji,et al. Review on vegetation index using remote sensing evolution[J]. Northern Horticulture,2018(20):162 − 169. (in Chinese with English abstract) [35] 张慧,李平衡,周国模,等. 植被指数的地形效应研究进展[J]. 应用生态学报,2018,29(2):669 − 677. [ZHANG Hui,LI Pingheng,ZHOU Guomo,et al. Advances in the studies on topographic effects of vegetation indices[J]. Chinese Journal of Applied Ecology,2018,29(2):669 − 677. (in Chinese with English abstract) [36] 张华,李明,宋金岳,等. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志,2021,40(8):2530 − 2540. [ZHANG Hua,LI Ming,SONG Jinyue,et al. Analysis of driving factors of vegetation NDVI change in Qilian Mountain National Park based on geographic detector[J]. Chinese Journal of Ecology,2021,40(8):2530 − 2540. (in Chinese with English abstract) [37] 武正丽. 2000~2012年祁连山植被覆盖变化及其对气候的响应研究[D]. 兰州: 西北师范大学, 2014 WU Zhengli. The research of the vegetation change and the sensitivity between NDVI and climatic factors in Qilian Mountains from2000to2012[D]. Lanzhou: Northwest Normal University, 2014. (in Chinese with English abstract)
[38] 周庆,吴果. 鲁甸6.5级地震崩滑地质灾害分布与成因探讨[J]. 地震地质,2015,37(1):269 − 278. [ZHOU Qing,WU Guo. Seismic landslides and seismogenic structure of the 2014 Ludian ms6.5 earthquake[J]. Seismology and Geology,2015,37(1):269 − 278. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2015.01.021 [39] 田颖颖,许冲,徐锡伟,等. 2014年鲁甸MS6.5地震震前与同震滑坡空间分布规律对比分析[J]. 地震地质,2015,37(1):291 − 306. [TIAN Yingying,XU Chong,XU Xiwei,et al. Spatial distribution analysis of coseismic and pre-earthquake landslides triggered by the 2014 Ludian ms6.5 earthquake[J]. Seismology and Geology,2015,37(1):291 − 306. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2015.01.023 [40] 许强, 李为乐. 汶川地震诱发滑坡方向效应研究[J]. 四川大学学报(工程科学版), 2010, 42(增刊1): 7 − 14 XU Qiang, LI Weile. Study on the direction effects of landslides triggered by Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(Sup 1): 7 − 14. (in Chinese with English abstract)
[41] 许强,李为乐. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报,2010,18(6):818 − 826. [XU Qiang,LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2010,18(6):818 − 826. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2010.06.002 -
期刊类型引用(23)
1. 马明明,伍尚前,谢猛,童鹏,袁晓波. 决策树分类在铁路沿线桉树提取及滑坡隐患识别中的应用——以贵广高铁广西段为例. 中国地质灾害与防治学报. 2025(01): 37-45 . 本站查看
2. 刘亚静,刘红健. 基于信息量-随机森林模型的地震带地质灾害易发性评价:以松潘-较场地震带为例. 科学技术与工程. 2024(01): 143-154 . 百度学术
3. 黄海,江思义,李海良,李春玲,吴秋菊. 岩溶地区危岩和岩质崩塌易发性评价研究——以广西贺州市平桂区为例. 成都理工大学学报(自然科学版). 2024(01): 137-151 . 百度学术
4. 刘玥,申玉松,李旭,张迪. 基于不同耦合模型的区域地质灾害易发性评价——以河南商城县为例. 中国地质调查. 2024(01): 83-92 . 百度学术
5. 高茂宁,魏冠军,雷传金,张沛. 顾及时序InSAR的海东市辖区滑坡敏感性评价. 地理空间信息. 2024(05): 97-101 . 百度学术
6. 石文君,王宇栋,解晋航,李章杰,梁形形. 基于多种模型对比的寻甸县地质灾害易发性分析. 矿产勘查. 2024(06): 1092-1102 . 百度学术
7. 寸得欣,令狐昌卫,马一奇,尹林虎,陈庆松,刘振南,涂春霖. 基于GIS和加权信息量模型的富源县地质灾害易发性评价. 科学技术与工程. 2024(18): 7563-7573 . 百度学术
8. 冯振,陈亮,王立朝,侯圣山,田怡帆,刘明学. 区域地质灾害易发性评价的证据权法原理与实践. 地质通报. 2024(07): 1255-1265 . 百度学术
9. 张宇,简季,郝利娜,杨鑫. 基于IV-MLP耦合模型的龙陵县滑坡易发性评价. 物探化探计算技术. 2024(05): 618-626 . 百度学术
10. 桂富羽,史正涛,喜文飞,付尧,郭峻杞. 基于证据权模型的滑坡灾害易发性评价研究——以普洱市为例. 城市勘测. 2024(05): 188-193+198 . 百度学术
11. 梁峰,江攀和. 基于IVM-CF耦合模型的贵定县滑坡地质灾害易发性评价. 水利水电技术(中英文). 2024(S2): 669-677 . 百度学术
12. 裴鹏程,黄帅,袁静,张智康. 走滑断层作用下上覆土层的变形破坏机理. 中国地质灾害与防治学报. 2024(06): 115-127 . 本站查看
13. 赖波,赵风顺,江金进,江山,江宁,李俊生. 基于AHP-信息量法的珠海市地质灾害风险评价. 华南地质. 2023(01): 147-156 . 百度学术
14. 阮征,周少伟,姚胜,田垚. 黄土高原腹地地质灾害致灾因素分析及易发性评价. 科技导报. 2023(10): 115-124 . 百度学术
15. 王伟中,李树兴,杨成,许涛,宋飞,曹小红,李浩然,王伟华. 基于GIS和证据权模型的山阳县地质灾害易发性评价. 新疆地质. 2023(02): 262-269 . 百度学术
16. 黄鑫,吴珍云,丁德建,李希星,石祖峰,祝民强,孙彬涵. 基于信息量-逻辑回归模型的江西省婺源县地质灾害易发性评价. 东华理工大学学报(自然科学版). 2023(03): 259-268 . 百度学术
17. 曾斌,吕权儒,寇磊,艾东,许汇源,袁晶晶. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价. 中国地质灾害与防治学报. 2023(04): 105-113 . 本站查看
18. 胡杨,张紫昭,林世河. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价. 工程地质学报. 2023(04): 1350-1363 . 百度学术
19. 张潇远,苏巧梅,赵财胜,朱月琴,李凯新,范锦龙,白东升. 一种利用贝叶斯算法优化XGBoost的滑坡易发性评价方法. 测绘科学. 2023(06): 140-150 . 百度学术
20. 张华湘,孙乾征,樊善兴,杨子林. 滑坡易发性评价方法和精度比较——以贵州省大方县为例. 贵州地质. 2023(03): 302-309+295 . 百度学术
21. 龚芯磊,张斌,高金利,杨洪森. 基于斜坡单元尺度AHP-信息量模型的重点区域地质灾害风险评价——以贵州省紫云县中部重点区为例. 贵州地质. 2023(03): 310-320 . 百度学术
22. 谭燕,崔雨,金华丽,方龙建,葛鹏,付乐意. 基于信息量模型及层次分析法的镇江丹徒区滑坡崩塌地质灾害易发性评价. 昆明冶金高等专科学校学报. 2023(04): 7-15 . 百度学术
23. 董凯,王永卿,蒲秀勇,梁凯丽. 基于信息量法的广西南宁市武鸣区地质灾害易发性评价. 农业灾害研究. 2023(09): 300-303 . 百度学术
其他类型引用(8)