Influence of air temperature change on stability of permafrost slope: A case study of shallow permafrost landslide in Qinghai Province
-
摘要: 受气温变化影响,浅层冻土滑坡失稳涉及水分的固液相态转换,是一个复杂的水热力耦合过程。为揭示气温变化对多年冻土斜坡稳定性的影响,基于冻土水热力耦合数值模型,模拟了2020—2024年青海省多年冻土区斜坡水热力演化过程。研究结果表明:水分迁移速率呈周期性变化,每年5—10月活动层融化程度高,总体积含水率变化趋势显著;夏季多年冻土上限以下的高含冰量土层融化产生厚度约15 cm的富水层,孔隙水压难以消散;4年间多年冻土上限下移10.4 cm,导致活动层和富水层的厚度增大,上覆融土下滑力增大、抗滑力减小,土体抗剪强度进一步下降;活动层土体每年产生数厘米冻胀融沉变形,抗剪强度不断劣化,坡脚处最容易形成薄弱带。Abstract: Under the influence of air temperature change, shallow permafrost landslide is a complex thermal-hydro-mechanical coupling process, which involves the transformation of water between solid state and liquid state. To reveal the influence of air temperature change on the shallow permafrost landslide, based on the coupled thermal-hydro-mechanical model for frozen soil, the thermal-hydro-mechanical evolution process of slope in permafrost region from 2020 to 2024 is simulated. The results are as follows: the rate of water migration presents periodic variation. The thawing degree of the active layer from May to October is high, causing the variation trend of total water content significantly. In summer, the thawing of the high ice content layer below the permafrost table forms a water-rich layer of 15 cm thickness approximately, causing excess pore water pressure difficult to dissipate. The permafrost table will decline by 10.4 cm in 4 years, and the thickness of the active layer and water-rich layer increased. As a result, the sliding force of the overlying thawed soil increases, the sliding resistance decreases, and the shear strength of the soil further decreases. Several centimeters displacement of frost heave and thaw settlement occurs in the active layer per year, shear strength deteriorates continuously, and the weak zone is easiest formed at slope toe.
-
0. 引言
库岸滑坡是深切割高山峡谷型库岸常见的破坏形式,多集中分布于我国西南山区[1-2]。库岸滑坡由地表内外营力相互作用而形成,人类工程建设及库区水位变化则使其演化特征更为突出,通常表现为库区蓄水之后库岸下缘坡体岩层软化,从而引起上部库岸的形变破坏[3-4]。库岸滑坡受多方面因素影响,具有成因复杂、类型多样和危害巨大等特点[5-7]。在水电站库区,蓄水和泄洪等因素导致的水位变化直接影响库岸滑坡的稳定性,库岸滑坡一旦失稳会诱发一系列次生灾害,破坏区域生态系统,毁坏库区坝体和发电设施[8],严重威胁库区上下游居民生命财产安全。因此,对水电站库岸滑坡进行变形监测具有重要意义。
常规监测手段已难以识别和监测大面积的库岸滑坡形变,相对传统的精密水准测量、全球卫星导航系统(Global Navigation Satellite System, GNSS)和光学遥感技术,合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,InSAR)技术因其大范围、全天时、全天候、高精度和高分辨率等特点,已成功应用于库岸滑坡灾害识别监测分析中[9-11]。国内外学者利用InSAR技术在库岸滑坡灾害的应用方面做了大量研究,康亚等[8]利用三类InSAR产品和DEM数据对金沙江流域乌东德水电站段进行滑坡早期识别,成功探测到多处未知和已知的滑坡体;徐帅等利用墨兰指数对SBAS-InSAR技术获取的形变点进行空间域异常值分析和聚类处理,成功识别出三峡库区巫山—奉节段高概率潜在滑坡范围[12];王振林等[13]利用SBAS-InSAR技术提取雅砻江流域锦屏一级水电站库区左岸边坡的形变特征信息,推断出大幅水位上升是诱发滑坡复活的主要因素;朱同同等[14]结合时序InSAR技术和GPS观测值分析了降雨和蓄水对三峡库区树坪滑坡变形的影响;史绪国等[15]联合分布式目标与点目标的时序InSAR技术对三峡库区藕塘滑坡进行稳定性监测;Tantianuparp等[16]联合多种SAR数据和PS-InSAR技术对三峡巴东进行滑坡探测,并将PS点时序形变与水位时间变化进行初步相关性分析;Zhou等[17]利用时序InSAR技术发现三峡库区木鱼堡滑坡变形主要发生在水库涨落期和高水位期;Liu等[18]利用SBAS-InSAR技术对三峡巴东地区进行滑坡探测并分析季节性滑坡运动与水位变化之间的相关性,上述研究证明了时序InSAR技术在库岸滑坡监测中的可靠性,可以对水电站库岸滑坡变形进行有效分析。白鹤滩水电站地处四川和云南交界,自2021年4月开始蓄水,库区水位由660 m升至825 m,上升幅度达165 m;水电站运行期间最低水位765 m,最高水位825 m,升降水位差60 m,最大库容达256×108 m3[19-20]。库区地形起伏较大、断裂构造发育,加之蓄水引起的水位变化直接影响库岸潜在滑坡的变形趋势,对水电站基础设施和上下游居民生命财产安全造成潜在威胁[21-22]。因此,亟需对白鹤滩水电站库岸潜在滑坡进行变形分析。
文章联合2019年7月3日至2021年7月28日的150景升降轨Sentinel-1 SAR数据集,采用SBAS-InSAR技术获取白鹤滩水电站库区雷达视线方向(Line of sight,LOS)形变时间序列,在分析地表形变时间演化规律和空间分布特征的基础上,结合无人机野外调查,分析白鹤滩水电站库岸潜在滑坡的变形特征,重点研究蓄水因素对库岸潜在滑坡变形趋势的影响。
1. SBAS-InSAR技术
小基线集InSAR(Small Baseline Subset InSAR,SBAS-InSAR)技术最早由Berardino和Lanari等[23]提出,该方法通过组合数据的方式获得一系列短空间基线差分干涉图,这些差分干涉图能较好地克服空间失相关现象。SBAS-InSAR技术利用奇异值分解(SVD)法求解形变速率,将被较大空间基线分开的孤立SAR数据进行连接,进一步提高观测数据的时间采样率[23]。该方法可以有效减弱大气效应,降低相位噪声和误差[24],其基本原理及流程如下:
假定已获取覆盖同一区域的按时间序列排序的
$ N + 1 $ 幅SAR影像:$$ T = {\left[ {{T_0},{T_1}, \cdots ,{T_N}} \right]^{\rm{T}}} $$ (1) 根据干涉组合规则,生成M幅干涉图且M应当满足:
$$ \frac{{N + 1}}{2} \leqslant M \leqslant \frac{{N\left( {N + 1} \right)}}{2} $$ (2) 假设以
$ {t_0} $ 作为影像获取起始时刻且$ {t_0} $ 时刻影像覆盖区域位移为0,则在去除轨道误差、平地效应及地形相位的影响后,第$ i\left( {1 \leqslant i \leqslant M} \right) $ 幅影像某像素的干涉相位可表示为:$$ \Delta {\varphi _i} = {\varphi _{{t_1}}} - {\varphi _{{t_2}}} \approx \Delta {\varphi _{{i_{\rm{def}}}}} + \Delta {\varphi _{{i_{\rm{topo}}}}} + \Delta {\varphi _{{i_{\rm{atm}}}}} + \Delta {\varphi _{{i_{\rm{noise}}}}} $$ (3) $$ \left\{ \begin{gathered} \Delta {\varphi _{{i_{\rm{def}}}}}\left( {x,r} \right) = \frac{{4\text{π} }}{\lambda }\left[ {d\left( {{t_2}} \right) - d\left( {{t_2}} \right)} \right],i = 1,2, \cdots ,m \\ \Delta {\varphi _{{i_{\rm{topo}}}}}\left( {x,r} \right) = \frac{{4\text{π} }}{\lambda } \cdot \frac{{{B_ \bot }\Delta h}}{{r{\sin}\theta }} \\ \Delta {\varphi _{{i_{\rm{atm}}}}}\left( {x,r} \right) = {\varphi _{\rm{atm}}}\left( {{t_2}} \right) - \varphi \left( {{t_1}} \right) \\ \end{gathered} \right. $$ (4) 式中:
$ \Delta {\varphi _{{i_{\rm{def}}}}} $ ——斜距向形变产生的相位;$ \Delta {\varphi _{{i_{\rm{topo}}}}} $ ——地形相位;$ \Delta {\varphi _{{i_{\rm{atm}}}}} $ ——大气延迟引起的相位;$ \Delta {\varphi _{{i_{\rm{noise}}}}} $ ——相干噪声造成的相位。利用最小二乘或者奇异值分解(SVD)对m个解缠相位进行三维时空相位解缠即可获得不同SAR时刻对应的时序形变速率。
2. 研究区概况和研究数据
本文以四川省与云南省交界白鹤滩水电站库区作为研究区域,如图1所示。研究区长约30.38 km,宽约11.65 km,总面积353.93 km2,地处横断山脉东北部、青藏高原东南边缘,区域内断裂构造发育,构造运动强烈,河谷深切,山体陡峻,地震频发[25-27]。最高海拔3556 m,最低海拔520 m,高差达3036 m,地势陡峭,致使该区存在大量滑坡、崩塌和泥石流等地质灾害隐患。
形变监测数据选用从欧州航天局(European Space Agency, ESA)免费下载的150景C波段Sentinel-1雷达影像(其中升轨数据50景,降轨数据100景并在每个时间点上下两景拼接),升降轨数据覆盖区域如图2所示。时间跨度为2019年7月3日至2021年7月28日,极化方式为VV,成像方式为IW,数据参数如表1所示。为提高影像轨道精度,引入POD精密定轨星历数据。使用日本宇宙航空研究开发机构(Japan Aerospace Exploration Agency,JAXA)发布的ALOS WORLD 3D 30 m空间分辨率的数字高程模型(Digital Elevation Model,DEM),用于去除地形相位影响,如图3所示。
表 1 Sentinel-1A数据参数Table 1. Sentinel-1A data parameters轨道方向 成像模式 极化方式 波长 波段 入射角/(°) 升轨 IW VV 5.63 C 39.44 降轨 IW VV 5.63 C 39.28 3. SBAS-InSAR技术数据处理
采用SBAS-InSAR技术,选取经镶嵌、配准和裁剪后的100景Sentinel-1A斜距单视复数(Single Look Complex,SLC)影像(升降轨数据各50景),根据时间基线和垂直基线最优原则,升轨和降轨数据分别以日期为20191216和20200204的影像作为超级主影像。设置时间基线阈值180d,空间基线为临界基线阈值的50%,共生成654和888对干涉像对。为抑制斑点噪声,设置多视数为1∶4,采用Minimum Cost Flow 解缠方法和Goldstein滤波方法进行干涉处理,将组合干涉对经过配准,调整删除不理想的数据后生成干涉图,研究区部分较理想的干涉图如图4所示。
经过轨道精炼和重去平,利用最小二乘法和奇异值矩阵分解进行形变反演,然后估算和去除大气相位,得到研究区时间序列形变信息,对时序信息地理编码后获取研究区2019年7月3日至2021年7月28日LOS方向的形变结果。如图5所示,形变速率为正值表示靠近卫星,负值表示远离卫星。对比图5(a)、(b)研究区形变结果可知,降轨数据集探测的形变信息较为丰富,主要集中在库区西岸,最大LOS向形变速率−61.425 mm/a;升轨数据集仅在库区东岸部分区域形变较为明显,最大LOS向形变速率为91.426 mm/a。升降轨数据集形变信息不一致的原因是白鹤滩水电站库区两岸地形起伏较大,山势陡峭险峻,而升轨数据飞行方向大致沿东南向西北,雷达视线方向位于右侧,降轨数据则与之相反,故利用InSAR探测形变过程中阴影、叠掩和透视收缩等几何畸变现象严重。
4. 试验结果与分析
4.1 研究区库岸典型潜在滑坡选取
对升轨和降轨数据获取的研究区形变结果进行综合解译,升轨数据库岸形变区域解译结果如图6所示,共选取库岸形变较大区域4处。结合无人机野外调查结果,发现典型潜在滑坡2处,分别用H1和H2表示;非滑坡形变区2处,分别用X1和X2表示,升轨数据详细解译结果如表2所示。
表 2 升轨数据库岸形变区域解译结果列表Table 2. List of interpretation results of shore deformation region in orbit lifting database编号 形变区域名称 最大形变速率/(mm·a−1) 形变区域类别 H1 观音岩 19.846 潜在滑坡 H2 鱼坝 18.537 潜在滑坡 X1 六城村 76.259 非滑坡形变 X2 半坡 55.947 非滑坡形变 降轨数据库岸形变区域解译结果如图7所示,共选取库岸形变较大区域6处。结合无人机野外调查结果,发现典型潜在滑坡4处,分别用H3至H6编号;非滑坡形变区2处,分别用X3和X4表示,降轨数据详细解译结果如表3所示。
表 3 降轨数据库岸形变区域解译结果列表Table 3. List of interpretation results of shore deformation region in orbit descent database编号 形变区域名称 最大形变速率/(mm·a−1) 形变区域类别 H3 观音岩 10.726 潜在滑坡 H4 清水沟 17.605 潜在滑坡 H5 鱼坝 19.326 潜在滑坡 H6 大湾子 15.888 潜在滑坡 X3 六城村 48.871 非滑坡形变 X4 半坡 61.425 非滑坡形变 对比升轨和降轨数据解译结果可以看出,非滑坡形变区X1、X2与X3、X4分别相同,潜在滑坡H1、H2与H3、H5相互对应。另外,降轨数据还解译出除上述区域以外的潜在滑坡H4和H6,同一时间段不同轨道SAR数据集探测的形变结果能够相互对应,从侧面验证了本文InSAR结果的准确性,但受时间、空间失相干因素和几何畸变影响,升降轨形变信息有所差异,说明升降轨结合的方式能够有效弥补仅利用单一轨道识别结果不全面、不准确的缺陷,提升库岸潜在滑坡灾害识别和监测的准确性和有效性。
4.2 库岸典型潜在滑坡变形分析
结合4.1节升降轨数据集库岸潜在滑坡解译结果,本文选取H1、H2、H4和H6四处典型潜在滑坡进行变形分析,分别在各滑坡形变结果中选取特征点,引入研究区降雨数据,绘制特征点在蓄水前后的时序形变曲线,并结合无人机野外调查结果分析库岸典型潜在滑坡的变形特征。
H1滑坡地处观音岩,位于沿江公路东岸,滑坡形变速率如图8(a)所示。滑坡整体形变速率范围为−10.726~15.433 mm/a,分别选取滑坡体上缘和下缘特征点A、B与降雨数据构建时序形变曲线如图8(b)所示,特征点A和B时序形变速率波动趋势大致相同,每年雨季形变速率较旱季明显增加。2019年10月—2020年5月形变速率减小,2021年4月后形变速率增大,同比增加约16 mm/a。
经实地勘察,该滑坡坡体上缘为自然坡体,坡体下缘已进行边坡加固,故在2019年10月至2020年5月间B点较A点形变速率变化相对稳定。受降雨因素影响,坡体在雨季滑动速率增大。2021年4月至5月,降雨量几乎为零,水电站蓄水导致库区水位上升,库岸下缘受到江水侵蚀改变坡体上下缘间的平衡关系,使该滑坡体形变量增大。
H2滑坡地处鱼坝村,金沙江支流末端。滑坡形变速率如图9(a)所示,形变较大值处于坡体中上部,形变范围在−19.326~8.254 mm/a。在坡体两侧分别选择特征点C、D结合降雨数据构建时序形变曲线见图9(b),特征点C和D形变速率变化趋势基本一致,与降雨数据呈现一定相关性,雨旱两季形变速率差异较小。2020年1月至10月间,形变速率逐渐减小,2021年1月后形变速率振荡变化,2021年4月之后,形变速率增加值超过10 mm/a。
经野外实地调查,H2滑坡滑面自上而下呈倒“V”字形。由于隧道工程尚未完工,附近仍伴有部分工程活动,故在2020年雨季坡体滑动速率对降雨因素响应较弱,表现为形变速率逐渐减小。从图9(b)可以看出,2021年4月以后,特征点C和D形变速率相对之前有所增加,此时降雨量较小,说明蓄水导致的库区水位抬升也对远离河道的坡体产生影响。
H4滑坡体地处清水沟,位于库区西岸。滑坡形变速率如图10(a)所示,滑坡整体形变范围为−17.605~9.012 mm/a,形变速率较大区域位于坡体中部。由图10(b)特征点与降雨数据构建的时序形变曲线可知,特征点E呈振荡变化趋势,雨旱两季形变速率差异明显。2020年8月后形变速率急剧增大,2021年4月之后形变速率相比同期增加约17 mm/a。
通过野外调查可知,H4滑坡属于临江大型冲沟,沟面呈褶皱形态,目前尚未发育为真正意义的滑坡。图10(b)时序形变曲线在2020年雨季后呈梯度下降趋势,主要原因是降水冲刷沟壑表面使冲沟坡面向下滑动。2021年4月之后相比同期形变速率明显增加,此时受降雨影响微弱,说明该滑坡体对水位变化有较强响应,原本裸露的坡体下缘遭受江水侵蚀,下缘坡体在动水压力作用下土壤结构趋向松散状态,上缘冲沟体失稳,自然产生向下形变。
H6滑坡位于库区西岸大湾子隧道,滑动面处于隧道临江一侧,其形变速率如图11所示,整体形变速率为−15.888~16.326 mm/a, 选取滑坡体中部特征点F与降雨数据建立时序形变曲线(图11),特征点F形变速率整体呈波动趋势,在2020年雨季形变速率较旱季增速明显。2021年4月之后,形变速率缓慢增大,较同期增加约16 mm/a。
经野外实地考察,发现H6滑坡已发育且有部分滑动痕迹,在坡体顶端还发育有一定程度的裂缝(图11),所以在雨季降水冲刷坡面且沿裂缝渗入坡体改变其土体应力结构,使坡体产生较大形变。由图11可以看出,2021年4—5月间,降雨量几乎为零,但形变速率变化明显,说明该坡体对水位抬升具有较强响应,降水沿裂缝进入坡体内部,促进了破裂面的贯通,而水位抬升致使坡体下缘和滑动面软化,降低其抗剪强度,降雨和水位抬升的共同作用可能使H6滑坡进一步发育,后续应当对该滑坡进行重点监测。
5. 结论
本文联合升降轨Sentinel-1 SAR数据,采用SBAS-InSAR技术并结合无人机野外调查数据,分析白鹤滩水电站库岸潜在滑坡的变形特征,得到以下结论:
(1)白鹤滩水电站库区LOS方向形变速率为−90.959~91.426 mm/a,受蓄水因素影响,各库岸典型潜在滑坡形变速率明显加快,蓄水前后形变平均增速达10 mm/a以上;
(2)白鹤滩水电站库岸潜在滑坡对水位变化具有较强响应,蓄水量增加是当前库岸潜在滑坡发育的关键性诱因,水位抬升之后潜在滑坡形变速率变化明显,在降雨和蓄水等因素共同作用下,白鹤滩水电站库岸潜在滑坡存在失稳风险;
(3)降轨数据集探测的形变信息较为丰富,主要集中在库区西岸,而升轨数据集仅在库区东岸部分区域形变较为明显,故联合升降轨SAR数据能有效克服仅利用单一轨道导致的几何畸变等问题,使水电站库岸潜在滑坡变形监测更加准确、全面。
-
表 1 地层物理力学参数
Table 1 Physical and mechanical parameters of formation
参数 活动层 多年冻土层 基岩层 密度/(kg·m−3) 1800 2000 2500 弹性模量/MPa 40 30 5000 泊松比 0.25 0.3 0.15 渗透系数/(m·s−1) 1.2×10−6 8×10−10 0 黏聚力/kPa 12 35 — 内摩擦角/(°) 22 20 — -
[1] LEWKOWICZ A G. Dynamics of active-layer detachment failures,Fosheim Peninsula,Ellesmere Island,Nunavut,Canada[J]. Permafrost and Periglacial Processes,2007,18(1):89 − 103. DOI: 10.1002/ppp.578
[2] HUSCROFT C A,LIPOVSKY P,BOND J D,et al. Permafrost and landslide activity:Case studies from southwestern Yukon Territory[J]. Yukon exploration and geology,2003:107 − 119.
[3] LEWKOWICZ A G,HARRIS C. Frequency and magnitude of active-layer detachment failures in discontinuous and continuous permafrost,northern Canada[J]. Permafrost and Periglacial Processes,2005,16(1):115 − 130. DOI: 10.1002/ppp.522
[4] LAMOUREUX S F,LAFRENIÈRE M J. Fluvial impact of extensive active layer detachments,cape bounty,Melville Island,Canada[J]. Arctic,Antarctic,and Alpine Research,2009,41(1):59 − 68. DOI: 10.1657/1523-0430-41.1.59
[5] PATTON A I,RATHBURN S L,CAPPS D M,et al. Ongoing landslide deformation in thawing permafrost[J]. Geophysical Research Letters,2021,48(16):1 − 2.
[6] 靳德武,孙剑锋,付少兰. 青藏高原多年冻土区两类低角度滑坡灾害形成机理探讨[J]. 岩土力学,2005(5):774 − 778. [JIN Dewu,SUN Jianfeng,FU Shaolan. Discussion on landslides hazard mechanism of two kinds of low angle slope in permafrost region of Qinghai-Tibet plateau[J]. Rock and Soil Mechanics,2005(5):774 − 778. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2005.05.019 [7] RAN Youhua,LI Xin,CHENG Guodong,et al. Mapping the permafrost stability on the Tibetan Plateau for 2005−2015[J]. Science China Earth Sciences,2021,64(1):62 − 79.
[8] 梁虹,张为为,农华. 青海省气温空间变化特征分析[J]. 气象研究与应用,2017(增刊 1):52 − 53. [LIANG Hong,ZHANG Weiwei,NONG Hua. Analysis of spatial variation characteristics of air temperature in Qinghai Province[J]. Journal of Guangxi Meteorology,2017(Sup 1):52 − 53. (in Chinese with English abstract) [9] 刘广岳,谢昌卫,杨淑华. 青藏公路沿线多年冻土区活动层起始冻融时间的时空变化特征和影响因素[J]. 冰川冻土,2018,40(6):1067 − 1078. [LIU Guangyue,XIE Changwei,YANG Shuhua. Spatial and temporal variation characteristics on the onset dates of freezing and thawing of active layer and its influence factors in permafrost regions along the Qinghai-Tibet highway[J]. Journal of Glaciology and Geocryology,2018,40(6):1067 − 1078. (in Chinese with English abstract) DOI: 10.7522/j.issn.1000-0240.2018.0413 [10] 魏赛拉加,严慧珺,张俊才,等. 青海省地质灾害防治资金投入与成效分析[J]. 中国地质灾害与防治学报,2020,31(5):112 − 116. [WEI Sailajia,YAN Huijun,ZHANG Juncai,et al. Analysis of funding used for geological disaster prevention in Qinghai Province and its effects[J]. The Chinese Journal of Geological Hazard and Control,2020,31(5):112 − 116. (in Chinese with English abstract) [11] MCKENZIE J M,VOSS C I. Permafrost thaw in a nested groundwater-flow system[J]. Hydrogeology Journal,2013,21(1):299 − 316. DOI: 10.1007/s10040-012-0942-3
[12] 庞伟军,常刚,苟海瑞,等. 青海204省道祁默段沿线多年冻土发育特征[J]. 冰川冻土,2019,41(1):93 − 99. [PANG Weijun,CHANG Gang,GOU Hairui,et al. Characteristics of the permafrost from Qilian to mole of the highway 204 in Qinghai Province[J]. Journal of Glaciology and Geocryology,2019,41(1):93 − 99. (in Chinese with English abstract) DOI: 10.7522/j.issn.1000-0240.2019.0102 [13] 庞强强,赵林,李述训. 局地因素对青藏公路沿线多年冻土区地温影响分析[J]. 冰川冻土,2011,33(2):349 − 356. [PANG Qiangqiang,ZHAO Lin,LI Shuxun. Influences of local factors on ground temperatures in permafrost regions along the Qinghai-Tibet highway[J]. Journal of Glaciology and Geocryology,2011,33(2):349 − 356. (in Chinese with English abstract) [14] WANG Baolin, NICHOL S, SU Xueqing. Geotechnical field observations of landslides in fine-grained permafrost soils in the Mackenzie valley, CanadaLandslides, 2005: 203 − 212.
[15] 樊圆圆,宋玲,魏学利. 基于水槽试验的冰碛土泥石流启动机理分析:以中巴公路艾尔库然沟为例[J]. 中国地质灾害与防治学报,2021,32(1):1 − 9. [FAN Yuanyuan,SONG Ling,WEI Xueli. Analysis of the start-up mechanism of moraine debris flow based on flume test:A case study of the Aierkuran Gully along the Sino-Pakistan highway[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):1 − 9. (in Chinese with English abstract) [16] HARLAN R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research,1973,9(5):1314 − 1323. DOI: 10.1029/WR009i005p01314
[17] 白青波. 附面层参数标定及冻土路基水热稳定数值模拟方法初探[D]. 北京: 北京交通大学, 2016 BAI Qingbo. Determination of boundary layer parameters and a preliminary research on hydrothermal stability of subgrade in cold region[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese with English abstract)
[18] 邓友生,何平,周成林,等. 含盐土渗透系数变化特征的试验研究[J]. 冰川冻土,2006,28(5):772 − 775. [DENG Yousheng,HE Ping,ZHOU Chenglin,et al. Experimental study of permeability coefficient of saline soils[J]. Journal of Glaciology and Geocryology,2006,28(5):772 − 775. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0240.2006.05.022 [19] 张虎,张建明,张致龙,等. 冻结状态青藏粉质黏土的渗透系数测量研究[J]. 岩土工程学报,2016,38(6):1030 − 1035. [ZHANG Hu,ZHANG Jianming,ZHANG Zhilong,et al. Measurement of hydraulic conductivity of Qinghai-Tibet Plateau silty clay under subfreezing temperatures[J]. Chinese Journal of Geotechnical Engineering,2016,38(6):1030 − 1035. (in Chinese with English abstract) DOI: 10.11779/CJGE201606008 [20] 刘为民,何平,张钊. 土体导热系数的评价与计算[J]. 冰川冻土,2002,24(6):770 − 773. [LIU Weimin,HE Ping,ZHANG Zhao. A calculation method of thermal conductivity of soils[J]. Journal of Glaciolgy and Geocryology,2002,24(6):770 − 773. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-0240.2002.06.013 [21] 张玉芝,杜彦良,孙宝臣. 季节性冻土地区高速铁路路基地温分布规律研究[J]. 岩石力学与工程学报,2014,33(6):1286 − 1296. [ZHANG Yuzhi,DU Yanliang,SUN Baochen. Temperature distribution in roadbed of high-speed railway in seasonally frozen regions[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(6):1286 − 1296. (in Chinese with English abstract) [22] 白明,牛丽娟,魏荣妮. 近58年来祁连山中段气温时空变化[J]. 青海气象,2019(2):12 − 14. [BAI Ming,NIU Lijuan,WEI Rongni. Temporal and spatial variation of air temperature in the middle Qilian Mountains in recent 58 years[J]. Journal of Qinghai Meteorology,2019(2):12 − 14. (in Chinese with English abstract) [23] 李同录,李颖喆,赵丹旗,等. 对水致黄土斜坡破坏模式及稳定性分析原则的思考[J]. 中国地质灾害与防治学报,2022,33(2):25 − 32. [LI Tonglu,LI Yingzhe,ZHAO Danqi,et al. Thoughts on modes of loess slope failure triggered by water infiltration and the principals for stability analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):25 − 32. (in Chinese with English abstract) [24] 晏长根,王婷,贾海梁,等. 冻融过程中未冻水含量对非饱和粉土抗剪强度的影响[J]. 岩石力学与工程学报,2019,38(6):1252 − 1260. [YAN Changgen,WANG Ting,JIA Hailiang,et al. Influence of the unfrozen water content on the shear strength of unsaturated silt during freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(6):1252 − 1260. (in Chinese with English abstract) [25] HARRIS C,LEWKOWICZ A G. An analysis of the stability of thawing slopes,Ellesmere Island,Nunavut,Canada[J]. Canadian Geotechnical Journal,2000,37(2):449 − 462. DOI: 10.1139/t99-118
[26] HINKEL K M. Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska,1995–2000[J]. Journal of Geophysical Research Atmospheres,2003,108(D2):8168. DOI: 10.1029/2001JD000927