Study of dynamic characteristics of ground collapse caused by mining in Gaojialiang coal mine, Inner Mongolia, using SBAS-InSAR technology
-
摘要:
采空造成的地面塌陷是井工矿开采中最常见的问题,若不及时监测治理可能会影响到整体和整体环境。针对传统沉降监测方法难以在地表高低起伏、沟谷纵横的丘陵地貌矿区开展的问题,文章以内蒙古高家梁煤矿203盘区的20314、20313和20312工作面为研究对象,收集2018年4月至2020年12月期间12景Sentinel-1雷达影像,用短基线集差分干涉测量技术(small baseline subset InSAR,SBAS-InSAR)进行处理,获取采空地面塌陷平均位移速度、时序形变量等数据,进而分析研究区动态特征。结果表明:研究区采空地面塌陷整体平均位移速度呈现出“北部快,南部慢”的特征,最大沉降速为−17.2 mm/a,位于20313工作面的北部三分之一处;采空地面塌陷时序形变量整体呈现出“由南向北,由西向东”的特征,符合实际工作面开采方向和顺序,主要沉降区分布在20314和20313工作面的北部,最大形变量达到了−106 mm。实践表明:SBAS-InSAR技术在丘陵地貌的矿区开展采空地面塌陷监测具有较强的技术优势且效果良好,为矿区采空地面塌陷监测提供方法支持。
-
关键词:
- 高家梁矿区 /
- 丘陵地貌 /
- SBAS-InSAR技术 /
- 采空地面塌陷 /
- 特征分析
Abstract:Ground collapse due to mining activities is a prevalent issue in underground coal mining processes. Without timely monitoring and control, it can adversely affect the surrounding structures and the environment. Addressing the challenges of traditional subsidence monitoring methods in the mining areas with uneven hilly terrain, this study focuses on the 20314, 20313, and 20312 working faces within the 203 panel of Gaojialiang coal mine area, Inner Mongolia. It employs 12 images of Sentinel-1 radar from April 2018 to December 2020 processed using the small baseline subset differential interferometry InSAR (SBAS-InSAR) technique to derive average displacement velocities and temporal subsidence data in the study area. The study analyzes the dynamic characteristics of subsidence in the area. The results show that the overall subsidence rate is higher in the northern part of the study area compared to the south, with the maximum subsidence rate of approximately −17.2 mm/year observed in the northern third of the 20313 working face. The subsidence pattern generally progresses from south to north and from west to east, corresponding to the actual mining sequence. Major subsidence areas are concentrated in the northern portions of the 20314 and 20313 working faces, with maximum subsidence reaching about −106 mm. The application shows that SBAS-InSAR technology has effective results and significantly technical advantages in monitoring land subsidence in hilly mining areas, thereby providing certain method support for land subsidence monitoring in mining areas.
-
0. 引言
地面形变作为一种缓变性地质灾害,主要具有缓变性、滞后性、区域性、差异性、长期性以及不可逆等特点,始终威胁着城市安全及经济社会的可持续发展[1]。
传统的形变监测方法成本高、效率低、受天气影响,且需建立监测网,无法快速开展大面积监测[2]。合成孔径雷达干涉测量技术( Interferometric synthetic aperture radar,InSAR)凭借其全天侯、强穿透性、高精度获取连续覆盖地面高程和信息的突出优势,已在地表形变监测、滑坡监测、矿区沉降监测、危岩体监测等相关领域得到广泛应用[3-9]。在此基础上发展起来的永久散射体合成孔径雷达干涉测量技术(Permanent scatterers interferometric synthetic aperture radar,PS-InSAR)[10-11],有效消除了时空失相干引起的相位噪声,解决了大气效应难以消除的问题,适用于持续性、区域性地表微小形变监测[12],已经广泛应用在城市地面形变监测。
本研究采用PS-InSAR技术对深圳市南山区后海的片区进行了大范围、长时间的地面和建(构)筑物沉降监测,获得巨厚风化深槽地区地面及采用桩基础施工工艺的建构筑物沉降特征和规律,为深圳后海巨厚深槽地质灾害的排查、防治工作提供基础。
1. 研究区域与数据
1.1 研究区域
深圳市位于华南褶皱系中的紫金—惠阳凹褶断束的西南部、五华—深圳大断裂带南西段,高要—惠来东西向构造带中段的南缘地带。北东向莲花山断裂带与北西向珠江口大断裂带两条断裂在深圳南山后海片区交汇,对深圳、香港的地层稳定性均有影响[13]。
南山区是全国百强区,后海片区是总部大厦基地。该片区原为滨海滩涂,被第四系覆盖,填海造陆区未进行过详细的地质调查。在工程建设中发现其下断层发育,基岩埋深70~130 m,形成了巨厚的风化深槽,上面建筑采用超长桩基础[14]。
图1为本次研究区范围,为南山区南部东侧沿海区域。北至白石路,南至望海路,西至后海大道,东边沿沙河西路—望海路,面积约为11.0 km2。
1.2 数据源
采用2018年2月—2020年12月52期COSMO-SkyMed重复轨道SAR影像,InSAR数据的基本参数见表1。
表 1 In-SAR数据基本参数Table 1. Basic Parameters of In-SAR Data参数 数值 监测日期 卫星类型 COSMO-SkyMed 2018-02-04 、2018-03-08 、2018-03-24 、2018-04-09 、2018-05-11 成像模式 StripMap (条带成像)模式 2018-06-12 、2018-07-11 、2018-09-13 、2018-10-02 、2018-10-18 数据波段 X波段(3.1cm) 2018-11-03 、2018-11-19 、2018-12-01 、2019-01-06 、2019-01-22 空间分辨率/m 3 2019-02-07 、2019-02-19 、2019-03-11 、2019-03-27 、2019-04-12 升/降轨模式 降轨 2019-04-28 、2019-05-10 、2019-06-10 、2019-06-26 、2019-07-12 极化方式 HH极化 2019-07-28 、2019-08-14 、2019-08-29 、2019-10-09 、2019-10-25 中心入射角/(°) 32.55 2019-11-01 、2019-12-03 、2020-01-13 、2020-02-05 、2020-02-21 影像数量 52景 2020-03-24 、2020-04-09 、2020-04-25 、2020-05-11 、2020-05-27 数据级别 SLC数据(单视复) 2020-06-12 、2020-06-28 、2020-07-14 、2020-07-30 、2020-08-15 监测日期 2018-02-04—2020-12-21 2020-09-16 、2020-10-11 、2020-10-18 、2020-11-03 、2020-11-19 处理方法 PS-InSAR 2020-12-05 、2020-12-21 2. 基于PS-InSAR的结果分析
2.1 整体形变分析
本研究利用PS-InSAR技术,对2018年2月—2020年12月的影像数据进行计算,获得148151个有效PS点。
区域累计形变量为−79.1~37.5 mm,累计形变量−8~8 mm的PS点占总数的86%,累计形变量统计见图2。区域平均形变速率为−26.9~11.6 mm/a,形变速率在−3~3 mm/a的PS点占总数的91%,超过9 mm/a的PS点共1106个,占0.8%。
2.2 重点监测点形变分析
在研究区域深槽上方选取21处(点1—点21)地面以及构(建)筑物作为重点形变监测特征点进行形变分析,监测特征点位置分布见图3,监测特征点形变特点及曲线见表2。
表 2 监测特征点形变特点及曲线Table 2. Deformation characteristics and curves of feature points监测特征点
分类监测特征点位置 沉降形变特点 典型形变—日期序列曲线 已有高层建筑 点2舜远金融大厦
点3大成基金总部大厦
点5海信南方大厦
点6深圳湾一号
点7卓越维港名苑形变曲线总体均呈略有
起伏的变化趋势,
整体形变稳定
见右侧点7卓越维港名苑形变—日期曲线图在建项目 点1红土创新广场
点4恒裕深圳湾监测期间受施工影响,形变曲线不规律,或呈略有起伏上升趋势,或呈略有起伏下降趋势
见右侧点1红土创新广场形变—日期曲线图桥梁 点8滨海海滨立交桥
点17桥梁
点21桥梁形变曲线总体呈略有起伏的变化趋势,整体形变稳定
见右侧点17桥梁形
变—日期曲线图道路 点9海德三道
点10创业路
点11望海路
点12望海路
点20东滨路形变曲线总体呈略有起伏的变化趋势,整体形变稳定
见右侧点12望海路形
变—日期曲线图公园草地 点14绿化草地
点13、点16、点18、点19深圳湾公园草地
点15大运会纪念碑广场除了点18深圳湾公园草地形变曲线为均匀缓慢沉降趋势(见右侧点18形变—日期曲线图)外,其余形变曲线均为总体呈略有起伏的下降趋势,整体形变稳定 注:PS为监测特征点的控制点,VEL为高程。 综上,研究区域处于比较稳定或整体缓慢形变,存在一处集中形变区域,位置在深圳湾公园周边。
3. InSAR技术精度验证
InSAR技术可快速、精确地获得区域垂向形变场,其在城区可获得毫米级地表形变[15]。InSAR形变监测结果能提供时间序列形变量,统计影像获取期内任意两期影像间的形变量,可以充分保障外业水准资料和 InSAR数据获取形变量比对的时空一致性。
将研究区域InSAR形变监测结果与同一地区的蛇口文体中心基坑支护工程变形监测结果对比,结果见表3。
表 3 相同位置不同技术手段成果对比Table 3. Comparison of results of different technical means in the same position项目 蛇口文体中心基坑
支护形变监测项目后海断裂带项目 技术手段 S05级水准仪(134次) InSAR(52期) 对应位置 点7附近
(深圳市育才舒曼艺术学校体育场)点7
(卓越维港名苑)监测时间 2019年2月—2020年4月 累计形变/mm −1.9 −1.6 根据《工程测量标准》(GB50026—2020)[16],对同一目标点采用两种不同的监测手段,相同的监测时段内二者的实际误差为±0.3 mm,小于观测中误差±0.71 mm和最大观测误差±1.41 mm,监测精度满足规范要求。
由此可见,InSAR技术可获取大面积、全天候、高精度和高分辨率的地表三维空间微小变化,在地表形变监测方面显示出传统监测不具备的优越性。
4. 形变原因分析
监测期间,深圳湾公园及周边区域累计形变量较大,因此在该区域选取了5个点(A1—A5)的勘察资料进行分析,位置分布见图4。
4.1 A2中建钢构大厦北侧
中建钢构大厦北侧草地累计形变量为-62.1 mm,平均形变速率为20.4 mm/a,形变—日期曲线见图5。
该大厦勘察资料表明,场地内人工填土(
${\rm{Q}}^{ml} $ )成分主要为翻填淤泥,多呈流—软塑状态,组分不均,堆填时间较短,属软弱土层;第四系全新统海相沉积层(${\rm{Qh}}^m$ )淤泥以及第四系上更新统沼泽相沉积层(${\rm{Qp}}^h$ )淤泥均呈流塑状态,含水量大,孔隙比大,具高压缩性、低强度等特征,属软弱土层,最厚达15 m。场地受断裂构造影响,场地内基岩大部分蚀变严重,局部碎裂岩化特征明显,绿泥石化现象显著。各风化基岩起伏变化较大,块状强风化蚀变粗粒花岗岩顶板标高−41.44~−18.49 m,变化幅度达22.95 m;中风化蚀变粗粒花岗岩顶板标高−48.14~−22.84 m,变化幅度达25.30 m。大厦桩基础采用了旋挖桩,平均桩长30.2m,最深50.6m,观测期间大厦整体形变稳定。而大厦北侧场地有均匀沉降趋势,沉降主要由填土及淤泥引起。
4.2 点A1、A3、A4、A5深圳湾公园内草地
该4点累计形变量为40.9~59.6 mm,平均形变速率为15.29~19.76 mm/a,总体呈均匀沉降趋势。以A5深圳湾人才公园为例,形变—日期曲线见图6。
根据A5深圳湾人才公园勘察资料,钻探深度范围内揭露的地层岩性特征自上而下见表4。
表 4 地层岩性特征Table 4. Formation lithologic characteristics地层岩性 地层岩性特征 第四系人工
填土层液性指数 压缩指数
/MPa−1压缩模量
/MPa0.45 0.5 4.0 主要为素填土,层厚1.2~26.9 m,呈松散~稍密状,物理力学性质不均匀,工程性质较差,承载力较低,在上部较大荷载长期作用下易产生沉降及不均匀沉降 第四系海积
冲积层液性指数 压缩指数
/MPa−1压缩模量
/MPa1.36 1.28 2.0 主要为淤泥软土层,层厚0.3~17.0 m,呈流塑状,含较多腐殖质、贝壳碎屑,承载力极低,灵敏度高 第四系残积层及燕山四期侵入花岗岩 残积的砾质黏性土和全风化花岗岩、强风化花岗岩,粉粒含量高,受水浸湿或浸泡后,易软化变形,强度、承载力骤减 该区域填土层及淤泥质软土层厚,工程性质差,承载力低,易产生不均匀沉降。该区域草地沉降主要由填土及软土沉降引起。
5. 结论
(1)本研究基于长时间序列雷达数据,采用PS-InSAR技术对深圳后海片区进行了高精度连续形变监测与分析。通过与传统监测技术对比,监测精度满足规范要求。PS-InSAR新技术能实现大范围、低成本、高精度、高效率的变形监测需求,体现出传统监测不具备的优越性。
(2)对监测结果进行统计分析,南山后海片区深槽上建(构)筑物的沉降相对稳定,沉降量较大的区域为深圳湾公园草地及其周边区域。研究表明,该区域沉降原因为软土沉降。目前在片区深厚深槽上已有的建筑物桩基础是安全的。
(3)深圳湾公园草地均处于缓慢持续沉降状态,后续需重点关注。
(4)该片区巨厚深槽上在建的红土广场、华润深圳湾住宅等建筑。工程桩超长,建筑物的后期沉降值得持续关注。
(5)深槽区域的浅埋地下燃气、排污管网等管线的变形,本次研究未作深入,此类隐患的影响较大,值得深入关注。
-
表 1 工作面详细情况
Table 1 Details of working faces
工作面 长/m 宽/m 开采时间 停采时间 开采深度/m 煤层厚度/m 采深采厚比 20314 1600 280 2017年 2018年初 171.30~186.76 3.98~3.99 42.9~46.9 20313 2000 290 2018年初 2019年初 178.69~189.98 4.20~4.24 42.5~44.8 20312 2600 290 2019年初 2019年末 140.45~205.07 3.78~4.24 33.1~54.3 表 2 SAR数据参数表
Table 2 Parameters of SAR data
编号 轨道号 日期 成像模式 极化方式 飞行方式 入射角/(°) 1 026158 2018-04-12 IW VV 升轨 42.02 2 026683 2018-07-05 IW VV 升轨 42.02 3 027208 2018-10-09 IW VV 升轨 42.02 4 027558 2018-12-08 IW VV 升轨 42.02 5 028083 2019-03-02 IW VV 升轨 42.02 6 028433 2019-06-06 IW VV 升轨 42.02 7 028958 2019-09-10 IW VV 升轨 42.02 8 029308 2019-11-21 IW VV 升轨 42.02 9 029833 2020-02-13 IW VV 升轨 42.02 10 030008 2020-04-25 IW VV 升轨 42.02 11 030183 2020-09-04 IW VV 升轨 42.02 12 030708 2020-11-15 IW VV 升轨 42.02 -
[1] 王毅,黄同新,汪宝存,等. 巨野矿区Sentinel-1A雷达影像PS-InSAR地面形变监测[J]. 自动化与仪器仪表,2019(7):120 − 123. [WANG Yi,HUANG Tongxin,WANG Baocun,et al. Surface deformation monitoring of PS-InSAR in Juye mining based on Sentinel-1A radar images[J]. Automation & Instrumentation,2019(7):120 − 123. (in Chinese with English abstract)] WANG Yi, HUANG Tongxin, WANG Baocun, et al. Surface deformation monitoring of PS-InSAR in Juye mining based on Sentinel-1A radar images[J]. Automation & Instrumentation, 2019(7): 120 − 123. (in Chinese with English abstract)
[2] 范立民,吴群英,彭捷,等. 黄河中游大型煤炭基地地质环境监测思路和方法[J]. 煤炭学报,2021,46(5):1417 − 1427. [FAN Limin,WU Qunying,PENG Jie,et al. Thoughts and methods of geological environment monitoring for large coal bases in the middle reaches of the Yellow River[J]. Journal of China Coal Society,2021,46(5):1417 − 1427. (in Chinese with English abstract)] FAN Limin, WU Qunying, PENG Jie, et al. Thoughts and methods of geological environment monitoring for large coal bases in the middle reaches of the Yellow River[J]. Journal of China Coal Society, 2021, 46(5): 1417 − 1427. (in Chinese with English abstract)
[3] 黄翌,汪云甲,王猛,等. 黄土高原山地采煤沉陷对土壤侵蚀的影响[J]. 农业工程学报,2014,30(1):228 − 235. [HUANG Yi,WANG Yunjia,WANG Meng,et al. Effect of mining subsidence on soil erosion in mountainous area of the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(1):228 − 235. (in Chinese with English abstract)] HUANG Yi, WANG Yunjia, WANG Meng, et al. Effect of mining subsidence on soil erosion in mountainous area of the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 228 − 235. (in Chinese with English abstract)
[4] 马飞. 矿区沉降InSAR监测与预测方法研究[D]. 西安:长安大学,2020. [MA Fei. Research on in sar monitoring and prediction method of mine subsidence[D]. Xi’an:Changan University,2020. (in Chinese with English abstract)] MA Fei. Research on in sar monitoring and prediction method of mine subsidence[D]. Xi’an: Changan University, 2020. (in Chinese with English abstract)
[5] 牛敏杰,师芸,张童康,等. 基于SBAS-InSAR技术的多工作面矿区地表形变特征[J]. 中国科技论文,2022,17(5):581 − 588. [NIU Minjie,SHI Yun,ZHANG Tongkang,et al. Surface deformation characteristics of multiples working faces mining area based on SBAS-InSAR technology[J]. China Sciencepaper,2022,17(5):581 − 588. (in Chinese with English abstract)] DOI: 10.3969/j.issn.2095-2783.2022.05.016 NIU Minjie, SHI Yun, ZHANG Tongkang, et al. Surface deformation characteristics of multiples working faces mining area based on SBAS-InSAR technology[J]. China Sciencepaper, 2022, 17(5): 581 − 588. (in Chinese with English abstract) DOI: 10.3969/j.issn.2095-2783.2022.05.016
[6] 滕超群. 基于InSAR技术的形变灾害监测预测方法及其应用研究[D]. 淮南:安徽理工大学,2021. [TENG Chaoqun. Research on deformation disaster monitoring and prediction method based on InSAR and its application[D]. Huainan:Anhui University of Science & Technology,2021. (in Chinese with English abstract)] TENG Chaoqun. Research on deformation disaster monitoring and prediction method based on InSAR and its application[D]. Huainan: Anhui University of Science & Technology, 2021. (in Chinese with English abstract)
[7] 齐麟. 基于时序InSAR技术的北京平原区地面沉降监测与分析[D]. 青岛:山东科技大学,2020. [QI Lin. Ground subsidence monitoring and analysis in Beijing Plain area based on time series InSAR technique[D]. Qingdao:Shandong University of Science and Technology,2020. (in Chinese with English abstract)] QI Lin. Ground subsidence monitoring and analysis in Beijing Plain area based on time series InSAR technique[D]. Qingdao: Shandong University of Science and Technology, 2020. (in Chinese with English abstract)
[8] 刘文涛. 基于时序InSAR技术的矿区地面沉降监测与分析[D]. 西安:西安科技大学,2020. [LIU Wentao. Monitoring and analysis of land subsidence in mining area based on time series InSAR technology[D]. Xi’an:Xi’an University of Science and Technology,2020. (in Chinese with English abstract)] LIU Wentao. Monitoring and analysis of land subsidence in mining area based on time series InSAR technology[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese with English abstract)
[9] 刘国祥. InSAR原理与应用[M]. 北京:科学出版社,2019. [LIU Guoxiang. Principle and application of InSAR[M]. Beijing:Science Press,2019. (in Chinese with English abstract)] LIU Guoxiang. Principle and application of InSAR[M]. Beijing: Science Press, 2019. (in Chinese with English abstract)
[10] FERRETTI A,PRATI C,ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2202 − 2212. DOI: 10.1109/36.868878
[11] BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375 − 2383. DOI: 10.1109/TGRS.2002.803792
[12] 马顶. 基于SBAS-InSAR的山西省西山煤田地面沉降监测及对地表状况的影响[D]. 太原:太原理工大学,2022. [MA Ding. Ground subsidence monitoring based on SBAS-InSAR technology in Xishan coalfield,Shanxi Province and its influence on surface condition[D]. Taiyuan:Taiyuan University of Technology,2022. (in Chinese with English abstract)] MA Ding. Ground subsidence monitoring based on SBAS-InSAR technology in Xishan coalfield, Shanxi Province and its influence on surface condition[D]. Taiyuan: Taiyuan University of Technology, 2022. (in Chinese with English abstract)
[13] 汪磊. 基于SAR技术的矿区大梯度形变时序监测[D]. 徐州:中国矿业大学,2017. [WANG Lei. Time-series monitoring of large gradient mining subsidence based on SAR technology[D]. Xuzhou:China University of Mining and Technology,2017. (in Chinese with English abstract)] WANG Lei. Time-series monitoring of large gradient mining subsidence based on SAR technology[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese with English abstract)
[14] 张椿雨,于冰,荆创利,等. SBAS-InSAR及其应用于准噶尔盆地独山子地区地表形变监测[J]. 测绘,2022,45(6):247 − 252. [ZHANG Chunyu,YU Bing,JING Chuangli,et al. SBAS-InSAR and its application for surface deformation monitoring in Dushanzi area of Junggar Basin[J]. Surveying and Mapping,2022,45(6):247 − 252. (in Chinese with English abstract)] ZHANG Chunyu, YU Bing, JING Chuangli, et al. SBAS-InSAR and its application for surface deformation monitoring in Dushanzi area of Junggar Basin[J]. Surveying and Mapping, 2022, 45(6): 247 − 252. (in Chinese with English abstract)
[15] ZEBKER H A,ROSEN P. On the derivation of coseismic displacement fields using differential radar interferometry:The Landers earthquake[C]//Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena,CA,USA. IEEE,1994:286 − 288.
[16] MASSONNET D,ROSSI M,CARMONA C,et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. \nat,1993,364(6433):138 − 142.
[17] 鲁魏,杨斌,杨坤. 基于时序InSAR的西南科技大学地表形变监测与分析[J]. 中国地质灾害与防治学报,2023,34(2):61 − 72. [LU Wei,YANG Bin,YANG Kun. Surface deformation monitoring and analysis of southwest university of science and technology based on time series InSAR[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):61 − 72. (in Chinese with English abstract)] LU Wei, YANG Bin, YANG Kun. Surface deformation monitoring and analysis of southwest university of science and technology based on time series InSAR[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 61 − 72. (in Chinese with English abstract)
[18] 朱琳,宫辉力,李小娟,等. 区域地面塌陷研究进展与展望[J]. 水文地质工程地质,2024,51(4):167 − 177. [ZHU Lin,GONG Huili,LI Xiaojuan,et al. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology,2024,51(4):167 − 177. (in Chinese with English abstract)] ZHU Lin, GONG Huili, LI Xiaojuan, et al. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 167 − 177. (in Chinese with English abstract)
[19] 葛伟丽,李元杰,张春明,等. 基于InSAR技术的内蒙古巴彦淖尔市采空地面塌陷演化特征及成因分析[J]. 水文地质工程地质,2022,49(4):198 − 206. [GE Weili,LI Yuanjie,ZHANG Chunming,et al. An attribution analysis of land subsidence features in the city of Bayannur in InnerMongolia based on InSAR[J]. Hydrogeology & Engineering Geology,2022,49(4):198 − 206. (in Chinese with English abstract)] GE Weili, LI Yuanjie, ZHANG Chunming, et al. An attribution analysis of land subsidence features in the city of Bayannur in InnerMongolia based on InSAR[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 198 − 206. (in Chinese with English abstract)
[20] NATSUAKI R,NAGAI H,MOTOHKA T,et al. SAR interferometry using ALOS-2 PALSAR-2 data for the Mw 7.8 Gorkha,Nepal earthquake[J]. Earth,Planets and Space,2016,68(1):15.
[21] GLENN N F,CARR J R. The use of geostatistics in relating soil moisture to RADARSAT-1 SAR data obtained over the Great Basin,Nevada,USA[J]. Computers & Geosciences,2003,29(5):577 − 586.
[22] 李新新,沈震. 基于GM(1,1)模型的矿山开采沉陷预测[J]. 北京测绘,2015(6):62 − 64. [LI Xinxin,SHEN Zhen. Forecast of mining subsidence based on GM(1,1)model[J]. Beijing Surveying and Mapping,2015(6):62 − 64. (in Chinese with English abstract)] LI Xinxin, SHEN Zhen. Forecast of mining subsidence based on GM(1, 1)model[J]. Beijing Surveying and Mapping, 2015(6): 62 − 64. (in Chinese with English abstract)
[23] 朱建军,李志伟,胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报,2017,46(10):1717 − 1733. [ZHU Jianjun,LI Zhiwei,HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1717 − 1733. (in Chinese with English abstract)] ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717 − 1733. (in Chinese with English abstract)
[24] 朱建军,杨泽发,李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报,2019,48(2):135 − 144. [ZHU Jianjun,YANG Zefa,LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica,2019,48(2):135 − 144. (in Chinese with English abstract)] DOI: 10.11947/j.AGCS.2019.20180188 ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135 − 144. (in Chinese with English abstract) DOI: 10.11947/j.AGCS.2019.20180188
[25] 尹承深,刘全明,王福强. 基于Sentinel-1A SAR数据的呼和浩特城区地表形变分析[J]. 中国地质灾害与防治学报,2023,34(2):73 − 81. [YIN Chengshen,LIU Quanming,WANG Fuqiang. Surface deformation analysis of Hohhot urban area based on SAR data from Sentinel-1A[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):73 − 81. (in Chinese with English abstract)] YIN Chengshen, LIU Quanming, WANG Fuqiang. Surface deformation analysis of Hohhot urban area based on SAR data from Sentinel-1A[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 73 − 81. (in Chinese with English abstract)
[26] 莫莉,王贤能. 基于PS-InSAR技术的后海深槽地面及建筑物形变监测分析[J]. 中国地质灾害与防治学报,2023,34(1):68 − 74. [MO Li,WANG Xianneng. Monitoring and analysis of ground and building settlement of deep trough in Houhai based on PS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):68 − 74. (in Chinese with English abstract)] MO Li, WANG Xianneng. Monitoring and analysis of ground and building settlement of deep trough in Houhai based on PS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 68 − 74. (in Chinese with English abstract)
[27] 胡凤鸣,伍吉仓. 时序合成孔径雷达干涉测量的多级化解算[J]. 同济大学学报(自然科学版),2019,47(12):1817 − 1824. [HU Fengming,WU Jicang. A multi-level approach for multi-temporal interferometric synthetic aperture radar[J]. Journal of Tongji University (Natural Science),2019,47(12):1817 − 1824. (in Chinese with English abstract)] HU Fengming, WU Jicang. A multi-level approach for multi-temporal interferometric synthetic aperture radar[J]. Journal of Tongji University (Natural Science), 2019, 47(12): 1817 − 1824. (in Chinese with English abstract)
[28] 熊文秀,冯光财,李志伟,等. 顾及时空特性的SBAS高质量点选取算法[J]. 测绘学报,2015,44(11):1246 − 1254. [XIONG Wenxiu,FENG Guangcai,LI Zhiwei,et al. High quality targets selection in SBAS-InSAR technique by considering temporal and spatial characteristic[J]. Acta Geodaetica et Cartographica Sinica,2015,44(11):1246 − 1254. (in Chinese with English abstract)] DOI: 10.11947/j.AGCS.2015.20140547 XIONG Wenxiu, FENG Guangcai, LI Zhiwei, et al. High quality targets selection in SBAS-InSAR technique by considering temporal and spatial characteristic[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1246 − 1254. (in Chinese with English abstract) DOI: 10.11947/j.AGCS.2015.20140547
[29] 张童康,师芸,王剑辉,等. InSAR和改进支持向量机的沉陷预测模型分析[J]. 测绘科学,2021,46(11):63 − 70. [ZHANG Tongkang,SHI Yun,WANG Jianhui,et al. Analysis of subsidence prediction model based on InSAR and improved support vector machine[J]. Science of Surveying and Mapping,2021,46(11):63 − 70. (in Chinese with English abstract)] ZHANG Tongkang, SHI Yun, WANG Jianhui, et al. Analysis of subsidence prediction model based on InSAR and improved support vector machine[J]. Science of Surveying and Mapping, 2021, 46(11): 63 − 70. (in Chinese with English abstract)
[30] 何清,魏路,肖永红. 基于SBAS-InSAR技术的安徽亳州市采空地面塌陷时空分布特征与影响因素分析[J]. 中国地质灾害与防治学报,2023,34(5):81 − 90. [HE Qing,WEI Lu,XIAO Yonghong. Analysis of spatial-temporal distribution characteristics and influencing factors of land subsidence in Bozhou City,Anhui Province based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):81 − 90. (in Chinese with English abstract)] HE Qing, WEI Lu, XIAO Yonghong. Analysis of spatial-temporal distribution characteristics and influencing factors of land subsidence in Bozhou City, Anhui Province based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 81 − 90. (in Chinese with English abstract)
-
期刊类型引用(3)
1. 耿昊,樊新杰,赵宇,王开华,祁凯宁,唐彦超. 基于SBAS技术的露天煤矿地表沉降监测与分析. 建井技术. 2024(02): 34-41 . 百度学术
2. 黄宝华,周利霞,孔祥侨. 基于PS-InSAR的建筑及道路动态沉降安全监测. 山东交通学院学报. 2024(02): 53-59 . 百度学术
3. 何清,魏路,肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析. 中国地质灾害与防治学报. 2023(05): 81-90 . 本站查看
其他类型引用(2)