ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

岷江上游汶川地震前后泥石流易发性评价

赵佳忆, 田述军, 李凯, 侯鹏鹂

赵佳忆,田述军,李凯,等. 岷江上游汶川地震前后泥石流易发性评价[J]. 中国地质灾害与防治学报,2024,35(1): 51-59. DOI: 10.16031/j.cnki.issn.1003-8035.202306035
引用本文: 赵佳忆,田述军,李凯,等. 岷江上游汶川地震前后泥石流易发性评价[J]. 中国地质灾害与防治学报,2024,35(1): 51-59. DOI: 10.16031/j.cnki.issn.1003-8035.202306035
ZHAO Jiayi,TIAN Shujun,LI Kai,et al. Susceptibility assessment of debris flow in the upper reaches of the Minjiang River before and after the Wenchuan earthquake [J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 51-59. DOI: 10.16031/j.cnki.issn.1003-8035.202306035
Citation: ZHAO Jiayi,TIAN Shujun,LI Kai,et al. Susceptibility assessment of debris flow in the upper reaches of the Minjiang River before and after the Wenchuan earthquake [J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 51-59. DOI: 10.16031/j.cnki.issn.1003-8035.202306035

岷江上游汶川地震前后泥石流易发性评价

基金项目: 国家自然科学基金面上项目(41971214);国家自然科学基金青年基金项目(41401195)
详细信息
    作者简介:

    赵佳忆(1998—),女,四川乐山人,硕士研究生,主要从事地质灾害风险评价方面的研究工作。E-mail:1813341297@qq.com

    通讯作者:

    田述军(1980—),男,教授,四川成都人,博士,主要从事地质灾害风险性评价与预测方面的研究工作。E-mail:tsj19800702@163.com

  • 中图分类号: P642.23

Susceptibility assessment of debris flow in the upper reaches of the Minjiang River before and after the Wenchuan earthquake

  • 摘要:

    科学准确地绘制泥石流易发性区划图以及确定主控因子及其贡献率,是区域泥石流预警预报和风险管理的重要基础。文章以岷江上游为研究区,以小流域为评价单元,分别采用了5种机器学习模型构建了泥石流易发性评价模型,对汶川大地震前、后岷江上游泥石流易发性和评价因子贡献率进行了定量分析。结果表明:(1)集成机器学习模型的预测精度及受试者工作特征曲线下面积值均高于浅层机器学习模型,其中随机森林模型在地震前、后泥石流易发性评价中表现最优;(2)震前、震后泥石流发生率均随易发性等级的提高逐渐增大,且等级越高增量越大,各等级震后泥石流发生率均高于震前;(3)地震前、后侵蚀传递系数的贡献率均显著高于其他因子,与汶川大地震地震烈度空间分布特征叠加,加大了震后干流和支流泥石流由下游向上游发育程度逐渐降低的空间分布规律。

    Abstract:

    Accurately and scientifically mapping debris flow susceptibility and the determination of key controlling factors and their contribution rates are essential foundations for regional debris flow early warning, forecasting and risk management. The article takes the upper reaches of the Minjiang River as the research area, with small watersheds as evaluation units. Five different machine learning models were employed to construct evaluation models for the susceptibility of debris flows in the upper reaches of the Minjiang River. Quantitative analyses were conducted on the susceptibility of debris flows and the contribution rates of evaluation factors before and after the Wenchuan earthquake. The results indicate that: (1) Integrated machine learning models exhibit higher ACC and AUC values than the shallow machine learning models, with the random forest model performing the best in the assessment of debris flow susceptibility before and after the earthquake; (2) The occurrence rate of debris flow before and after the earthquakes gradually increases with the rise in susceptibility level, and the increment increases with the increase of the level. The occurrence rate of debris flow at all levels is higher after the earthquake than before; (3) The contribution rate of the erosion transmission coefficients before and after the earthquake is significantly higher than that of other factors. This contribution is compounded by the spatial distribution characteristics of the Wenchuan earthquake intensity, further accentuating the spatial distribution pattern of decreasing debris flow development from downstream to upstream in both the main and tributaries following the earthquake.

  • 我国黄土高原及周缘地区构造背景复杂,历史强震发育。黄土高原位于青藏地震区、华北地震区和华南地震区的交会部位,以鄂尔多斯地台为中心,在地台的周缘,分布有大量活跃的地震构造带,如六盘山—祁连山地震带、汾渭地震带、华北平原地震带、银川—河套地震带等,其地震构造非常复杂,是一个历史强震和现代地震频发的区域。根据现代地震台网监测资料,黄土高原及周缘地区1970—2019年间区内共发生2.0~4.0级现代地震7670余次。根据对历史地震目录的统计,区内共记录到M≥4¾级地震420次,其中8.0~8.9级地震7次,7.0~7.9级地震18次,6.0~6.9级地震61次,5.0~5.9级地震249次,4.7~4.9级地震86次,最大地震为1920年宁夏海原8.5级地震。区内发生的许多破坏性地震,如1556年华县8¼级地震、1654年天水8级地震、1920年海原8.5级地震、1927年古浪8级地震等,均造成了灾难性的后果。尤其是1920海原地震触发大量地质灾害,其数量之多、规模之大、类型之复杂、造成损失之惨重,举世罕见[1]。当前黄土高原及周缘地区7级地震复发周期已经接近,强震风险日益增高,地震地质灾害风险和威胁日趋严峻。

    典型黄土是一种结构性土,具有大孔隙、弱胶结的架空结构特征,在我国黄土高原地区分布广泛。黄土在强震作用下具有强烈的地震易损性,其中震陷性是黄土最典型的灾害特性之一。黄土震陷除使自身宏观强度及变形特征发生改变、极易引发土体整体失稳与破坏之外[2],还会产生降低桩摩阻力等工程问题[3],因此受到国内外科研和工程技术人员的广泛关注。针对黄土震陷机理、评价和防治等方面,不同学者开展了大量的研究工作。在黄土震害调查方面,陈永明等[4]、张振中等[5]对1995年永登5.8级地震诱发的黄土震陷灾害开展了全面的调查研究。对于震陷影响因素方面,Prakash深入研究了美国中部黄土的液化特性,研究了该地区的抗液化能力受物性指标和粒径分布的影响[6]。主要考虑黄土不同的物理性质、加载条件等,确定了各物性指标及荷载参数对黄土震陷特性的影响效应[7-9],以及黄土震陷性的区域变化规律[10-13]。部分学者研究了黄土震陷的微观机制[14-15],提出了黄土震陷的评价模型和方法[16-18],同时对黄土震陷引发的次生灾害的灾变机理与破坏模式进行了研究[19],这些研究成果在典型工程及重要城镇的震害预测和抗震设防中得到应用[20]。在黄土震陷的防治方面,从土性改良[21]和地基处理[22-23]等方面开展了大量研究,为重大工程的抗震设防提供了依据。上述大量研究成果,为黄土震陷灾害的评价和预测提供了重要的理论依据。

    富平县地处渭河盆地和鄂尔多斯地台的连接带,区内地震构造背景复杂,黄土分布广泛,黄土场地的震陷危险性较高。本文以富平县城市总体规划建设用地和富阎新区规划范围为研究区,通过资料收集、野外调研、室内试验和理论分析等方法,确定研究区的地震工程地质条件,采用地震危险性概率分析方法确定研究区不同超越概率水平的地震动参数,基于大量黄土动三轴试验确定区内不同地貌单元及不同地层黄土的震陷特性。在此基础上,研究确定区内黄土场地的震陷小区划,研究结果可为富平县的防震减灾工作提供科学依据。

    研究区位于陕西省中部,关中平原和陕北高原的过渡地带,属渭北黄土高原沟壑区,其具体位置如图1所示。区内地形总体西北高东南低,地势比较平坦,相对高差小于200 m。为查明研究区的地层结构及岩土体类型,共布设了199个钻孔,其中断层控制孔79个,场地控制孔117个,已有钻孔3个,钻孔深度主要为80~100 m。

    图  1  渭北黄土高原地质地貌图及研究区位置
    Figure  1.  Location and geological and geomorphological map of the study area

    根据资料收集、野外调查、现场勘察和资料分析,确定了研究区的地震工程地质条件。研究区内发育有3条断裂,断裂名称及活动时代分别为:淡村—龙阳断裂(Qp)、三井—乔家断裂(Qh)和口镇—关山断裂(Qp)。区内主要分布有黄土塬和河流阶地两大地貌类型,具体包括荆山塬、华阳塬、浮塬,温泉河漫滩和一级阶地,石川河漫滩和一、二、三至四级阶地,渭河二级阶地,研究区地质地貌图如图2所示。

    图  2  研究区地质地貌图
    Figure  2.  Geological and geomorphological map of the study area

    场地内的岩土体类型主要为黄土类土、粉质黏土、粉土、砂土、卵石及人工填土等。各地貌单元的地层结构如图3所示。由图可见:在钻孔揭露深度范围内,黄土塬为黄土—古土壤的互层结构;石川河三—四级阶地为含3~5层古土壤的黄土地层(厚30~40 m)覆盖在河流相地层之上;石川河二级阶地上覆黄土层厚20多米,见1层古土壤;渭河二级阶地上覆黄土层30~40 m,见1层古土壤。在研究区分别布设有南北向(Ⅰ—Ⅰ’)及近东西向(Ⅱ—Ⅱ’)地质剖面,剖面详情具体见图4所示。

    图  3  不同地貌单元典型地层结构图
    Figure  3.  Typical stratigraphic structure of different geomorphic units
    图  4  研究区主要地质剖面图
    Figure  4.  Main geological sections of the study area

    图5给出了研究区的等效剪切波速及地脉动卓越周期的平面分布图。由图可见,场地等效剪切波速均小于500 m/s,且基本大于250 m/s。其中温泉河河床及漫滩及渭河二级阶地的等效剪切波速较低,分别为256.4 m/s及275.4 m/s,石川河河床及漫滩的平均等效剪切波速最高,最大等效剪切波速为422.6 m/s,最小为271.6 m/s,均值为347 m/s。石川河一级阶地和二级阶地的平均剪切波速相差不多,三个黄土塬区的平均等效剪切波速基本一致。整个场地的平均卓越周期较稳定,各地貌单元场地平均卓越周期主要集中在0.30~0.38 s。

    图  5  研究区等效剪切波速及卓越周期分布图
    Figure  5.  Distribution of equivalent shear wave velocity and predominant period in the study area

    在地震危险性概率分析的基础上,确定了研究区50年超越概率10%和2%的地震动参数区划图,具体见图6所示,各分区的地震动参数如表1所示。

    图  6  研究区地震动参数区划图
    Figure  6.  Seismic parameter zoning map of the study area
    表  1  不同超越概率地震动参数表
    Table  1.  Table of ground motion parameters with different exceedance probabilities
    分区50年超越概率10%50年超越概率2%
    $ {\alpha _{\max }} $/gTg/s$ {\;\beta _{\max }} $$ \gamma $$ {\alpha _{\max }} $/gTg/s$ {\;\beta _{\max }} $$ \gamma $
    AA20.1950.502.50.90.3600.702.50.9
    BB10.2200.452.50.9
    B20.2200.502.50.9
    B30.2200.552.50.90.3800.802.50.9
    B40.3800.852.50.9
    CC10.4100.602.50.9
    C20.4100.702.50.9
      注:${\alpha _{\max }} $为峰值加速度,Tg为特征周期,${\;\beta _{\max }} $为结构物加速度的放大倍数,$\gamma $为衰减系数 。
    下载: 导出CSV 
    | 显示表格

    本研究在不同地貌单元不同深度处采取黄土试样,开展黄土的震陷试验,据此研究黄土的震陷性。研究区黄土主要分布在黄土塬、石川河二级和三—四级阶地,以及渭河二级阶地,取样深度分别控制为5 m、10 m和15 m。室内动三轴试验采用K0固结,其固结压力根据上覆土体自重设置。激振动荷载采用正弦波,加载频率为1 Hz,加载循环周次为5次。

    本次研究采用指数函数作为黄土的震陷模型,据此对黄土的震陷性进行拟合。模型表达式如式(1)所示。其中,AB为试验参数,$ {\varepsilon _{\rm{p}}} $为残余应变,$ {\sigma _{\rm{d}}} $为动应力。$ {\sigma _{{\rm{d}}0}} $为震陷起始动应力,$ {\sigma _{{\rm{du}}}} $为极限动应力。试验结果及其拟合曲线、拟合参数见图7

    图  7  黄土震陷试验拟合曲线及参数
    Figure  7.  Fitting curve and parameters of loess seismic subsidence test
    $$ {\varepsilon _{\text{p}}} = \left\{\begin{split} & 0\quad\quad\quad\quad\quad\;{(0\leqslant {\sigma _{\rm{d}}} < {\sigma _{{\rm{d}}0}})} \\ & {A\exp (B{\sigma _{\rm{d}}})}\quad {({\sigma _{{\rm{d}}0}} \leqslant {\sigma _{\rm{d}}} < {\sigma _{{\rm{du}}}})} \end{split}\right. $$ (1)

    为了分析不同地貌单元黄土的震陷性差异,将不同地貌单元相同深度的黄土试样震陷曲线进行均值化处理,并进行对比分析,结果见图8所示。

    图  8  不同地貌单元黄土震陷曲线对比分析
    Figure  8.  Comparison and analysis of seismic subsidence curve of loess in different geomorphic units

    由图可见:各个地貌单元的震陷曲线特征较为相似,随着黄土层深度增大,产生相同震陷所需的动应力越大。在相同动应力条件下,黄土台塬的震陷系数最小,其次为石川河三—四级阶地,石川河二级阶地最大。可见研究区低阶地黄土震陷性强,其次为高阶地,黄土塬震陷性最小。

    图9给出了不同地貌单元黄土震陷拟合参数的对比,由图可见:同一地貌单元同一深度AB值随着土层深度增大而减小,且同一地貌单元不同深度处的AB值变化率基本在50%~65%。不同地貌单元在同一深度处的AB值有所不同,黄土台塬最大,其次是石川河三—四级阶地,然后是渭河二级阶地,石川河二级阶地最小。

    图  9  不同地貌单元及不同深度黄土震陷拟合参数对比分析
    Figure  9.  Comparative analysis of fitting parameters of loess seismic subsidence in different geomorphic units and depths

    研究区黄土场地主要为黄土-古土壤的层状结构,根据地形地貌条件按照水平层状模型将场地考虑为一维计算模型,用分层总和思想计算黄土场地的震陷量。根据各钻孔地层结构及各层土体物理力学参数,结合不同超越概率条件下地震动参数和相应土体震陷曲线,确定不同地层土体的震陷系数及钻孔震陷量。以此为基础开展研究区50年超越概率10%和2%的黄土震陷小区划,结果如图10所示。

    图  10  研究区震陷小区划
    Figure  10.  Seismic subsidence zoning in the study area

    由图可见:在50年超越概率10%条件下,场地轻微黄土震陷区主要分布于浮塬和渭河二级阶地,震陷面积约3.5 km2。中等黄土震陷区分布于浮塬及渭河二级阶地,震陷面积约3.9 km2,其余黄土区属于不震陷区。

    50年超越概率2%条件下,场地轻微及中等震陷区主要分布于石川河二级阶地和浮塬上,轻微震陷区面积约5.3 km2。中等震陷区面积约15.7 km2。严重震陷区主要分布在浮塬、渭河二级阶地以及石川河三—四级阶地,石川河河床及漫滩也有较小范围分布,震陷面积约9.9 km2,其余黄土区属于不震陷区。

    黄土震陷是黄土高原地区最典型的灾害之一,严重威胁着当地的经济建设和居民的生命财产安全。本文通过资料收集、野外调研、室内试验和理论分析等方法,对富平县黄土震陷特性及其区划特征进行了研究,主要结论如下:

    (1)典型震陷曲线表现为初始变形、曲线变形及剪切变形三个阶段。不同深度黄土震陷曲线具有相似的变化规律。随着深度的增加,产生明显震陷所需的动应力越来越大,20m以下土样不具明显的震陷性。

    (2)研究区内低阶地黄土震陷性较强,其次为高阶地,黄土台塬区黄土震陷性相对较小。通过综合分析研究区不同地貌单元黄土的震陷特性,建立的震陷曲线的分段函数数学模型精度较高,可为研究区其他区域的震陷预测提供参考。

    (3)50年超越概率10%条件下,研究区内轻微、中等震陷区分布于浮塬和渭河二级阶地,其余黄土区属于不震陷区。50年超越概率2%条件,研究区内轻微及中等黄土震陷区主要分布在石川河三—四级阶地、浮塬和渭河二级阶地。严重震陷区主要分布在渭河二级阶地、石川河三—四级阶地和浮塬,其余黄土区属于不震陷区。根据震陷等级给出了研究区50年超越概率10%和2%水平下的黄土震陷小区划。可为富平县及富阎新区的城市规划及防灾减灾工作提供一定的依据。

  • 图  1   研究区概况与评价单元

    Figure  1.   Overview and evaluation unit in the study area

    图  2   泥石流易发性评价流程

    Figure  2.   Evaluation process of debris flow susceptibility

    图  3   机器学习模型架构示意简图

    Figure  3.   Schematic diagram of machine learning model architecture

    图  4   基于测试集的各模型ROC 曲线及AUC

    Figure  4.   ROC curves and AUC values of each model based on the test set

    图  5   岷江上游地区泥石流易发性等级图

    Figure  5.   The susceptibility grade of debris flow in the upper reaches of the Minjiang River

    图  6   不同易发性等级内的泥石流数量与发生率

    Figure  6.   The number and occurrence rate of debris flows within different susceptibility levels

    图  7   评价因子贡献率

    Figure  7.   Contribution rate of evaluation factors

    图  8   不同流域的泥石流数量、发生率和侵蚀传递系数均值

    Figure  8.   Mean debris flow count, occurrence rate, and erosion transfer coefficient of debris flows in different watersheds

    表  1   混淆矩阵

    Table  1   Confusion matrix

    预测结果
    1 0
    真实结果 1 真阳性 (TP 假阴性 (FN
    0 假阳例 (FP 真阴例 (TN
    下载: 导出CSV

    表  2   测试集中各模型ACCAUC

    Table  2   ACC and AUC values of the model on the test data set

    NB RF XGB DT LR
    震前 ACC 0.92 0.93 0.93 0.91 0.93
    AUC 0.77 0.84 0.84 0.76 0.78
    震后 ACC 0.83 0.86 0.85 0.81 0.85
    AUC 0.84 0.91 0.90 0.83 0.90
    下载: 导出CSV
  • [1]

    SIMONI S,ZANOTTI F,BERTOLDI G,et al. Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS[J]. Hydrological Processes,2008,22(4):532 − 545. DOI: 10.1002/hyp.6886

    [2] 陈怡, 范宣梅. 震后地质灾害易发性评价——以映秀震区为例[J]. 科学技术与工程,2020,20(9):3516 − 3527. [CHEN Yi, FAN Xuanmei. Susceptibility assessment of post-earth-quake geo-hazard in the epicentral area of the 2008 Wenchuan eearthquake near yingxiu town[J]. Science Technology and Engineering,2020,20(9):3516 − 3527. (in Chinese with English abstract)]

    CHEN Yi, FAN Xuanmei. Susceptibility assessment of post-earth-quake geo-hazard in the epicentral area of the 2008 Wenchuan eearthquake near yingxiu town[J]. Science Technology and Engineering, 2020, 209): 35163527. (in Chinese with Englishabstract)

    [3] 崔鹏, 庄建琦, 陈兴长, 等. 汶川地震区震后泥石流活动特征与防治对策[J]. 四川大学学报(工程科学版),2010,42(5):10 − 19. [CUI Peng, ZHUANG Jianqi, CHEN Xingchang, et al. Characteristics and countermeasures of debris flow in Wenchuan Area after the earthquake[J]. Journal of Sichuan University (Engineering Science Edition),2010,42(5):10 − 19. (in Chinese with English abstract)]

    CUI Peng, ZHUANG Jianqi, CHEN Xingchang, et al. Characteristics and countermeasures of debris flow in Wenchuan Area after the earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 425): 1019. (in Chinese with Englishabstract)

    [4] 张文涛, 柳金峰, 游勇, 等. 泥石流防治工程损毁度评价——以汶川地区为例[J]. 中国地质灾害与防治学报,2022,33(4):77 − 83. [ZHANG Wentao, LIU Jinfeng, YOU Yong, et al. Damage evaluation of control works against debris flow:A case study in Wenchuan Area[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):77 − 83. (in Chinese with English abstract)]

    ZHANG Wentao, LIU Jinfeng, YOU Yong, et al. Damage evaluation of control works against debris flow: A case study in Wenchuan Area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 334): 7783. (in Chinese with Englishabstract)

    [5] 文强, 胡卸文, 刘波, 等. 四川丹巴梅龙沟“6•17” 泥石流成灾机理分析[J]. 中国地质灾害与防治学报,2022,33(3):23 − 30. [WEN Qiang, HU Xiewen, LIU Bo, et al. Analysis on the mechanism of debris flow in Meilong valley in Danba County on June 17, 2020[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):23 − 30. (in Chinese with English abstract)]

    WEN Qiang, HU Xiewen, LIU Bo, et al. Analysis on the mechanism of debris flow in Meilong valley in Danba County on June 17, 2020[J]. The Chinese Journal of Geological Hazard and Control, 2022, 333): 2330. (in Chinese with Englishabstract)

    [6] 孙滨, 祝传兵, 康晓波, 等. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报,2022,33(5):119 − 127. [SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):119 − 127. (in Chinese with English abstract)]

    SUN Bin, ZHU Chuanbing, KANG Xiaobo, et al. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 335): 119127. (in Chinese with Englishabstract)

    [7] 王峰,杨帆,江忠荣,等. 基于沟域单元的康定市泥石流易发性评价[J]. 中国地质灾害与防治学报,2023,34(3):145 − 156. [WANG Feng, YANG Fan, JIANG Zhongrong, et al. Susceptibility assessment of debris flow based on watershed units in Kangding City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):145 − 156. (in Chinese with English abstract)]

    WANG Feng, YANG Fan, JIANG Zhongrong, et al. Susceptibility assessment of debris flow based on watershed units in Kangding City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 343): 145156. (in Chinese with English abstract)

    [8] 杨得虎, 朱杰勇, 刘帅, 等. 基于信息量、加权信息量与逻辑回归耦合模型的云南罗平县崩滑灾害易发性评价对比分析[J]. 中国地质灾害与防治学报,2023,34(5):43 − 53. [YANG Dehu, ZHU Jieyong, LIU Shuai, et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value, weighted information value and logistic regression coupled model in Luoping County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):43 − 53. (in Chinese with English abstract)]

    YANG Dehu, ZHU Jieyong, LIU Shuai, et al. Comparative analyses of susceptibility assessment for landslide disasters based on information value, weighted information value and logistic regression coupled model in Luoping County, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 345): 4353. (in Chinese with English abstract)

    [9] 易靖松,王峰,程英建,等. 高山峡谷区地质灾害危险性评价——以四川省阿坝县为例[J]. 中国地质灾害与防治学报,2022,33(3):134 − 142. [YI Jingsong, WANG Feng, CHENG Yingjian, et al. Study on the risk assessment of geological disasters in alpine valley area:A case study in Aba County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):134 − 142. (in Chinese with English abstract)]

    YI Jingsong, WANG Feng, CHENG Yingjian, et al. Study on the risk assessment of geological disasters in alpine valley area: A case study in Aba County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 333): 134142. (in Chinese with English abstract)

    [10] 李巧. 模型融合算法的研究及应用[D]. 武汉:湖北大学,2016. [LI Qiao. Research and Application on Model Blending Algorithm[D]. Wuhan:Hubei University, 2016. (in Chinese with English abstract)]

    LI Qiao. Research and Application on Model Blending Algorithm[D]. Wuhan: Hubei University, 2016. (in Chinese with English abstract)

    [11] 周聂, 侯精明, 陈光照, 等. 基于机器学习的山洪灾害快速预报方法[J]. 水资源保护,2022,38(2):32 − 40. [ZHOU Nie, HOU Jingming, CHEN Guangzhao, et al. A rapid forecasting method for mountain flood disaster based on machine learning algorithms[J]. Water Resources Protection,2022,38(2):32 − 40. (in Chinese with English abstract)]

    ZHOU Nie, HOU Jingming, CHEN Guangzhao, et al. A rapid forecasting method for mountain flood disaster based on machine learning algorithms[J]. Water Resources Protection, 2022, 382): 3240. (in Chinese with English abstract)

    [12]

    ABID F. A survey of machine learning algorithms based forest fires prediction and detection systems[J]. Fire Technology,2021,57(2):559 − 590. DOI: 10.1007/s10694-020-01056-z

    [13]

    KERN A N,ADDISON P,OOMMEN T,et al. Machine learning based predictive modeling of debris flow probability following wildfire in the intermountain western United States[J]. Mathematical Geosciences,2017,49(6):717 − 735. DOI: 10.1007/s11004-017-9681-2

    [14] 李奋生, 赵国华, 李勇, 等. 青藏高原东缘的隆升及其水系的响应[J]. 长江流域资源与环境,2016,25(3):420 − 428. [LI Fensheng, ZHAO Guohua, LI Yong, et al. The uplift of the Longmen Shan and the drainage response[J]. Resources and Environment in the Yangtze Basin,2016,25(3):420 − 428. (in Chinese with English abstract)]

    LI Fensheng, ZHAO Guohua, LI Yong, et al. The uplift of the Longmen Shan and the drainage response[J]. Resources and Environment in the Yangtze Basin, 2016, 253): 420428. (in Chinese with English abstract)

    [15]

    AZARAFZA M,AZARAFZA M,AKGÜN H,et al. Deep learning-based landslide susceptibility mapping[J]. Scientific Reports,2021,11:24112. DOI: 10.1038/s41598-021-03585-1

    [16] 贺香勇, 蒋勇, 胡勇. 改进朴素贝叶斯算法在火灾预警 中的应用[J]. 中国科学技术大学学报,2022(6):50 − 58+70. [HE Xiangyong, JIANG Yong, HU Yong. Application of a newly developed naive Bayes algorithm in fire alarm[J]. Journal of University of Science and Technology of China,2022(6):50 − 58+70. (in Chinese with English abstract)]

    HE Xiangyong, JIANG Yong, HU Yong. Application of a newly developed naive Bayes algorithm in fire alarm[J]. Journal of University of Science and Technology of China, 20226): 5058+70. (in Chinese with English abstract)

    [17]

    CHOI J,OH H J,LEE Hongjin,et al. Combining landslide susceptibility maps obtained from frequency ratio,logistic regression,and artificial neural network models using ASTER images and GIS[J]. Engineering Geology,2012,124:12 − 23.

    [18]

    MELO R,ZÊZERE J L,ROCHA J,et al. Combining data-driven models to assess susceptibility of shallow slides failure and Run-out[J]. Landslides,2019,16(11):2259 − 2276.

    [19] 丁愫, 陈报章, 王瑾, 等. 基于决策树的统计预报模型在臭氧浓度时空分布预测中的应用研究[J]. 环境科学学报,2018,38(8):3229 − 3242. [DING Su, CHEN Baozhang, WANG Jin, et al. An applied research of decision-tree based statistical model in forecasting the spatial-temporal distribution of O3[J]. Acta Scientiae Circumstantiae,2018,38(8):3229 − 3242. (in Chinese with English abstract)]

    DING Su, CHEN Baozhang, WANG Jin, et al. An applied research of decision-tree based statistical model in forecasting the spatial-temporal distribution of O3[J]. Acta Scientiae Circumstantiae, 2018, 388): 32293242. (in Chinese with English abstract)

    [20]

    HERNÁNDEZ V A S,MONROY R,MEDINA-PÉREZ M A,et al. A practical tutorial for decision tree induction:evaluation measures for candidate splits and opportunities[J]. ACM Computing Surveys,54(1):18.

    [21]

    ZHOU Xinzhi,WEN Haijia,ZHANG Yalan,et al. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization[J]. Geoscience Frontiers,2021,12(5):101211. DOI: 10.1016/j.gsf.2021.101211

    [22]

    STATISTICS L B,BREIMAN L. Random Forests[J]. Machine Learning,2001,5 − 32.

    [23]

    BENTÉJAC C,CSÖRGŐ A,MARTÍNEZ-MUÑOZ G. A comparative analysis of gradient boosting algorithms[J]. Artificial Intelligence Review,2021,54(3):1937 − 1967. DOI: 10.1007/s10462-020-09896-5

    [24]

    CHEN Tianqi,GUESTRIN C. XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13 - 17,2016,San Francisco,California,USA. ACM,2016:785 − 794.

    [25] 张静. 河谷地貌分异下岷江上游泥石流流域演化趋势研究[D]. 绵阳:西南科技大学,2021. [ZHANG Jing. The evolution trend of debris flow basins in the upper Minjiang River under the diversion of river valley geomorphology[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese with English abstract)]

    ZHANG Jing. The evolution trend of debris flow basins in the upper Minjiang River under the diversion of river valley geomorphology[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese with English abstract)

    [26] 高大钊. 《岩土工程勘察规范》(GB 50021—2001)的修订[J]. 建筑结构,2002,32(12):62 − 65. [GAO Dazhao. The revision of code for investigation of geotechnical engineering[J]. Building Structure,2002,32(12):62 − 65. (in Chinese with English abstract)]

    GAO Dazhao. The revision of code for investigation of geotechnical engineering[J]. Building Structure, 2002, 3212): 6265. (in Chinese with English abstract)

    [27] 刘纪远. 国家资源环境遥感宏观调查与动态监测研究[J]. 遥感学报,1997,1(3):225 − 230. [LIU Jiyuan. Study on national resources & environment survey and dynamic monitoring using remote sensing[J]. Journal of Remote Sensing,1997,1(3):225 − 230. (in Chinese with English abstract)]

    LIU Jiyuan. Study on national resources & environment survey and dynamic monitoring using remote sensing[J]. Journal of Remote Sensing, 1997, 13): 225230. (in Chinese with English abstract)

    [28] 张晓龙, 江川, 骆名剑. ROC分析技术在机器学习中的应用[J]. 计算机工程与应用,2007,43(4):243 − 248. [ZHANG Xiaolong, JIANG Chuan, LUO Mingjian. Application of ROC analysis in machine learning[J]. Computer Engineering and Applications,2007,43(4):243 − 248. (in Chinese with English abstract)]

    ZHANG Xiaolong, JIANG Chuan, LUO Mingjian. Application of ROC analysis in machine learning[J]. Computer Engineering and Applications, 2007, 434): 243248. (in Chinese with English abstract)

    [29]

    RAHMATI O,TAHMASEBIPOUR N,HAGHIZADEH A,et al. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion[J]. Geomorphology,2017,298:118 − 137. DOI: 10.1016/j.geomorph.2017.09.006

    [30]

    DI B,ZHANG H,LIU Y,et al. Assessing Susceptibility of Debris Flow in southwest China Using Gradient Boosting Machine[J]. Scientific Reports,2019,9:12532. DOI: 10.1038/s41598-019-48986-5

    [31]

    GAROSI Y,SHEKLABADI M,POURGHASEMI H R,et al. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping[J]. Geoderma,2018,330:65 − 78. DOI: 10.1016/j.geoderma.2018.05.027

  • 期刊类型引用(12)

    1. 王深禾,王世杰. 白鹤滩库区水位波动对滑坡形变的影响. 地球物理学进展. 2025(01): 94-105 . 百度学术
    2. 李志国,徐涛,刘永杰,赵立春,徐勇超,杨天鸿,郑小斌. 露天矿边坡稳定性的层次分析-模糊综合评价耦合分析. 中国地质灾害与防治学报. 2024(01): 116-123 . 本站查看
    3. 岳磊,刘昌义,丛晓明,唐彬元,付江涛,邢光延,雷浩川,赵吉美,吕伟涛,胡夏嵩. 基于InSAR技术的夏藏滩滑坡区地表变形监测与分析. 水文地质工程地质. 2024(03): 158-170 . 百度学术
    4. 陈跨越,王保云. 联合时序InSAR技术和CS-Elman神经网络的板子沟地表形变监测与预测模型性能的评估. 地球物理学进展. 2024(03): 1003-1016 . 百度学术
    5. 李昊,李叶繁,魏长婧,王磊杰,康利军,姜川. 基于SBAS-InSAR技术的登封市潜在地质灾害识别研究. 河南科学. 2024(08): 1170-1178 . 百度学术
    6. 张攀,李为乐,陆会燕,周胜森,李维敏,许善淼. 基于SBAS-InSAR的库区活动滑坡变形特征与库水位变化响应关系:以四川省黑水县毛尔盖水电站为例. 科学技术与工程. 2024(28): 11991-12002 . 百度学术
    7. 洪文玉,喜文飞,钱堂慧,郭峻杞,靳婷婷. SBAS-In SAR下小湾水库-澜沧江段库岸滑坡空间分布统计. 测绘科学. 2024(10): 59-68 . 百度学术
    8. 武彬彬,罗超鹏,余波,刘沛源. 基于FLOW-3D的滑坡运动过程模拟研究. 甘肃水利水电技术. 2023(03): 17-20 . 百度学术
    9. 戴可人,吴明堂,卓冠晨,居安华,温柠玲,冯文凯,许强. 西南山区大型水电工程库岸滑坡InSAR早期识别与监测研究进展. 地球科学与环境学报. 2023(03): 559-577 . 百度学术
    10. 崔华丽,谯鹏志,王佃明. 库水位变动情况下库岸边坡稳定性研究——以白鹤滩水电站石圪垴滑坡为例. 钻探工程. 2023(05): 36-42 . 百度学术
    11. 何清,魏路,肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析. 中国地质灾害与防治学报. 2023(05): 81-90 . 本站查看
    12. 孙鹏. 基于Stacking-InSAR和SBAS-InSAR地面沉降监测方法研究——以新疆阿勒泰地区为例. 经纬天地. 2023(06): 58-64 . 百度学术

    其他类型引用(3)

图(8)  /  表(2)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  50
  • PDF下载量:  94
  • 被引次数: 15
出版历程
  • 收稿日期:  2023-06-07
  • 修回日期:  2023-11-08
  • 网络出版日期:  2024-01-22
  • 刊出日期:  2024-01-31

目录

/

返回文章
返回