ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

香丽高速公路边坡地质灾害发育特征与易发性区划

廖小平, 徐风光, 蔡旭东, 周文皎, 魏家旭

廖小平, 徐风光, 蔡旭东, 周文皎, 魏家旭. 香丽高速公路边坡地质灾害发育特征与易发性区划[J]. 中国地质灾害与防治学报, 2021, 32(5): 121-129. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-15
引用本文: 廖小平, 徐风光, 蔡旭东, 周文皎, 魏家旭. 香丽高速公路边坡地质灾害发育特征与易发性区划[J]. 中国地质灾害与防治学报, 2021, 32(5): 121-129. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-15
Xiaoping LIAO, Fengguang XU, Xudong CAI, Wenjiao ZHOU, Jiaxu WEI. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 121-129. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-15
Citation: Xiaoping LIAO, Fengguang XU, Xudong CAI, Wenjiao ZHOU, Jiaxu WEI. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 121-129. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-15

香丽高速公路边坡地质灾害发育特征与易发性区划

基金项目: 红层地区线性工程穿越切割的地质体失稳机理和成灾模式项目(2018YFC1504901);香丽高速公路复杂边坡灾变特征及防治新技术研究项目(云交科教2018-35)
详细信息
    作者简介:

    廖小平(1965-),男,研究员,博士生导师,主要从事边坡防护加固工程、滑坡灾害整治工程的勘察设计、咨询评估和监测预警技术等方面的的科学研究与工程实践工作。E-mail:xiaoping.liao@126.com

  • 中图分类号: P694

Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway

  • 摘要: 针对香丽高速公路边坡地质灾害,在详细的道路工程勘察设计文件的基础上,结合现场踏勘调查,系统地研究了其边坡地质灾害的主要类型、发育特征和分布规律;提出高速公路等线性工程边坡灾害的基本地质条件、自然诱发因素、人类工程活动和灾害历史记录等完整信息评价指标。采用层次分析法、专家评分法与因素累积法相结合的研究方法,建立了线性工程边坡地质灾害易发性评价模型,并基于GIS平台完成了香丽高速公路边坡地质灾害的易发性区划。为指导香丽高速公路地质灾害的危险性评价及科学防治提供了重要依据,对类似山区道路等线性工程边坡地质灾害危险性评价研究与实践具有一定的示范作用和参考价值。
    Abstract: Focus on theslope geological hazard of Xiangli expressway, systematic study was carried out to find the main types, development characteristics and distribution of slope geological hazards on the basis of detailed road engineering survey.A complete information evaluation index of linear engineering of expressway, including basic geological conditions, natural induced factors, human engineering activities and historical records of slope disasters, was put forward. The susceptibility evaluation model of slope geological hazards of linear engineering was established through the combination of Analytic Hierarchy Process (AHP), expert investigation method and factor accumulation method. The susceptibility zoning of the slope geological hazards in Xiangli expressway was completed, in terms of the GIS platform, which provided an important basis for the risk evaluation and scientific prevention of geological hazards in Xiangli expressway.This paper plays a certain demonstration role and provides reference for the research and practice of slope geological hazard assessment of linear engineering such as mountainious roads.
  • 随着海洋资源开发、海洋工程建设的日益发展,海洋地质灾害的风险评价显得尤为重要。海洋地质灾害危险性区划是区域性海洋地质灾害风险评价的基础,可为海洋开发规划、工程建设及综合管理提供科学依据[1]

    由于影响地质灾害发生及危害程度的各因素之间的关系极为复杂,且各因素的量化也较为困难,因此在地质灾害危险性评估中,影响评价结果准确性、科学性的关键是评价指标的选择以及权重确定的合理性[2]。目前对权重的确定方法主要分为主观赋权法和客观赋权法两类,较为常见的评价模型主要有:模糊综合评判法、层次分析法(AHP)、灰色聚类法、人工神经网络法、综合指数法、多元统计法等[3]。AHP是一种定性与定量相结合的多目标决策分析方法,适用于目标结构复杂且缺乏必要数据时使用,将复杂问题中的各种因素以某种相互关联的有序层次使之条理化,为分析、决策、预测或控制事物的发展提供可比较的定量依据[4-5]。因此本文基于AHP建立评价指标层次结构模型与权重计算,使区划结果更为科学准确。

    自20世纪90年代以来,国内一些学者针对我国部分海域的地质灾害分区问题相继开展了研究工作[6-8],而针对渤海海域地质灾害危险性区划的研究相对较少,尚缺乏整体性的分析和评价。渤海沿岸地区是我国国民经济总体规划确定的东部沿海战略重点地区之一,是我国重要的自然资源“宝库”。随着海底资源勘探开发、海洋工程设施建设的逐渐增强,该区域地质灾害的研究工作越来越受到重视。本文基于国家海洋公益科研专项“近海海底地质灾害预测评价及防控关键技术研究”的大量调查工作,以渤海海域为研究区域,基于AHP开展地质灾害危险性区划研究,既对渤海海域地质环境保护、地质灾害防治及工程开发活动提供了科学依据,同时也为开展大尺度海域地质灾害危险性区划研究发展提供借鉴。

    渤海为我国东部陆架的浅海盆地,海域总面积约7.7×104 km2。黄河、海河、辽河、滦河等高含沙量的河流注入,致使渤海水深较浅(平均水深19 m)、地形平缓,从辽东湾、渤海湾和莱州湾3个海湾向渤海中央浅海盆地及东部渤海海峡倾斜,平均坡降0.13 ‰,是中国四大海域中坡度最小的海域。渤海海域发育有丰富的油气资源,渤海海域盆地两期构造旋回相应发育了沙河街组和东营组两套优质烃源岩,郯庐断裂带海域部分的长期持续活动形成了渤海海域盆地大中型油气田集中分布的油气富集带[9]

    渤海海域地质灾害广泛发育且类型复杂多样,包括海底滑坡、沉积物液化、粉砂流、塌陷、侵蚀淤积、海底沙波等,其成因机制主要为海洋动力诱发[10]。各类地质灾害与渤海海域的资源开发利用、工程防护息息相关,严重威胁着石油平台、海底管缆的安全稳定。例如2003年,胜利海上油田埕岛海域,靠近采油平台CB12B 处的海底沉积物在海洋动力作用下发生液化扰动,造成两条海底电缆击穿中断[11]

    在海洋地质灾害中,地震也是一个关键因子,而渤海海域地质灾害的成因机制多与海洋动力密切相关,地震相较于风暴潮等海洋动力作用发生频次较少,因此在本研究中不予以考虑。本次对渤海海域进行地质灾害危险性区划,重点关注水动力引发的地质灾害,依此对相关评价因子进行了遴选。遵循科学性结合实用性、定性结合定量、重要性结合差异性、普遍性结合可操作性的原则,评价体系设计为3个层次,A层为目标层,目标是实现对整个研究区的地质灾害危险性区划;B层是主题层,共分为4个主题,分别为海洋水动力条件B1、工程地质环境B2、灾害地质条件B3、人类工程活动B4。C层为指标层,本次评价共确定8个可量化评价的细化指标。评价因子层次见图1

    图  1  渤海海域海底地质灾害危险性区划评价指标体系层次结构图
    Figure  1.  The analytical hierarchy model for evaluation index system of geological hazards regionalization in Bohai Sea

    本文中各评价因子的指标数据来源于国家海洋公益科研专项“近海海底地质灾害预测评价及防控关键技术研究”的大量调查工作。海水动力条件中冲淤状态、50年一遇波高、底层流最大流速数据来源于海域水深数据变化、水动力观测站等资料的搜集;工程地质环境中的海底土强度、地形坡度来源于海域钻孔资料及水深数据;灾害地质条件中的土体易液化程度、已发育地质灾害数据来源为基于波高数据与钻孔取样土工试验分析数据的数值计算以及地质灾害的调查资料;人类工程活动主要来源于海域已有的平台管线等资料。其中钻孔资料包含276个钻孔数据,涵盖了砂土、粉土、粉质黏土、黏土四个类别,钻孔位置见图2

    图  2  渤海海域钻孔资料位置图
    Figure  2.  Locations of drills in Bohai Sea

    渤海海域海底地质灾害危险性区划评价指标分为定量指标与定性指标,定量指标可根据调查数据统计或计算获得,定性指标根据调查数据定性分析量化分级获取。各项评价指标的量化分级过程详述如下。

    (1)冲淤状态

    冲淤状态评价指标按年平均冲刷或淤积量进行分级,通过多期次水深调查对比获取,具体分级标准为:<−0.1 m或>0.1m(严重冲淤)、−0.1~−0.05 m或0.05~0.1 m(中等冲淤)、−0.05~−0.02 m或0.02~0.05 m(轻微冲淤)、−0.02~0.02 m(动平衡)。

    (2)50年一遇波高

    水动力条件主要考虑有效波高及最大流速,结合工程设施使用周期,选取重现期为50年的有效波高作为分级指标,分级标准为:0~0.5 m(微浪、小浪)、0.5~2.5 m(轻浪、中浪)、2.5~4 m(大浪)、>4 m(巨浪以上)。

    (3)底层流最大流速

    依据数值模拟结果得出的渤海海域底层最大流速,按流速值的大小分为4级,具体流速分级标准为:0~0.5 m/s、0.5~1 m/s、1~1.5 m/s、>1.5 m/s。

    (1)海底土体强度

    海底土强度主要根据其承载力大小进行划分,通过大量的钻孔及土工试验数据获取。划分标准为:<50 kPa、50~80 kPa、80~110 kPa、>110 kPa。

    (2)地形坡度

    地形坡度主要依据水深数据获取,具体分级标准:<1/2000、1/2000~1/1000、1/1000~1/200、>1/200。

    (1)土体易液化程度

    海底土体的液化与否主要由土质参数和水动力参数共同决定,一般黏性土不会发生液化,因此易液化土层划分仅限在粉土及砂土中开展,分级标准由50年一遇的波浪作用下计算得到的海底土液化极限深度,根据液化深度将土体易液化程度分为四级,具体划分标准为:0~0.5 m(不易液化)、0.5~1 m(轻微液化)、1~1.5 m(中度液化)、1.5~2 m(严重液化)。

    (2)已发育地质灾害

    依据现场调查及收集资料,对研究区内的地质灾害进行甄别及划分,根据研究区内地质灾害体的密集程度,人工划分等级。以液化、冲淤等主要地质灾害的为主,叠加海底沙波、浅层气、滑坡和塌陷等灾害,确定研究区内地质灾害分布情况,存在多种地质灾害类型的区域划分为严重灾害区。具体分级标准为:无明显灾害、存在轻微灾害、存在中等灾害、存在严重灾害。

    人类工程活动主要按照海洋工程开发活动的强、中、弱、无,将其工程影响范围划分为核心区、缓冲区、潜在影响区和无影响区。核心区主要包括平台、码头、防波堤等工程构筑物,以及各类养殖、围填海、海洋保护区等已使用海域。自然环境条件变化对核心区产生的影响是最需要重视的,由海洋环境变化引起的灾害对人类工程活动区可能造成严重影响。核心区范围依据《海籍调查规范》中各类用海类型及用海方式综合划定,分别在实际工程区向外扩展20~100 m不等。缓冲区定义为核心区外围一定范围内的区域,发生自然地质灾害后该区域可为实际工程区起到一定缓冲作用,规定核心区向外扩展500 m为缓冲区。通常情况下在现有工程影响区500 m以外产生的地质灾害对人类工程区影响不大,但严重的地质灾害仍可对工程设施造成影响,故规定在缓冲区向外1 km为潜在影响区。潜在影响区边界距离实际工程设施边界已经大于1.5 km,一般来说1.5 km外形成的地质灾害已经难以对工程设施造成影响,故其余区域为无影响区。

    评价指标的确定由AHP中构造的判断矩阵得到,对同一层次的各因子对上一层次各准则的相对重要性进行两两比较,反复通过专家咨询反馈,确定标度值,构建完成判断矩阵。首先根据目标建立B层次的判断矩阵并计算权重,其次分别建立C层的判断矩阵并计算权重,最后结合所有判断矩阵可计算出每个评价因子占总目标的权重。

    通过检验公式对所求权重是否合理进行一致性检验,公式为:$ CR=CI/RI $, $CI=({\lambda }_{{\rm{max}}}-n)/(n-1)$。式中$ CR $为一致性指标,$ CI $为一致性比率,$ RI $为平均随机一致性指标,${\lambda }_{{\rm{max}}}$为最大特征根,n为矩阵阶数。若$ CR $<0.1,则通过一致性检验,所求权重合理。各评价指标综合权重见表1

    表  1  评价指标权重赋值
    Table  1.  The evaluation index and weight for geological hazards regionalization in Bohai Sea
    目标层(A)主题层(B)权重指标层(C)综合权重
    地质灾害危险性评价海洋水动力条件0.43冲淤状态0.18
    50年一遇波高0.14
    底层最大流速0.11
    工程地质条件0.17海底土体强度0.07
    地形坡度0.1
    灾害地质条件0.36土体易液化程度0.15
    已发育地质灾害0.21
    人类工程活动0.04工程开发影响区0.04
    下载: 导出CSV 
    | 显示表格

    渤海绝大部分海域年均冲淤量处于动平衡状态,年冲淤分级为严重的区域主要集中在渤海湾和莱州湾西侧,包括较为活跃的河口以及水动力作用很强的区域(图3),如废弃的黄河水下三角洲北部埕岛油田海域、现行黄河河口西南部区域、曹妃甸南侧冲刷深槽中心位置等,区域面积不大,且较为集中,主要受河口泥沙淤积和潮流冲刷影响。年冲淤级别为中等的区域除分布在渤海湾和莱州湾年冲淤严重区域的周边外,还包括辽东湾东西沿岸,如六股河水下三角洲内侧、秦皇岛沿岸、温坨子东北外海,以及辽东浅滩潮流沙脊中部区域和莱州浅滩的头部。影响其分布规律的因素与年冲淤严重的区域类似,主要为河口泥沙淤积、潮流冲刷。年冲淤级别为轻微的区域呈片状分布,面积一般较大,分布于中等冲淤区的外围,此外还有辽东湾湾顶西侧、滦河口至大清河口外海、渤海海峡南部,以及渤海湾、辽东湾中部一些范围较小的区域。

    图  3  渤海年均冲淤量分级评价图
    Figure  3.  Grading evaluation of average annual scouring and silting amount in Bohai Sea

    渤海50年一遇波高按照大小分为4级,海域中部波高较大,向近岸逐渐减小,波高等值线与岸线和等深线走向一致(图4)。波高在0.5 m以下的区域仅分布在黄河三角洲现行河口两侧和废弃河口近岸很小的区域,波高0.5~2.5 m的区域分布在渤海湾、莱州湾湾顶和辽东湾西部沿岸,沿岸线向海7~10 km,向外波高逐渐增加为2.5~4 m的区域,岸线30 km外区域波高基本都大于4 m。

    图  4  渤海50年一遇波高分级评价图
    Figure  4.  Grading evaluation of the wave height in 50-year mean recurrence interval in Bohai Sea

    渤海底层最大流速按照流速大小分为4个等级(图5)。辽东湾、渤海湾、莱州湾和中央盆地大部分区域流速介于0.5~1 m/s。流速大于1.5 m/s的区域规模较小,有老铁山水道冲刷槽和曹妃甸冲刷深槽。流速介于1~1.5 m/s的区域主要在辽东湾东侧,辽东浅滩潮流沙脊群到渤海海峡老铁山水道,分布范围较大,此外辽东湾双台子河口、现行黄河口南侧、庙岛浅滩、六股河河口等小块区域流速也属于此范围。流速小于0.5 m/s的区域分布在辽东湾、渤海湾、莱州湾沿岸,呈与岸线平行的带状,宽度一般较窄,与潮滩位置向对应,秦皇岛外海流速小于0.5 m/s的区域范围较大,最宽处可到20 m等深线。

    图  5  渤海底层最大流速分级评价图
    Figure  5.  Grading evaluation of the bottom maximum flow velocity in Bohai Sea

    承载力按照数值的大小一共分为4个级别(图6)。承载力大于110 kPa的区域主要分布在渤海海峡、辽东湾中部、莱州湾近岸海域、渤海湾南部等区域。渤海海峡受北黄海汇入渤海的强流冲刷,底质类型多为粗颗粒沉积物,因此承载力较大。其余几处海域海底沉积物类型也多以砂土为主,故承载力也较大。承载力介于80~110 kPa之间的区域多位于承载力大于110 kPa的区域周围。承载力位于50~80 kPa之间的区域除了位于上述两区域的周边还位于渤海中部海域。其余地区是承载力小于50 kPa的海域,在该海域进行工程设施的建设时要进行更多的评估和分析,承载力过小会对工程稳定性造成影响。

    图  6  渤海海域浅层土承载力分布图
    Figure  6.  Grading evaluation of the bearing capacity of shallow soil in Bohai Sea

    渤海海底地形整体较为平坦,坡度变化不大,中央盆地坡度最小,到3个海湾内部和近岸逐渐增加,辽东浅滩潮流沙脊群坡度最大(图7)。渤海中央盆地坡度小于1/2000,中央盆地外围和莱州湾湾口次之,坡度介于1/2000~1/1000,辽东湾、渤海湾、莱州湾湾内坡度介于1/1000~1/200,渤海海底大部分区域坡度属于这个范围。坡度最大的区域在3个海湾近岸、六股河水下三角洲、滦河三角洲、曹妃甸冲刷深槽区以及辽东浅滩潮流沙脊区,坡度值大于1/200。

    图  7  渤海地形坡度分级评价图
    Figure  7.  Grading evaluation of the topographic slope in Bohai Sea

    渤海严重液化区主要分布于埕岛海域,该区域海底沉积物主要为粉土,同时水动力作用强烈,现有资料表明在较强的水动力条件下可发生严重液化(图8)。中度液化区主要分布在莱州湾、辽东湾、埕岛海域和滦河口。轻微液化主要分布于中度液化的外围,表明液化程度从严重、中度到轻微是逐渐减小的。

    图  8  渤海易液化程度土层分布图
    Figure  8.  Grading evaluation of the liquefaction degree of soil in Bohai Sea

    考虑已发育液化、冲淤、沙波、浅层气、滑坡及塌陷分布情况,划分渤海已发育地质灾害分布见图9。在存在灾害的区域进行工程施工时需要进行详细的物探和钻探调查,了解潜在地质灾害发生的可能及带来的影响。

    图  9  渤海已发育地质灾害分布图
    Figure  9.  Grading evaluation of the developed geological hazards in Bohai Sea

    存在严重灾害的区域主要集中在新、老黄河口附近(图9)。该海域海底沉积物易发生严重液化,且受水动力作用冲淤强烈,故划分为存在严重灾害的区域。存在中等灾害的区域主要分布在黄河口、莱州湾南部、辽东湾北部、滦河口等区域。存在轻微灾害的区域除了分布于中等灾害的周边地区,还广泛分布于环渤海的近岸海域和渤海海峡附近。

    渤海海域现有工程开发影响分级区划分为核心区、缓冲区、潜在影响区和无影响区4类(图10)。从图中可发现,工程影响区主要分布在环渤海近岸海域。另在辽东湾、渤海海峡及渤海湾等海域分布有海底管线,因此存在一定的线状影响区。总体上,当渤海发生海洋地质灾害时,若发生在渤海中部海域则对人类工程活动区影响较少,若发生在近岸海域则影响较大。

    图  10  渤海海域工程影响区
    Figure  10.  Grading evaluation of the engineering effects area in Bohai Sea

    渤海海域地质灾害综合评价主要依靠上述8个评价因子确定。使用AHP分别对数据赋值不同的权重分析渤海海洋地质灾害综合影响结果。

    综合评价结果见图11,共分为高危险性、较高危险性、较低危险性和低危险性4个级别。高危险性区域主要分布在新、老黄河口附近。老黄河口受波浪、水深和底质类型条件的影响,可能发生较为严重的液化。另外,老黄河口受到的冲刷作用强烈,新黄河口受到的淤积作用强烈,因此该区域存在高危险性区块。较高危险性区域除分布于高危险性区块外,还分布于各大现行河口区。主要影响因素为液化和冲淤作用。较低危险性区域主要分布在较高危险性区域的周围,另外渤海海峡也存在较低危险性的区域。渤海其他海域为低危险性区域,代表了目前尚未发育地质灾害同时不易发生地质灾害的稳定区域。

    图  11  渤海海域地质灾害危险性评价区划图
    Figure  11.  The geological hazard assessment zoning map of Bohai Sea area

    基于国家海洋公益科研专项“近海海底地质灾害预测评价及防控关键技术研究”的地质灾害调查结果,通过AHP开展地质灾害区划研究,建立了4个主题层、8个指标层组成的渤海海域地质灾害区划评价指标体系,并对各个评价指标进行了量化分级。得出以下几点结论。

    (1)使用AHP分别对各指标赋值不同的权重分析渤海海洋地质灾害区划结果,结果显示渤海海域地质灾害高危险性区域主要分布在新、老黄河口附近。

    (2)在水动力条件作用下,存在着液化、冲刷侵蚀等较为强烈的地质灾害影响。

    研究结果可为渤海海域地质环境保护、地质灾害防治及海洋工程开发活动提供了科学依据。

  • 图  1   香丽高速公路边坡地质灾害类型

    Figure  1.   Types of slope geological hazards in Xiangli expressway

    图  2   边坡地质灾害易发性评价因子树形结构图

    Figure  2.   Tree diagrams of susceptibility evaluation factors for the slope geological hazards

    图  3   边坡地层结构模式分类图

    Figure  3.   Classification of slope stratigraphic structure mode

    图  6   香丽高速公路K0+560~K7+060段边坡地质灾害易发性区划图

    Figure  6.   Susceptibility zoning map of geological hazards at K0+560~K7+060 section of Xiangli expressway

    表  1   重力堆积地形地貌易发性评价分值表

    Table  1   Susceptibility evaluation scores of gravity accumulation topography and geomorphology

    重力堆积地形
    地貌亚类细分
    不同边坡灾害类型评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    坡积裙34511
    洪积扇56711
    坡积台地87511
    岩屑坡45696
    岩堆56797
    滑坡99911
    泥石流67811
    错落体67853
    下载: 导出CSV

    表  2   侵蚀剥蚀地形地貌易发性评价分值表

    Table  2   Susceptibility evaluation scores of erosion topography and geomorphology

    侵蚀剥蚀地形
    地貌亚类细分
    不同边坡灾害类型评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    平坦直线坡11111
    缓倾直线坡11454
    陡倾直线坡14797
    凸形坡12452
    凹形坡47976
    台阶形坡97411
    山顶12321
    鞍部43344
    洼地、谷地11111
    陡崖47997
    下载: 导出CSV

    表  3   地层岩性评价分值

    Table  3   Evaluation scores of formation lithology

    地层岩性
    坚硬程度细分
    不同边坡灾害类型评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    土层99919
    软岩66797
    硬岩22352
    下载: 导出CSV

    表  4   节理发育程度评价分值

    Table  4   Evaluation scores of joint growth level

    节理发育程度不同边坡灾害类型评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    0条/10 m00000
    1~2条/10 m22344
    3~4条/10 m44677
    ≥5条/10 m77899
    下载: 导出CSV

    表  5   土岩界面评价分值

    Table  5   Evaluation scores of soil-rock interfaces

    土岩界面不同边坡灾害类型评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    顺倾(0°~10°)54311
    顺倾(10°~35°)98711
    顺倾(35°~60°)78911
    顺倾(60°~90°)47911
    反倾(0°~90°)11111
    下载: 导出CSV

    表  6   岩层层面评价分值

    Table  6   Evaluation scores of rock interfaces

    岩层层面不同边坡灾害类型评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    顺倾(0°~10°)54331
    顺倾(10°~35°)98772
    顺倾(35°~60°)78994
    顺倾(60°~90°)46888
    反倾(60°~90°)57999
    反倾(35°~60°)24888
    反倾(10°~35°)11114
    反倾(0°~10°)11222
    下载: 导出CSV

    表  7   断层或软弱面评价分值

    Table  7   Evaluation score of fault or weak surface

    断层或软弱面不同边坡灾害类型评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    顺倾(0°~10°)54331
    顺倾(10°~35°)98772
    顺倾(35°~60°)78994
    顺倾(60°~90°)47988
    反倾(0°~90°)11111
    下载: 导出CSV

    表  8   岩层结构评价分值

    Table  8   Evaluation scores of rock structure

    边坡地层
    结构模式
    不同边坡灾害类型评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    模式199901
    模式267801
    模式334501
    模式417901
    模式556751
    模式645651
    模式713575
    下载: 导出CSV

    表  9   地下水发育程度评价分值

    Table  9   Evaluation scores of groundwater development level

    类型发育程度评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    上层滞水坡面干燥11111
    坡面潮湿57971
    潜水埋深>2 m11111
    埋深<2 m45211
    溢出泉78911
    承压水无承压水11111
    有承压水75211
    上升泉95211
    下载: 导出CSV

    表  10   地震作用评价分值

    Table  10   Evaluation scores of seismic effect

    地震作用(烈度)≤Ⅳ≥Ⅸ
    评价分值013579
    下载: 导出CSV

    表  11   大气降雨评价分值

    Table  11   Evaluation scores of rainfall

    最大日降雨量/
    mm
    评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    <500000
    5~2511111
    25~5023532
    50~10056765
    100~20067876
    >20078987
    下载: 导出CSV

    表  12   人类工程活动评价分值

    Table  12   Evaluation scores of human engineering activities

    类型发育程度评价分值
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    路堤一般路堤11101
    高路堤75507
    软基路堤57709
    陡坡路堤59909
    路堑浅路堑44411
    深路堑77777
    超深路堑99979
    桥梁(墩台)一般斜坡11100
    陡坡78999
    不良地质98799
    隧道洞身11000
    洞口陡坡78999
    不良地质99999
    下载: 导出CSV

    表  13   灾害点密度评价分值

    Table  13   Evaluation scores of disaster point density

    灾害点密度(个/km)01234>4
    评价分值013579
    下载: 导出CSV

    表  14   山体滑坡基本地质条件层次分析法判断矩阵

    Table  14   Judgment matrix in AHP for basic geological conditions of landslide

    基本地质条件地形地貌地层岩性地层结构岩土结构地下水
    地形地貌11/21/31/51/6
    地层岩性211/21/31/4
    地层结构3211/21/3
    岩土体结构53211/2
    地下水64321
    下载: 导出CSV

    表  15   山体滑坡岩土体结构层次分析法判断矩阵

    Table  15   Judgment matrix in AHP for rock-soil structure of landslide

    岩土体结构节理面土岩界面岩层层面断层软层
    节理面11/31/41/5
    土岩界面311/21/3
    岩层层面4211/2
    断层软层5321
    下载: 导出CSV

    表  16   基本地质条件评价因子权重系数

    Table  16   Weight coefficient of evaluation factor for basic geological conditions

    评价因子权重系数
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    地形地貌0.05580.05780.04240.04280.0548
    节理发育0.01980.02320.02300.09170.0718
    土岩界面0.04600.05990.07610.04060.0322
    岩层层面0.07630.10810.11810.15290.1083
    断层软层0.12640.11400.12380.16310.1430
    地层岩性0.09600.09030.08140.09820.1153
    地层结构0.15710.14460.12750.13980.1420
    地下水0.42260.40200.40780.27100.3327
    下载: 导出CSV

    表  17   人类工程活动评价因子权重系数

    Table  17   Weight coefficient of evaluation factor for human engineering activity

    评价因子权重系数
    山体滑坡边坡滑坡崩塌坍塌落石滚石变形开裂
    路堤0.13470.15580.14290.12460.1078
    路堑0.40420.46740.42860.49860.4312
    桥梁0.16380.13730.14290.13730.1638
    隧道0.29730.23950.28570.23950.2973
    下载: 导出CSV

    表  18   香丽高速公路边坡地质灾害易发性分级区划结果

    Table  18   Classification and regionalization results of geological hazard susceptibility on the slope of Xiangli expressway

    危险性分区不危险区低危险区中危险区高危险区
    区段长度/m202401200091007000
    长度占比/%41.924.818.814.5
    山体滑坡/处0012
    边坡滑坡/处0025
    崩塌(坍塌)/处0009
    落石(滚石)/处0000
    变形开裂/处0010
    合计/处00416
    数量占比/%002080
    下载: 导出CSV
  • [1] 康钦容. 地质灾害区划及管理信息系统研究[D]. 重庆: 重庆大学, 2007.

    KANG Qinrong. Study on zoning of geological hazard and manage information system[D]. Chongqing: Chongqing University, 2007. (in Chinese with English abstract)

    [2] 宋世鑫. 基于GIS的定边县地质灾害易发性评价[D]. 西安: 长安大学, 2015.

    SONG Shixin. The evaluation of the emergence about geological disaster in Dingbian County based on GIS[D]. Xi'an: Changan University, 2015. (in Chinese with English abstract)

    [3] 殷坤龙, 柳源. 滑坡灾害区划系统研究[J]. 中国地质灾害与防治学报,2000,11(4):28 − 32. [YIN Kunlong, LIU Yuan. Systematic studies on landslide hazard zonation[J]. The Chinese Journal of Geological Hazard and Control,2000,11(4):28 − 32. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2000.04.007
    [4] 聂忠权, 盛丽君, 范文. 基于GIS技术的地质灾害易发程度分区评价系统[J]. 公路交通科技,2005,22(增刊 1):156 − 159. [NIE Zhongquan, SHENG Lijun, FAN Wen. The distriction and assessment system of geologic disaster occurrence level based on geographic information system-taken Dalian for example[J]. Journal of Highway and Transportation Research and Development,2005,22(Sup 1):156 − 159. (in Chinese with English abstract)
    [5] 中华人民共和国交通部. 公路自然区划标准 :JTJ 003—1986[S]. 北京: 中国标准出版社, 1987.

    Ministry of Transport of the People’s Republic of China. Standard of climatic zoning for highway: JTJ 003—1986[S]. Beijing: Standards Press of China, 1987. (in Chinese)

    [6] 林灿阳, 廖小平. 高速公路边坡灾害评估与防控决策研究[J]. 路基工程,2014(5):72 − 76. [LIN Canyang, LIAO Xiaoping. Study on disaster evaluation for highway slope and the countermeasures of control[J]. Subgrade Engineering,2014(5):72 − 76. (in Chinese with English abstract)
    [7] 张建伟, 廖小平, 魏土荣. 高速公路运营期高边坡安全风险评估体系研究[J]. 路基工程,2015(6):197 − 203. [ZHANG Jianwei, LIAO Xiaoping, WEI Turong. Study on safety risk assessment system for high slope of highway in operation[J]. Subgrade Engineering,2015(6):197 − 203. (in Chinese with English abstract)
    [8] 彭小平, 陈开圣, 王成华, 等. 贵州省公路地质灾害基本特征及危险性分区[J]. 中国地质灾害与防治学报,2009,20(2):46 − 51. [PENG Xiaoping, CHEN Kaisheng, WANG Chenghua, et al. Basic characteristics and risk zoning of highway geological hazard in Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2009,20(2):46 − 51. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2009.02.011
    [9] 齐洪亮, 尹超, 田伟平, 等. 基于ArcGIS的中国公路地质灾害危险性区划[J]. 长安大学学报(自然科学版),2015,35(5):22 − 27. [QI Hongliang, YIN Chao, TIAN Weiping, et al. Risk regionalization of highway geo-hazards in China based on ArcGIS[J]. Journal of Chang'an University (Natural Science Edition),2015,35(5):22 − 27. (in Chinese with English abstract)
    [10] 韦威. 基于GIS的公路地质灾害分区研究[D]. 西安: 长安大学, 2008.

    WEI Wei. Research on the regionalization of highway geological disasters based on GIS[D]. Xi'an: Chang'an University, 2008. (in Chinese with English abstract)

  • 期刊类型引用(7)

    1. 许春萌,段勇. 多旋翼无人机航测在山区水库测量中的应用. 水利科技与经济. 2024(05): 101-105 . 百度学术
    2. 孟庆胤,王浩宇,聂明哲,余小军,陈荣健,傅金阳. 尾矿库坝面安全隐患智能巡检机器人研发及应用. 矿业研究与开发. 2024(07): 230-238 . 百度学术
    3. 胡东升,程小凯,张雅飞,李涛,廉旭刚. 空天地一体化监测联合反演开采沉陷概率积分预计参数研究. 煤炭工程. 2023(01): 81-86 . 百度学术
    4. 刘鹏 ,王亮 ,贾旭斌 . 基于无人机影像的高精度滑坡体边界识别研究. 工程勘察. 2023(06): 61-65+72 . 百度学术
    5. 龚弦,马源,何学志,张丽娇,王卫. 无人机遥感技术在矿山地质调查中的研究进展. 中国非金属矿工业导刊. 2023(03): 64-67+71 . 百度学术
    6. 曾文浩,宁迪,刘国伟. 基于遥感技术的矿山地质环境监测实践. 中国资源综合利用. 2023(07): 132-139 . 百度学术
    7. 周小龙,贾强,石鹏卿,何斌,郭富赟,胡文博,李攀龙. 免像控无人机航测技术在舟曲县立节北山滑坡-泥石流灾害应急处置中的应用. 中国地质灾害与防治学报. 2022(01): 107-116 . 本站查看

    其他类型引用(4)

图(4)  /  表(18)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  149
  • PDF下载量:  227
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-09-15
  • 修回日期:  2020-09-21
  • 网络出版日期:  2021-10-19
  • 刊出日期:  2021-10-19

目录

/

返回文章
返回