ISSN 1003-8035 CN 11-2852/P

    基于理想点-可拓云模型的隧道围岩稳定性评价

    Stability evaluation of tunnel surrounding rock based on ideal point-extension cloud model

    • 摘要: 为了对隧道围岩稳定性进行准确评价并解决研究过程中存在的模糊性和随机性以及评价指标不相容的问题,减少单一的主客观赋权法所带来的误差,将云模型引入可拓理论中,利用可拓理论能够实现矛盾问题向相容问题转化的特点和云模型具有处理事物双重不确定性的优势并结合理想点组合赋权法对隧道围岩进行稳定性评价研究。通过文献调研、数据统计的方式,选取具有代表性的6个指标组成隧道围岩评价指标体系,用理想点法赋予评价指标组合权重,并构建可拓云模型对隧道围岩稳定性进行综合评价。通过将此方法应用于工程实例并与其他方法对比,结果表明:基于理想点-可拓云模型的隧道围岩稳定性评价方法能够减少评价过程中存在的不确定性问题,克服单一赋权方法的不足,具有良好的适用性,可以应用于实际工程中。

       

      Abstract: In order to accurately assess the stability of the tunnel surrounding rock and solve the problems of ambiguity and randomness in the research process and the incompatibility of evaluation indicators, reduce the error caused by the single subjective and objective weighting method, and introduce the cloud model into the In the extension theory, the extension theory can be used to realize the conversion of contradictory problems to compatible problems, and the cloud model has the advantage of dealing with the double uncertainty of things. Combined with the ideal point combination weighting method, the stability evaluation of the tunnel surrounding rock is studied. Through literature survey and data statistics, select 6 representative indexes to form the tunnel surrounding rock evaluation index system, use the ideal point method to give the evaluation index combination weight, and construct an extension cloud model to comprehensively evaluate the tunnel surrounding rock stability. By applying this method to engineering examples and comparing with other methods, the results show that the method of tunnel surrounding rock stability evaluation based on the ideal point-extension cloud model can reduce the uncertainty in the evaluation process and overcome the single weighting method. The shortcomings have good applicability and can be applied to actual projects.

       

    /

    返回文章
    返回