ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

广州北部丘陵区岩溶塌陷形成条件与易发性评价

王忠忠, 庄卓涵, 胡飞跃, 黄文龙

王忠忠,庄卓涵,胡飞跃,等. 广州北部丘陵区岩溶塌陷形成条件与易发性评价[J]. 中国地质灾害与防治学报,2024,35(4): 163-172. DOI: 10.16031/j.cnki.issn.1003-8035.202311008
引用本文: 王忠忠,庄卓涵,胡飞跃,等. 广州北部丘陵区岩溶塌陷形成条件与易发性评价[J]. 中国地质灾害与防治学报,2024,35(4): 163-172. DOI: 10.16031/j.cnki.issn.1003-8035.202311008
WANG Zhongzhong,ZHUANG Zhuohan,HU Feiyue,et al. Formation conditions and susceptibility assessment of karst collapses in the northern hilly area of Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 163-172. DOI: 10.16031/j.cnki.issn.1003-8035.202311008
Citation: WANG Zhongzhong,ZHUANG Zhuohan,HU Feiyue,et al. Formation conditions and susceptibility assessment of karst collapses in the northern hilly area of Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 163-172. DOI: 10.16031/j.cnki.issn.1003-8035.202311008

广州北部丘陵区岩溶塌陷形成条件与易发性评价

基金项目: 中国地质调查局地质调查项目(12120114022301;DD20160252-06;DD20160257-04);广东省地质勘查与城市地质专项([2019]-2;[2020]-11)
详细信息
    作者简介:

    王忠忠(1982—),男,江苏南通人,硕士,高级工程师,主要从事水工环地质调查评价研究。E-mail:ntwz928@163.com

  • 中图分类号: P642.25

Formation conditions and susceptibility assessment of karst collapses in the northern hilly area of Guangzhou City

  • 摘要:

    岩溶塌陷是广州北部丘陵区主要地质灾害之一,对人民群众安全生产、和谐生活造成实际威胁,制约了当地乡村振兴发展。文章在分析广州北部丘陵区岩溶发育程度、覆盖层土体条件、地下水动力条件等岩溶塌陷形成条件的基础上,选择岩溶发育程度、土层厚度、土层结构、地下水水位年变幅、断裂影响范围、塌陷点密度等6个评价指标,利用层次分析法确定各指标权重,运用综合指数法建立岩溶塌陷易发性评价模型,进行广州北部丘陵区岩溶塌陷易发性评价。结果表明:广州北部丘陵区岩溶塌陷高、中等和低易发区面积分别为4.77,14.24,21.71 km,已发生的岩溶塌陷均分布在高易发区(94.29%)和中等易发区(5.71%),易发性分区评价合理。研究成果可为当地岩溶塌陷地质灾害预警和防治区划提供依据。

    Abstract:

    Karst collapse is one of the main geological disasters in the northern hilly area of Guangzhou City, posing practical threats to public safety and affecting harmonious living conditions, thereby constraining local rural revitalization and development. This study analyzes the formation conditions of karst collapses in the northern hilly area of Guangzhou, including karst development degree, conditions of overlying soil layers, and hydrodynamic conditions of groundwater. Based on this analysis, six evaluation factors—karst development degree, soil layer thickness, soil layer structure, annual variation range of groundwater level, extent of fracture influence, and density of collapse points—are selected. The weight of each factor is determined by analytic hierarchy process (AHP), and a comprehensive index method is employed to establish the susceptibility assessment model for karst collapses in the northern hilly area of Guangzhou City. The results show that the areas of high, moderate, and low susceptibility to karst collapses in this region are 4.77, 14.24 , 21.71 km2, respectively. Karst subsidence occurrences are predominantly distributed in high vulnerability areas (94.29%) and moderate vulnerability areas (5.71%), validating the rationality of vulnerability zoning assessment. The research findings provide a basis for geological disaster early warning and prevention zoning for local karst collapse, and also provide geological support for promoting rural revitalization and development.

  • 地质灾害易发性评价是地质灾害风险评价的核心工作内容之一,是通过分析地质灾害位置与其相关因素之间的关系。利用统计、数据挖掘以及地理信息系统在空间上识别地质灾害易发区域,影响因子选取是易发性评价的前提工作[13]。因子的正确选择取决于地质灾害的类型、机理、特征、案例区、分析的尺度、数据的可用性和使用的评价模型方法[46]。地质灾害影响因子可划分为以下几类:(1)地质因子:岩性、断层距离(密度)、工程地质岩组、斜坡结构类型、向斜与背斜构造、褶皱轨迹等;(2)地形因子:坡度、坡高(地形起伏度)、高程、地形曲率(平面曲率、剖面曲率、标准曲率、坡形)、坡长、坡位、沟谷密度、地形表面纹理、地形位置指数(topographic position index,TRI)、地形耐用指数(terrain ruggedness index,TPI)、粗糙度指数、地表切割度等;(3)水文因子:河流距离(密度)、降雨、地形湿度指数(topographic wetness index,TWI)、水动力指数、地下水高度、有效补给率、侵蚀程度、输沙能力指数、河谷深度、流路长度、径流强度指数、河流流量等;(4)地表覆盖因子:土地利用、植被指数(NDVI)、土壤类型、土壤厚度、森林类型、土壤渗透率、地表太阳辐射强度等;(5)人类活动因子:道路距离(密度)、居民距离(密度)等;(6)地震因子:地震烈度、峰值加速度、地震密度、震中距离等[710]。地形因子与地质因子可以表征主导滑坡发生的背景条件,地表覆盖因子、水文因子、人类活动因子与地震因子则反映附加因素加剧滑坡的可能。在已有的研究中,坡度是地质灾害易发性评价工作中最为常用的因素,岩性、高程、坡向、河流距离和断层距离等也是常用的评价因子,而其它因素的适用性因地制宜[1114]

    对于地质灾害影响因子的选择,目前还没有统一的标准,以往研究工作中地质灾害易发性评价选择的影响因子往往是根据经验选取地质因子、地形因子、水文因子中的部分参数,每项研究选取的因子类型存在一定差异,且因子数量不一致[1519]。可能存在以下问题:①选择因子较少,预测精度不足;②选择因子过多,叠加部分因子后预测精度可能达到峰值,叠加过多因子增加一定工作量。此外,是否在地质灾害易发性评价中叠加的因子数量越多,模型预测精度越高或者上下大幅度波动?易发性评价中是否存在“最优因子数量”这一概念?这些问题值得探讨。

    基于以上提出的问题,本文在以往研究工作基础上,以四川省汶川县作为案例区,选取多个常用地质灾害影响因子,将所选取影响因子按照一定排列组合模式运用信息量法进行案例区地质灾害易发性评价,并采用成功率曲线验证叠加不同数量对地质灾害易发性评价精度的影响[20]

    本研究选取“5•12”汶川地震后地质灾害频发的汶川县为案例区,案例区共发育有地质灾害690处,包括崩塌192处、滑坡351处、泥石流147处(图1)。基于所收集资料与已有研究基础[16],选取地质灾害易发性评价常用影响因子11种:地貌类因子(高程、坡度、起伏度、坡形、起伏度、沟谷密度)、地质类因子(工程岩组、断裂)、水文类(河流)、人类工程活动(道路、植被指数),并对因子进行分级(表1)。运用信息量模型(表1),以案例区70%历史灾害点为训练样本,计算每个影响因子各个分级的信息量,信息量计算方法如式(1)—(2)所示。根据不同排列组合叠加3到11个因子信息量获得对应的地质灾害易发性指数分布图,易发性指数越高代表地质灾害易发性越高。以30%历史灾害点和非灾害点为检验样本,本文中非灾害点为历史地质灾害点数据1 km缓冲区范围外随机生成的点位数据,运用成功率(receiver operating characteristic,ROC)曲线确定线下面积 (area under curve,AUC)值对各个结果进行预测精度评价,历史灾害点成功率曲线AUC值越趋近于1代表其评价精度越高,而非灾害点成功率曲线AUC值越趋近于0代表其评价精度越高。对比各个组合结果,分析叠加影响因子数量与地质灾害易发性评价精度的关系。研究思路如图2所示。

    图  1  案例区基础信息
    Figure  1.  Fundamental information of the case study area
    表  1  因子分级及信息量
    Table  1.  Classification and information value of the factors
    因子 分级 灾害点比例/% 因子分级
    面积比例/%
    信息量
    高程/m [784, 1200) 27.87 2.60 3.42
    [1200, 1700) 40.78 8.69 2.23
    [1700, 2200) 19.88 13.23 0.59
    [2200, 2700) 7.26 16.98 −1.23
    [2700, 5832] 4.21 58.50 −3.80
    坡度/(°) [0, 10) 19.88 3.21 2.63
    [0, 20) 26.85 13.30 1.01
    [20, 30) 34.40 32.75 0.07
    [30, 40) 14.95 37.66 −1.33
    [40, 88] 3.92 13.08 −1.74
    地面起伏度/m [0, 200) 15.09 4.49 1.75
    [200, 400) 68.36 42.07 0.70
    [400, 600) 15.38 45.22 −1.56
    [600, 800) 1.02 7.29 −2.84
    [800, ∞) 0.15 0.93 −2.69
    沟谷密度
    /(km·km−2
    [0.23, 0.46) 1.30 13.65 −3.39
    [0.46, 0.58) 6.08 24.26 −2.00
    [0.58, 0.69) 31.84 33.00 −0.05
    [0.69, 0.82) 42.26 23.38 0.85
    [0.82, 1.23] 18.52 5.71 1.70
    道路距离/m [0, 200) 1.01 1.70 −0.75
    [200, 400) 2.32 1.68 0.46
    [400, 600) 2.32 1.66 0.48
    [600, 800) 2.32 1.66 0.48
    [800, 1000) 2.32 1.64 0.50
    [1000, ∞) 89.73 91.66 −0.03
    断层距离/m [0, 500) 28.94 9.96 1.54
    [500, 1000) 25.90 8.80 1.56
    [1000, 1500) 10.27 7.27 0.50
    [1500, 2000) 7.96 6.07 0.39
    [2000, ∞) 26.92 67.90 −1.33
    工程岩组 硬质岩组 18.38 9.56 0.94
    软硬互层岩组 46.74 53.02 −0.18
    软质岩组 34.88 37.42 −0.10
    河流距离/m [0, 200) 8.10 1.59 2.35
    [200, 400) 10.27 1.59 2.69
    [400, 600) 11.29 1.59 2.82
    [600, 800) 5.79 1.57 1.88
    [800, 1000) 3.47 1.57 1.14
    [1000, ∞) 61.07 92.07 −0.59
    坡向 6.34 11.30 −0.83
    北东 11.21 12.43 −0.15
    16.37 14.93 0.13
    南东 19.03 13.62 0.48
    7.96 11.82 −0.57
    南西 9.00 12.47 −0.47
    西 12.24 11.26 0.12
    北西 17.85 12.17 0.55
    坡形 凹形坡 68.80 54.79 0.33
    凸形坡 31.20 45.21 −0.53
    植被指数 [−1, 0) 2.03 4.76 −1.23
    [0, 0.1) 18.43 22.12 −0.26
    [0.1, 0.25) 31.64 20.93 0.60
    [0.25, 0.4) 23.08 23.69 −0.04
    [0.4, 0.55) 21.04 18.31 0.20
    [0.55, 0.6] 3.77 10.18 −1.43
    下载: 导出CSV 
    | 显示表格
    图  2  研究技术路线
    Figure  2.  The research methodology flowchart
    $$ {Y_{{i}}} = \frac{{{N_i}}}{N}\cdot{\left( {\frac{{{S _i}}}{S}} \right)^{ - 1}} $$ (1)
    $$ {{I}} = \mathop \sum \limits_{i = 1}^n {\text{lg}}\left( {{Y_i}} \right) $$ (2)

    式中:I——评价区某单元信息量预测值;

    $ {N}_{i} $——分布在因素$ {X}_{i} $内特定类别内的灾害点单元数;

    $ N $——案例区含有灾害点分布的单元总数;

    $ {S} _{i} $——案例区内含有评价因素$ {X}_{i} $的面积;

    $ S $——为案例区总面积;

    ${Y_i}$——致灾因子指标值。

    首先采用层次分析法确定每个因子的权重,层次分析法是一种多指标分析评价方法,具有精度高,使用方便等特点。通过专家估计两两影响因子之间的关系构造矩阵对所有影响因子进行两两比较确定各个影响因子的权重,这样避免了个别比较不合理而造成的结果偏差过大。

    然而层次分析法带有一定的主观性,为避免主观性,选取8位从事工程地质研究工作学者对案例区11个因子进行打分,8位专家打分结果平均值作为因子最终权重值(表2)。最终确定各个因子对地质灾害敏感度从高到低排序为:①断裂②岩性③坡度④河流⑤坡形⑥起伏度⑦沟谷⑧高程⑨公路⑩坡向⑪植被指数。结合汶川县地质灾害发育分布特征及每个因子的信息量综合分析,区内发育汶茂断裂与北川映秀断裂,地质灾害主要集中于河流两岸,受坡度控制明显,且区内地质灾害与构造活动有着高度耦合性,这一结论与已有研究成果是相同的[16]。综上说明通过多位专家打分的汶川县各个因子对地质灾害敏感度排序结果合理性较高。

    表  2  因子权重
    Table  2.  Factor weights table
    专家因子 1 2 3 4 5 6 7 8 平均值
    断层 0.055 0.269 0.193 0.223 0.138 0.182 0.209 0.135 0.176
    岩性 0.023 0.133 0.182 0.124 0.168 0.106 0.182 0.143 0.133
    高程 0.171 0.053 0.018 0.022 0.099 0.138 0.012 0.056 0.071
    坡度 0.028 0.116 0.108 0.146 0.083 0.203 0.141 0.112 0.117
    坡向 0.169 0.014 0.038 0.041 0.086 0.106 0.024 0.023 0.063
    沟谷密度 0.063 0.064 0.082 0.055 0.082 0.106 0.096 0.073 0.078
    坡形 0.128 0.105 0.046 0.100 0.073 0.046 0.105 0.090 0.087
    河流 0.123 0.031 0.084 0.103 0.042 0.043 0.089 0.196 0.089
    道路 0.128 0.042 0.078 0.064 0.057 0.021 0.057 0.075 0.065
    植被指数 0.044 0.053 0.018 0.043 0.036 0.036 0.050 0.028 0.039
    起伏度 0.069 0.119 0.153 0.079 0.138 0.014 0.035 0.067 0.084
    下载: 导出CSV 
    | 显示表格

    为了避免按照某种顺序叠加因子导致结果规律的偶然性,本文将各个因子按照不同排列组合成由3个因子至11个因子组成的评价模型,因子组合分为两类:顺序数组与随机数组。顺序数组涵盖两种组合:因子对地质灾害发生的敏感度从高至低排列与从低至高排列模式;随机数据由编程语言随机函数生成1~11中包含不同个数并且不重复的随机数组。因子排列组合如表3所示。

    表  3  因子排列组合
    Table  3.  Factor combination table
    因子数量顺序组合随机组合
    组合 1组合2组合3组合4
    A(3)①②③⑪⑩⑨③⑦⑪②④⑥
    B(4)①②③④⑪⑩⑨⑧①③⑤⑩②⑤⑨⑪
    C(5)①②③④⑤⑪⑩⑨⑧⑦②③⑤⑦⑨⑤⑦⑨⑩⑪
    D(6)①②③④⑤⑥⑪⑩⑨⑧⑦⑥①③④⑤⑧⑩②④⑥⑨⑩⑪
    E(7)①②③④⑤⑥⑦⑪⑩⑨⑧⑦⑥⑤①②④⑥⑦⑧⑪①③④⑤⑧⑨⑩
    F(8)①②③④⑤⑥⑦⑧⑪⑩⑨⑧⑦⑥⑤④①④⑤⑥⑧⑨⑩⑪①②③⑤⑦⑨⑩⑪
    G(9)①②③④⑤⑥⑦⑧⑨⑪⑩⑨⑧⑦⑥⑤④③①②④⑤⑥⑧⑨⑩⑪②③④⑥⑦⑧⑨⑩⑪
    H(10)①②③④⑤⑥⑦⑧⑨⑩⑪⑩⑨⑧⑦⑥⑤④③②①②③⑤⑥⑦⑧⑨⑩⑪①②③④⑤⑥⑦⑧⑨⑪
    I(11)①②③④⑤⑥⑦⑧⑨⑩⑪⑪⑩⑨⑧⑦⑥⑤④③②①①②③④⑤⑥⑦⑧⑨⑩⑪①③④⑤⑥⑦⑧⑨⑩⑪
    下载: 导出CSV 
    | 显示表格

    将各个因子信息量按照表3中因子组合方式分别叠加,计算出各个组合的案例区地质灾害易发性指数图(图3),运用成功率曲线验证和比较各个组合模型易发性精度。

    图  3  不同因子组合易发性指数图
    Figure  3.  Geological hazard susceptibility index diagram for different quantitative factor combinations

    图3所示,为多个组合模型不同数量因子叠加的案例区地质灾害易发性指数图,结果表明当叠加因子数量3~5个时,易发性指数图受单个因子控制性较为明显,例如组合1A(3)与组合1B(4)中断层控制易发性指数图最为明显、组合2A(3)中道路控制易发性指数图最为明显。而当叠加因子6~7个时,地质灾害易发性指数图受单个因子控制性不再明显,显现出了多个因子的叠加效应,但不同组合模型的地质灾害易发性指数图图面信息差异性较大,易发性高分布的区域和面积各不相同。当叠加至8个以上因子后,各个组合模型的易发性指数图相似性较高,显现出的高易发区与实际情况匹配度较高。

    对比各类组合模型基于历史地质灾害点验证样本的成功率曲线(图4),统计出随因子数增多成功率曲线下面积(AUC)变化规律(图5)。叠加3个因子预测精度较差,组合2和组合4 中AUC值仅在0.65左右,而组合1和组合3相对于组合2和组合4同等数量因子组合中叠加预测精度较高。其共同规律为:4种组合中AUC值随因子数增多而不断增高,即随着叠加因子数量增多预测精度不断增高,但叠加因子数至8个时,AUC值不再明显上升与下降,其值约为0.9,浮动幅度在0.005左右,说明叠加8个以上因子时预测精度不再变化。

    图  4  基于验证样本的不同因子组合成功率曲线
    Figure  4.  Success rate curves of multifactor combination based on validation samples
    图  5  基于验证样本的AUC值统计
    Figure  5.  AUC value statistics based on validation samples

    对比各类组合基于非地质灾害点样本的成功率曲线,统计出随因子数增多成功率曲线下面积(AUC)变化规律(图6图7)。由图中可观察出叠加少于8个因子的组合随叠加因子数增多,AUC值浮动较大,且有着随因子数增多而逐渐下降的趋势。叠加至8个以上因子的组合模型AUC值相对变化浮动较小,稳定于0.385左右。

    图  6  基于非灾害点验证样本的不同因子组合成功率曲线
    Figure  6.  Success rate curves of multifactor combinations based on non-hazard validation samples
    图  7  基于非灾害点验证样本的AUC值统计
    Figure  7.  AUC value statistics based on non-hazard validation samples

    结合两种地质灾害易发性评价精度检验方法,对比分析了按照不同组合方式叠加3至11个因子的36种组合模型,分析结果发现随叠加因子数量增多,组合模型精度不断提升,但叠加至8个因子后,模型精度不再变化,精度值上下浮动较小,历史灾害点验证样本的AUC值稳定于0.9左右,非灾害点验证样本的AUC值稳定于0.385左右,由于所选用的非地质灾害点为历史地质灾害点数据1 km缓冲区范围外随机生成的点位数据,非地质灾害点又有可能在不久的将来成为新的地质灾害点,AUC难以趋近于0,说明评价模型叠加至8个因子时模型精度已达到峰值,叠加更多因子不会明显提升或降低其精度。

    根据不同因子组合方式可发现,各个因子对于案例区的地质灾害易发性影响存在较大的差异性。由于汶川地区受到2008年“5·12”Ms8.0地震的震裂影响,在断裂带区域地质灾害分布较为密集,断层缓冲区因子对于案例区的地质灾害易发性控制性最强。综合图5图7中叠加各个因子后AUC值的变化幅度,重新梳理各个影响因子的控制性排序为:断层>河流>道路>岩性>高程>起伏度>坡度>沟谷密度>坡形>坡向>植被指数。这一排序结果与前文通过专家打分确定因子重要性等级排序存在一定差异,分析原因为专家打分存在一定主观性,尽管采用了多个专家打分的平均值,但还是难以消去其主观性。

    对比前文四种因子组合模型,它们有着共同的特点,运用验证样本成功率曲线检验各种组合模型评价精度时:模型精度随着叠加因子数增多而提高,叠加至8个因子时模型精度不再变化,趋于平稳状态,AUC稳定于0.9左右,上下浮动约0.005;运用非灾害点样本成功率曲线检验各种组合模型评价精度时:模型AUC值随叠加因子数增多而下降,即模型精度随着叠加因子数增多而上升,同样在叠加至8个因子时模型精度趋于稳定,AUC稳定于0.385。根据这一结果,可以确定当模型选取8个以上因子时,模型精度将不会改变,8个因子可能是地质灾害易发性评价叠加最佳因子数。但这一结论是否正确值得再次证明与讨论。

    按照前文多次叠加后确定的因子实际控制性从高到低与从低到高两种组合模型再次检验随着因子叠加数量增多易发性评价精度的变化规律。如图89所示,按照因子实际控制性从高到低排列组合,叠加断层、河流、道路3个因子后AUC值已经接近峰值,为0.889,其后再次叠加其它因子,AUC值上下浮动约0.02。而按照实际因子控制性从低到高排列组合,当叠加到最后一个因子(断层)时AUC值才达到峰值。

    图  8  两种模型成功率曲线
    Figure  8.  Success rate curves of two models
    图  9  两种模型AUC值统计
    Figure  9.  AUC value statistics of two models

    结合前面的试验研究与后面的验证结果综合分析,造成叠加至8个因子时易发性指数的AUC值最大的原因在于叠加过程中存在一定偶然性:前期四种组合模型在叠加因子时仅靠个人经验或随机组合,未将关键因子优先组合,AUC值无法快速达不到峰值。而当叠加至7~8个因子时已经包含了这类关键因子(例如断层、河流、道路),此时达到了评价结果精度的峰值,其AUC值在0.9上下以0.005浮动。

    综上试验研究表明,开展某地区地质灾害易发性评价时,最先开展的工作应是确定出该区域地质灾害的主控因素,例如构造、水文、岩性、地形等因素,即需要开展的是孕灾条件分析。且对于大区域,例如省级地质灾害易发性评价,应根据地质环境条件与地质灾害发育特征,对研究区开展综合分区,找出各个分区的主控因素,进行分区评价。可采用反演分析模式,综合运用信息量模型与ROC曲线法,将逐个因子不同等级所对应的信息量作为检验变量,利用ROC曲线法进行单因子分析,根据AUC值确定各个因子对研究区地质灾害敏感度重要程度排序。

    本文以四川省汶川县为案例区,选取广泛应用的11种地质灾害影响因子进行不同排列组合,验证“是否在地质灾害易发性评价中叠加的因子数量越多,模型预测精度越高或者上下波动。”这一问题。经对比试验研究,得出以下结论:

    (1)地质灾害影响因子进行随机组合时,叠加因子数量越多,地质灾害易发性评价结果精度越高,但叠加至一定数量因子后评价精度达到峰值,叠加更多因子不会明显提升或降低精度。

    (2)地质灾害的发生在不同区域有着不同的主控因子,因子选取原则不仅仅根据个人经验,更应该计算出来每个因子独立的控制性,可采用单因子信息量与ROC曲线组合模型评价结果确定出主控因子,优先叠加控制性较强的因子,能够快速达到易发性评价精度的最高值。

    (3)根据本文有限的多次测试结果表明,地质灾害易发性评价中叠加的因子数量越多,模型预测精度越高,叠加过程中如未加入关键因子,模型预测精度将不会达到峰值,说明地质灾害易发性评价存在关键因子,但不存在 “最优因子数量”。

  • 图  1   研究区地质简图

    Figure  1.   Sketch geological map of the study area

    图  2   鳌头镇中塘塌陷区地质剖面图

    Figure  2.   Geological profile of collapse area in Aotou Town

    图  3   岩溶发育程度分区图

    Figure  3.   Zone map of karst development degree

    图  4   覆盖层土体厚度与结构分区图

    Figure  4.   Zone map of soil thickness and structure of overburden

    图  5   覆盖层土体条件与岩溶塌陷发生数量关系图

    Figure  5.   Relationship between overburden soil conditions and the occurrence of karst collapses

    图  6   地下水水位年变幅分区图

    Figure  6.   Zone map of annual variation of groundwater level

    图  7   岩溶塌陷地区碳酸盐岩裂隙溶洞水水位埋深—降雨量历时曲线图

    Figure  7.   Duration curve diagram of fissure-cavern water depth−rainfall in karst collapse area

    图  8   易发性评价因子量化赋值图

    Figure  8.   Quantitative assignment diagram of susceptibility evaluation factors

    图  9   岩溶塌陷易发性分区图

    Figure  9.   Zoning map of karst collapse susceptibility

    表  1   岩溶塌陷易发性评价指标分类

    Table  1   Classification of karst collapse susceptibility evaluation indexes

    一级评价指标 二级评价指标 对岩溶塌陷的影响 权重
    基岩 岩溶发育程度 强发育 中等 弱发育 0.2717
    覆盖层土体 土层厚度/m <15 15~30 >30 0.1960
    土层结构 多层结构 双层结构 单层结构 0.1008
    地下水 地下水变化幅度/(m·a−1 >1.0 1.0~0.5 <0.5 0.2157
    地质构造 断裂影响范围/m <100 100~300 >300 0.0800
    已发岩溶塌陷 塌陷点密度(个/10 km2 >10 2~10 <2 0.1359
    下载: 导出CSV

    表  2   岩溶塌陷易发性评价指标判断矩阵表

    Table  2   Judgment matrix of karst collapse susceptibility evaluation index

    评价指标 B1 B2 B3 B4 B5 B6
    岩溶发育程度(B1 1 2 2 2 2 2
    土层厚度(B2 1/2 1 3 1/2 3 2
    土层结构(B3 1/2 1/3 1 1/2 2 1/2
    地下水变化幅度(B4 1/2 2 2 1 2 2
    断层影响范围(B5 1/2 1/3 1/2 1/2 1 1/2
    塌陷点密度(B6 1/2 1/2 2 1/2 2 1
    下载: 导出CSV

    表  3   岩溶塌陷易发性分级表

    Table  3   Susceptibility classification table of karst collapse

    等级 高易发性 中等易发性 低易发性
    易发性指数 >2.26 1.88~2.26 <1.88
    下载: 导出CSV
  • [1] 柳柳,王俊. 广花盆地东北部岩溶地质特征及对城际铁路隧道影响分析[J]. 铁道勘察,2022,48(4):72 − 78. [LIU Liu,WANG Jun. Characteristics of karst in the northeast Guanghua basin and analysis of its influence on intercity railway tunnels[J]. Railway Investigation and Surveying,2022,48(4):72 − 78. (in Chinese with English abstract)]

    LIU Liu, WANG Jun. Characteristics of karst in the northeast Guanghua basin and analysis of its influence on intercity railway tunnels[J]. Railway Investigation and Surveying, 2022, 48(4): 72 − 78. (in Chinese with English abstract)

    [2] 蒙彦. 广花盆地岩溶塌陷多参数监测预警与风险防控[D]. 武汉:中国地质大学,2020. [MENG Yan. Multi-parameter monitoring,early warning and risk prevention of karst collapse in Guanghua Basin[D]. Wuhan:China University of Geosciences,2020. (in Chinese with English abstract)]

    MENG Yan. Multi-parameter monitoring, early warning and risk prevention of karst collapse in Guanghua Basin[D]. Wuhan: China University of Geosciences, 2020. (in Chinese with English abstract)

    [3] 蒙彦,郑小战,祁士华,等. 岩溶塌陷易发区地下水安全开采控制——以珠三角广花盆地城市应急水源地为例[J]. 中国岩溶,2019,38(6):924 − 929. [MENG Yan,ZHENG Xiaozhan,QI Shihua,et al. Safe pumping in areas prone to karst collapses:A case study of the urban emergency water source of the Guanghua Basin in the Pearl River Delta[J]. Carsologica Sinica,2019,38(6):924 − 929. (in Chinese with English abstract)]

    MENG Yan, ZHENG Xiaozhan, QI Shihua, et al. Safe pumping in areas prone to karst collapses: A case study of the urban emergency water source of the Guanghua Basin in the Pearl River Delta[J]. Carsologica Sinica, 2019, 38(6): 924 − 929. (in Chinese with English abstract)

    [4] 周心经,郭宇,郑小战,等. 广州市白云区夏茅村岩溶地面塌陷特征及致灾因素和风险分析[J]. 中国地质灾害与防治学报,2021,32(6):63 − 71. [ZHOU Xinjing,GUO Yu,ZHENG Xiaozhan,et al. Karst collapse characteristics,disaster factors and risk analysis in Xiamao Village,Baiyun District,Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):63 − 71. (in Chinese with English abstract)]

    ZHOU Xinjing, GUO Yu, ZHENG Xiaozhan, et al. Karst collapse characteristics, disaster factors and risk analysis in Xiamao Village, Baiyun District, Guangzhou City[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 63 − 71. (in Chinese with English abstract)

    [5] 易顺民,卢薇,周心经. 广州夏茅村岩溶塌陷灾害特征及防治对策[J]. 热带地理,2021,41(4):801 − 811. [YI Shunmin,LU Wei,ZHOU Xinjing. The formation investigation and remediation of sinkhole in the Xiamao Village,Guangzhou[J]. Tropical Geography,2021,41(4):801 − 811. (in Chinese with English abstract)]

    YI Shunmin, LU Wei, ZHOU Xinjing. The formation investigation and remediation of sinkhole in the Xiamao Village, Guangzhou[J]. Tropical Geography, 2021, 41(4): 801 − 811. (in Chinese with English abstract)

    [6] 贾龙. 城市岩溶地面塌陷隐患识别与评价研究——以金沙洲为例[D]. 武汉:中国地质大学,2021. [JIA Long. Early warning and assessment of cover-collapse sinkhole induced by urban construction in karst area [D]. Wuhan:China University of Geosciences,2021. (in Chinese with English abstract)]

    JIA Long. Early warning and assessment of cover-collapse sinkhole induced by urban construction in karst area [D]. Wuhan: China University of Geosciences, 2021. (in Chinese with English abstract)

    [7] 李卓骏,蒙彦,董志明,等. 土洞型岩溶塌陷发育过程气体示踪试验研究——以广州金沙洲为例[J]. 中国岩溶,2021,40(2):238 − 245. [LI Zhuojun,MENG Yan,DONG Zhiming,et al. Experimental study of gas tracer simulation of karst collapse development process:An example of Jinshazhou,Guangzhou[J]. Carsologica Sinica,2021,40(2):238 − 245. (in Chinese with English abstract)]

    LI Zhuojun, MENG Yan, DONG Zhiming, et al. Experimental study of gas tracer simulation of karst collapse development process: An example of Jinshazhou, Guangzhou[J]. Carsologica Sinica, 2021, 40(2): 238 − 245. (in Chinese with English abstract)

    [8] 卢薇,易顺民. 广州市大坦沙岛岩溶塌陷成因分析及防治对策[J]. 安全与环境工程,2021,28(4):121 − 130. [LU Wei,YI Shunmin. Formation analysis and prevention and remediation measures of karst collapse in datansha island,Guangzhou[J]. Safety and Environmental Engineering,2021,28(4):121 − 130. (in Chinese with English abstract)]

    LU Wei, YI Shunmin. Formation analysis and prevention and remediation measures of karst collapse in datansha island, Guangzhou[J]. Safety and Environmental Engineering, 2021, 28(4): 121 − 130. (in Chinese with English abstract)

    [9] 广州市地质调查院. 广州从化市鳌头镇大氹村岩溶地面塌陷隐患区应急调查物探报告[R]. 2014. [Guangzhou Geological Survey Institute. Geophysical report on emergency investigation of karst ground collapse hidden danger area in Dadang Village,Aotou Town,Conghua City,Guangzhou[R]. 2014. (in Chinese)]

    Guangzhou Geological Survey Institute. Geophysical report on emergency investigation of karst ground collapse hidden danger area in Dadang Village, Aotou Town, Conghua City, Guangzhou[R]. 2014. (in Chinese)

    [10] 广州市综合勘探大队. 广东省从化市良口镇石岭大理石矿突水诱发地面变形地质灾害调查报告[R]. 2004. [Guangzhou Comprehensive Exploration Brigade. Investigation report on ground deformation geological disaster induced by water inrush in Shiling marble mine,Liangkou Town,Conghua City,Guangdong Province[R]. 2004. (in Chinese)]

    Guangzhou Comprehensive Exploration Brigade. Investigation report on ground deformation geological disaster induced by water inrush in Shiling marble mine, Liangkou Town, Conghua City, Guangdong Province[R]. 2004. (in Chinese)

    [11] 王忠忠,黄文龙,庄卓涵,等. 珠三角丘陵山区岩溶塌陷发育特征及地质模式——以广州北部为例[J]. 地质与勘探,2023,59(6):1304 − 1314. [WANG Zhongzhong,HUANG Wenlong,ZHUANG Zhuohan,et al. Development features and geological models of karst collapse in hilly areas of the Pearl River Delta:A case study of northern Guangzhou[J]. Geology and Exploration,2023,59(6):1304 − 1314. (in Chinese with English abstract)]

    WANG Zhongzhong, HUANG Wenlong, ZHUANG Zhuohan, et al. Development features and geological models of karst collapse in hilly areas of the Pearl River Delta: A case study of northern Guangzhou[J]. Geology and Exploration, 2023, 59(6): 1304 − 1314. (in Chinese with English abstract)

    [12] 颜李冰清. 桂林市岩溶塌陷发育特征及发展趋势分析[D]. 桂林:桂林理工大学,2022. [YAN Libingqing. Analysis on development characteristics and development trend of karst collapse in Guilin City[D]. Guilin:Guilin University of Technology,2022. (in Chinese with English abstract)]

    YAN Libingqing. Analysis on development characteristics and development trend of karst collapse in Guilin City[D]. Guilin: Guilin University of Technology, 2022. (in Chinese with English abstract)

    [13] 康晓波,王宇,张华,等. 云南高原岩溶塌陷发育特征及成因机制[J]. 中国地质灾害与防治学报,2022,33(5):50 − 58. [KANG Xiaobo,WANG Yu,ZHANG Hua,et al. Characteristics and formation mechanism of karst collapse in Yunnan Plateau[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):50 − 58. (in Chinese with English abstract)]

    KANG Xiaobo, WANG Yu, ZHANG Hua, et al. Characteristics and formation mechanism of karst collapse in Yunnan Plateau[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 50 − 58. (in Chinese with English abstract)

    [14] 姜巽,曹聪,刘智,等. 歌乐山地区隧道工程诱发的岩溶塌陷发育规律与形成条件[J]. 水文地质工程地质,2023,50(5):181 − 191. [JIANG Xun,CAO Cong,LIU Zhi,et al. Development and formation conditions of karst collapse induced by tunnel engineering in the Gele Mountain Area[J]. Hydrogeology & Engineering Geology,2023,50(5):181 − 191. (in Chinese with English abstract)]

    JIANG Xun, CAO Cong, LIU Zhi, et al. Development and formation conditions of karst collapse induced by tunnel engineering in the Gele Mountain Area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 181 − 191. (in Chinese with English abstract)

    [15] 孙伟. 广东省英德市城南社区岩溶塌陷发育特征及成因分析[J]. 中国地质灾害与防治学报,2023,34(5):74 − 80. [SUN Wei. Development characteristics and causal analysis of karst collapses in Chengnan community,Yingde City,Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):74 − 80. (in Chinese with English abstract)]

    SUN Wei. Development characteristics and causal analysis of karst collapses in Chengnan community, Yingde City, Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 74 − 80. (in Chinese with English abstract)

    [16] 张少波,简文彬,洪儒宝,等. 水位波动条件下覆盖型岩溶塌陷试验研究[J]. 工程地质学报,2019,27(3):659 − 667. [ZHANG Shaobo,JIAN Wenbin,HONG Rubao,et al. Experimental study on collapse of covered Karst under water-level fluctuation[J]. Journal of Engineering Geology,2019,27(3):659 − 667. (in Chinese with English abstract)]

    ZHANG Shaobo, JIAN Wenbin, HONG Rubao, et al. Experimental study on collapse of covered Karst under water-level fluctuation[J]. Journal of Engineering Geology, 2019, 27(3): 659 − 667. (in Chinese with English abstract)

    [17] 贾龙,蒙彦,雷明堂,等.粤港澳大湾区岩溶水源地塌陷监测预警与安全开采[J/OL].中国地质. (2024-05-16)[2024-05-26]. [JIA Long, MENG Yan, LEI Mingtang et al. Development characteristics and hazard assessment of the Pangcun landslide, Xizang[J/OL]. Geology in China.(2024-05-16)[2024-05-26]. http://kns.cnki.net/kcms/detail/11.1167.p.20240515.1825.004.html. (in English with Chinese abstract)]

    JIA Long, MENG Yan, LEI Mingtang et al. Development characteristics and hazard assessment of the Pangcun landslide, Xizang[J/OL]. Geology in China.(2024-05-16)[2024-05-26]. http://kns.cnki.net/kcms/detail/11.1167.p.20240515.1825.004.html. (in English with Chinese abstract)

    [18] 涂婧,刘长宪,姜超,等. 湖北武汉岩溶塌陷易发性评价[J]. 中国地质灾害与防治学报,2020,31(4):94 − 99. [TU Jing,LIU Changxian,JIANG Chao,et al. Susceptibility assessment of karst collapse in Wuhan City[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):94 − 99. (in Chinese with English abstract)]

    TU Jing, LIU Changxian, JIANG Chao, et al. Susceptibility assessment of karst collapse in Wuhan City[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 94 − 99. (in Chinese with English abstract)

    [19] 毛世榕,管振德,阎春恒. 基于小波包分形和神经网络的地震与岩溶塌陷识别[J]. 地震学报,2018,40(2):195 − 204. [MAO Shirong,GUAN Zhende,YAN Chunheng. A technique for earthquake and Karst collapse recognition based on wavelet packet fractal and neural network[J]. Acta Seismologica Sinica,2018,40(2):195 − 204. (in Chinese with English abstract)]

    MAO Shirong, GUAN Zhende, YAN Chunheng. A technique for earthquake and Karst collapse recognition based on wavelet packet fractal and neural network[J]. Acta Seismologica Sinica, 2018, 40(2): 195 − 204. (in Chinese with English abstract)

    [20] 贺占勇. 基于神经网络评价模型的地质灾害信息系统设计与实现[D]. 成都:电子科技大学,2014. [HE Zhanyong. Design and realization of the geological disaster infomation system based on neural network evaluation model[D]. Chengdu:University of Electronic Science and Technology of China,2014. (in Chinese with English abstract)]

    HE Zhanyong. Design and realization of the geological disaster infomation system based on neural network evaluation model[D]. Chengdu: University of Electronic Science and Technology of China, 2014. (in Chinese with English abstract)

    [21] 吴远斌,刘之葵,殷仁朝,等. 基于AHP和GIS技术的湖南怀化地区岩溶塌陷易发性评价[J]. 中国岩溶,2022,41(1):21 − 33. [WU Yuanbin,LIU Zhikui,YIN Renchao,et al. Evaluation of karst collapse susceptibility in Huaihua Area,Hunan Province based on AHP and GIS[J]. Carsologica Sinica,2022,41(1):21 − 33. (in Chinese with English abstract)]

    WU Yuanbin, LIU Zhikui, YIN Renchao, et al. Evaluation of karst collapse susceptibility in Huaihua Area, Hunan Province based on AHP and GIS[J]. Carsologica Sinica, 2022, 41(1): 21 − 33. (in Chinese with English abstract)

    [22] 曾斌,杨木易,邵长杰,等. 基于层次分析法的杭长高速岩溶塌陷易发性评价[J]. 安全与环境工程,2018,25(1):29 − 38. [ZENG Bin,YANG Muyi,SHAO Changjie,et al. Susceptibility assessment of karst collapse of Hangchang expressway projects based on analytic hierarchy process[J]. Safety and Environmental Engineering,2018,25(1):29 − 38. (in Chinese with English abstract)]

    ZENG Bin, YANG Muyi, SHAO Changjie, et al. Susceptibility assessment of karst collapse of Hangchang expressway projects based on analytic hierarchy process[J]. Safety and Environmental Engineering, 2018, 25(1): 29 − 38. (in Chinese with English abstract)

    [23] 管斌. 基于GIS技术和模糊综合评判法的铜陵市地质灾害易发性评价研究[D]. 合肥:合肥工业大学,2021. [GUAN Bin. Study on geological hazard susceptibility evaluation base on GIS and fuzzy comprehensive evaluation In Tongling City[D]. Hefei:Hefei University of Technology,2021. (in Chinese with English abstract)]

    GUAN Bin. Study on geological hazard susceptibility evaluation base on GIS and fuzzy comprehensive evaluation In Tongling City[D]. Hefei: Hefei University of Technology, 2021. (in Chinese with English abstract)

    [24] 张杰,毕攀,魏爱华,等. 基于模糊综合法的烟台市栖霞中桥岩溶塌陷易发性评价[J]. 中国岩溶,2021,40(2):215 − 220. [ZHANG Jie,BI Pan,WEI Aihua,et al. Assessment of susceptibility to Karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy comprehensive method[J]. Carsologica Sinica,2021,40(2):215 − 220. (in Chinese with English abstract)]

    ZHANG Jie, BI Pan, WEI Aihua, et al. Assessment of susceptibility to Karst collapse in the Qixia Zhongqiao district of Yantai based on fuzzy comprehensive method[J]. Carsologica Sinica, 2021, 40(2): 215 − 220. (in Chinese with English abstract)

    [25] 吴亚楠,王延岭,周绍智,等. 基于综合指数法的泰莱盆地岩溶塌陷风险性评价[J]. 中国岩溶,2020,39(3):391 − 399. [WU Yanan,WANG Yanling,ZHOU Shaozhi,et al. Risk assessment of karst collapse in the Tailai Basin based on the synthetic index method[J]. Carsologica Sinica,2020,39(3):391 − 399. (in Chinese with English abstract)]

    WU Yanan, WANG Yanling, ZHOU Shaozhi, et al. Risk assessment of karst collapse in the Tailai Basin based on the synthetic index method[J]. Carsologica Sinica, 2020, 39(3): 391 − 399. (in Chinese with English abstract)

    [26] 肖金水. 证据权法在岩溶塌陷风险分析中的应用研究[D]. 广州:华南理工大学,2013. [XIAO Jinshui. A research in the application of the weights of evidence method in the risk analysis of karst collapse[D]. Guangzhou:South China University of Technology,2013. (in Chinese with English abstract)]

    XIAO Jinshui. A research in the application of the weights of evidence method in the risk analysis of karst collapse[D]. Guangzhou: South China University of Technology, 2013. (in Chinese with English abstract)

    [27] 孙琳,任娜娜,李云安,等. 基于证据权法的公路路基岩溶塌陷危险性评价[J]. 中国地质灾害与防治学报,2019,30(3):94 − 100. [SUN Lin,REN Nana,LI Yun’an,et al. Risk assessment on Karst collapse of the highway subgrade based on weights of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):94 − 100. (in Chinese with English abstract)]

    SUN Lin, REN Nana, LI Yun’an, et al. Risk assessment on Karst collapse of the highway subgrade based on weights of evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3): 94 − 100. (in Chinese with English abstract)

    [28] 吴丽清,廖婧,王威,等. 基于AHP-信息量法的武汉地区岩溶地面塌陷危险性评价[J]. 长江科学院院报,2017,34(4):43 − 47. [WU Liqing,LIAO Jing,WANG Wei,et al. Risk assessment of karst surface collapse in Wuhan Region based on AHP-information method[J]. Journal of Yangtze River Scientific Research Institute,2017,34(4):43 − 47. (in Chinese with English abstract)]

    WU Liqing, LIAO Jing, WANG Wei, et al. Risk assessment of karst surface collapse in Wuhan Region based on AHP-information method[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(4): 43 − 47. (in Chinese with English abstract)

    [29] 代领. 基于GIS的信息量法在宁远县地质灾害易发性评价中的应用[D]. 湘潭:湖南科技大学,2016. [DAI Ling. Application of GIS-based information acquisition method on assessment of geohazard susceptibility in Ningyuan County[D]. Xiangtan:Hunan University of Science and Technology,2016. (in Chinese with English abstract)]

    DAI Ling. Application of GIS-based information acquisition method on assessment of geohazard susceptibility in Ningyuan County[D]. Xiangtan: Hunan University of Science and Technology, 2016. (in Chinese with English abstract)

    [30] 任涛,田国亮,宁志杰,等. 基于地理探测器和随机森林的岩溶塌陷易发性评价[J]. 灾害学,2023,38(3):227 − 234. [REN Tao,TIAN Guoliang,NING Zhijie,et al. Evaluation of karst collapse susceptibility based on geodetector and random forests[J]. Journal of Catastrophology,2023,38(3):227 − 234. (in Chinese with English abstract)]

    REN Tao, TIAN Guoliang, NING Zhijie, et al. Evaluation of karst collapse susceptibility based on geodetector and random forests[J]. Journal of Catastrophology, 2023, 38(3): 227 − 234. (in Chinese with English abstract)

    [31] 孙剑锋,马超,胡金树,等. 基于灰色关联度与层次分析法耦合的地质灾害易发性评价——以浙江省云和县崇头镇为例[J]. 工程地质学报,2023,31(2):538 − 551. [SUN Jianfeng,MA Chao,HU Jinshu,et al. Susceptibility evaluation of geological hazard by coupling grey relational degree and analytic hierarchy process:A case of Chongtou town,Yunhe County,Zhejiang Province[J]. Journal of Engineering Geology,2023,31(2):538 − 551. (in Chinese with English abstract)]

    SUN Jianfeng, MA Chao, HU Jinshu, et al. Susceptibility evaluation of geological hazard by coupling grey relational degree and analytic hierarchy process: A case of Chongtou town, Yunhe County, Zhejiang Province[J]. Journal of Engineering Geology, 2023, 31(2): 538 − 551. (in Chinese with English abstract)

    [32] 曾伟,谢韶宜,王观石,等. 基于AHP层次分析法的离子型稀土矿原地浸出边坡稳定评价研究[J]. 中国矿业,2023,32(4):72 − 80. [ZENG Wei,XIE Shaoyi,WANG Guanshi,et al. Study on slope stability evaluation system for ionic rare earth ore in situ leaching process based on AHP[J]. China Mining Magazine,2023,32(4):72 − 80. (in Chinese with English abstract)]

    ZENG Wei, XIE Shaoyi, WANG Guanshi, et al. Study on slope stability evaluation system for ionic rare earth ore in situ leaching process based on AHP[J]. China Mining Magazine, 2023, 32(4): 72 − 80. (in Chinese with English abstract)

    [33] 郑小战. 广花盆地岩溶地面塌陷灾害形成机理及风险评估研究[D]. 长沙:中南大学,2010. [ZHENG Xiaozhan. Research on genetic mechanism and risk evaluation of the karst collapse in Guanghua Basin[D]. Changsha:Central South University,2010. (in Chinese with English abstract)]

    ZHENG Xiaozhan. Research on genetic mechanism and risk evaluation of the karst collapse in Guanghua Basin[D]. Changsha: Central South University, 2010. (in Chinese with English abstract)

    [34] 陈菊艳,朱斌,彭三曦,等. 基于AHP和GIS的矿区岩溶塌陷易发性评估——以贵州林歹岩溶矿区为例[J]. 自然灾害学报,2021,30(5):226 − 236. [CHEN Juyan,ZHU Bin,PENG Sanxi,et al. Assessment of susceptibility to karst collapse in mining area based on AHP and GIS:A case study in Lindai karst mining area in Guizhou[J]. Journal of Natural Disasters,2021,30(5):226 − 236. (in Chinese with English abstract)]

    CHEN Juyan, ZHU Bin, PENG Sanxi, et al. Assessment of susceptibility to karst collapse in mining area based on AHP and GIS: A case study in Lindai karst mining area in Guizhou[J]. Journal of Natural Disasters, 2021, 30(5): 226 − 236. (in Chinese with English abstract)

图(9)  /  表(3)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  11
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-11
  • 修回日期:  2024-01-22
  • 网络出版日期:  2024-06-20
  • 刊出日期:  2024-08-24

目录

/

返回文章
返回