ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于增量加载法的泥石流拦挡坝抗冲击力数值模拟以甘肃舟曲三眼峪沟泥石流拦挡坝为例

刘兴荣, 魏新平, 陈豫津, 王翔宇

刘兴荣, 魏新平, 陈豫津, 王翔宇. 基于增量加载法的泥石流拦挡坝抗冲击力数值模拟——以甘肃舟曲三眼峪沟泥石流拦挡坝为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 78-83. DOI: 10.16031/j.cnki.issn.1003-8035.2021.02.11
引用本文: 刘兴荣, 魏新平, 陈豫津, 王翔宇. 基于增量加载法的泥石流拦挡坝抗冲击力数值模拟——以甘肃舟曲三眼峪沟泥石流拦挡坝为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 78-83. DOI: 10.16031/j.cnki.issn.1003-8035.2021.02.11
Xingrong LIU, Xinping WEI, Yujin CHEN, Xiangyu WANG. Numerical simulation of impact resistance of debris flow dam: A case study of the debris flow dam in Sanyanyu Gully, Zhouqu County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 78-83. DOI: 10.16031/j.cnki.issn.1003-8035.2021.02.11
Citation: Xingrong LIU, Xinping WEI, Yujin CHEN, Xiangyu WANG. Numerical simulation of impact resistance of debris flow dam: A case study of the debris flow dam in Sanyanyu Gully, Zhouqu County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 78-83. DOI: 10.16031/j.cnki.issn.1003-8035.2021.02.11

基于增量加载法的泥石流拦挡坝抗冲击力数值模拟——以甘肃舟曲三眼峪沟泥石流拦挡坝为例

基金项目: 甘肃省科技计划项目(自然科学基金:18JR3RA251);甘肃科学院与中科院合作项目(2017HZ-03);甘肃科学院科技产业化项目(CY08)
详细信息
    作者简介:

    刘兴荣(1979-),男,甘肃靖远人,硕士,副研究员,主要从事地质灾害防治研究。E-mail:402794885@qq.com

    通讯作者:

    魏新平(1976-),男,甘肃秦安人,学士,高级工程师,主要从事水工环地质等相关专业技术工作的调查评价与勘查设计。E-mail:361819735@qq.com

  • 中图分类号: P642.23

Numerical simulation of impact resistance of debris flow dam: A case study of the debris flow dam in Sanyanyu Gully, Zhouqu County, Gansu Province

  • 摘要: 为提高泥石流重力式拦挡坝的设计安全和避免资金投入过大而造成浪费,选择合理的泥石流冲击力作为设计依据尤为重要。文章结合舟曲县三眼峪沟灾后重建防治工程相关数据,利用有限元软件ABAQUS进行计算分析,采用增量加载的数值计算方法,分别求得2种工况下重力式拦挡坝的抗冲击力。根据三眼峪沟治理工程运行至今的反馈情况,证明在泥石流治理工程设计中,冲击力选择工况1和2的平均值较合理,同时说明该方法与经验公式结合使用,其结果更加精确可靠,在泥石流工程设计和研究中具有良好的应用前景。
    Abstract: In order to improve the design safety of gravity dam and avoid excessive capital investment and waste, it is very important to choose a reasonable debris flow impact as the design basis. This paper takes Sanyanyu ditch debris flow disaster prevention and control project as the background, based on ABAQUS, to calculate limit resistance analysis on gravity dam of Sanyanyu ditch debris flow. The numerical method of increment loading is used to evaluate the lateral impact resistance of gravity dam under two working conditions. According to the feedback from the Sanyanyu prevention and control project, it is proved that the average value of working conditions 1 and 2 of impact force selection is reasonable in the design of debris flow control project, and it is explained that the method is used in combination with the empirical formula, and the results are more accurate and reliable. It has good application prospect in debris flow engineering design and research.
  • 2010年8月8日凌晨,舟曲县城北侧三眼峪沟和罗家峪沟同时暴发特大山洪泥石流,城区三分之一被淹,共造成1435人死亡,330人失踪,直接经济损失超过10亿元[1-2],给舟曲县城居民生命财产造成了巨大损失,也给当地生产生活带来严重困难。灾害引起了党中央、国务院、中央军委及全国人民的高度关注,启动国家二级救灾应急响应,同时批复专项资金进行治理。其中,重力式拦挡坝是舟曲泥石流治理中的最主要工程之一。

    周龙茂等[3]认为拦挡坝在泥石流治理中发挥着重要作用,但同时拦挡坝也是最易遭受破坏、失去防灾功能的泥石流防治构筑物,因此,在泥石流设计中,为了拦挡坝不被破坏,往往设计得很保守,王念秦等[4]提出这种设计容易造成两个极端现象:保守,造成资金浪费;冒进,防治工程失败。要做到既能保证拦挡坝安全,又能将投资最小化,就要求对泥石流拦挡坝抗冲击力验算方法提出新要求。传统的泥石流冲击力计算经验公式[5]只能通过大量试算表述结果,不能表述过程。而将三维有限元数值分析方法应用到泥石流拦挡坝稳定性验算中[6-7],能将过程和结果同时呈现,即通过分步加载的方法,逐步呈现拦挡坝的位移情况和抗冲击力过程中的破损情况。

    关于拦挡坝的数值模拟研究还比较少,本文将考虑损伤的混凝土本构模型与有限元计算方法相结合,对舟曲泥石流混凝土拦挡结构进行力学分析,最终确定了拦挡坝的抗冲击力合理区间,以期为泥石流治理工程的设计提供借鉴。

    杨东旭等[8]、许海亮等[9]、张睿骁等[10]认为冲击力是破坏防治工程构筑物的主要作用力之一,其大小与泥石流流量、流速、容重等有关。泥石流冲击力是泥石流防治工程设计的重要参数,分为流体整体冲击力和个别石块的冲击力两种,在设计中取两种计算结果较高者为设计依据。文章采用《泥石流灾害防治工程设计规范》(DZT 0239—2004)中的经验公式[5]作为数值计算结果的参考和验证。

    流体整体冲击力计算公式:

    $$f = K\frac{{{\gamma_C}}}{g}v_c^2$$ (1)

    式(1)中:f−冲击力/Pa;

    K−系数,取2.5;

    ${\gamma_C} $−泥石流重度/(t·m−3);

    g−重力加速度,取9.8 m·s−2

    vc−断面处泥石流流速(m·s−1)。

    个别石块的冲击力计算公式:

    $${F_b} = \sqrt {\frac{{48EJ{V^2}W}}{{g{L^3}}}} \cdot \sin \alpha $$ (2)

    式(2)中:Fb−泥石流大石块冲击力/(t·m−2);

    E−工程构件弹性模量/(t·m−2);

    J−工程构件界面中心轴的惯性矩/m4

    V−石块运动速度(m·s−1);

    W−石块重量/t;

    L−构件长度/m;

    α−石块运动方向与构件受力面的夹角/(°)。

    泥石流具体参数和计算结果见表1,编号和《甘肃省舟曲县三眼峪沟泥石流灾害设计报告》[1]中保持一致。

    表  1  泥石流冲击力计算参数及结果
    Table  1.  Debris flow impact calculation parameters and results
    编号${\gamma _c}$/(t·m−3${v_c}$/(m·s−1$L$/m$W$/t$V$/(m·s−1$\sin \alpha $$E$/(t·m−2$J$/m4$f$/(t·m−2${F_b}$/(t·m−2
    大1号坝2.096.565.516210.550.9462.8274.6322.497.14
    大2号坝2.096.602.8817.530.9462.8274.6322.767.34
    大3号坝2.036.618.6259.213.200.9462.8216.0022.1719.95
    大4号坝2.038.674.394.59.330.9462.8421.8838.1519.62
    小2号坝2.036.563.183.77.920.9462.8421.8821.844.28
    小3号坝2.139.865.8129.610.840.9462.8274.6351.778.98
    小4号坝2.135.492.875.67.530.9462.8421.8816.0514.17
    小6号坝2.138.124.7121.59.761.0002.8512.0035.1137.01
    主1号坝2.136.5311.2361.815.060.9462.8421.8822.7144.35
    主2号坝2.136.167.5234.912.320.9462.8343.0020.2112.44
    下载: 导出CSV 
    | 显示表格

    计算区域按地质资料分高程、分区域模拟。模型向上游及下游分别延伸至坝体厚度的2倍,模型高度方向自坝基向下延伸坝体垂直部分的2倍。以大2号坝为例进行数值模拟,砼坝体和地基土数值分析具体参数见表2

    分析中将泥石流流体的冲击力P简化为静力加载到坝体侧面,计算坝体的极限抗冲击能力,简化计算力学模型如图1所示。

    表  2  混凝土坝和地基碎石土参数
    Table  2.  Concrete dam and gravel soil parameter
    名称坝体沟床碎石土
    弹性模量/GPa泊松比损伤阈值拉压强度比弹性模量/MPa泊松比黏聚力/kPa内摩擦角/(°)剪胀角/(°)
    取值24.00.22×10−40.152400.25.04040
    下载: 导出CSV 
    | 显示表格
    图  1  简化力学模型示意图
    Figure  1.  Mechanical model of concrete dam

    数值模拟使用有限元软件ABAQUS进行计算分析。冯帅等[11]认为数值计算出的泥石流的极限抗冲压力大于经验公式计算出的泥石流整体冲击压力。因此,本文分别按泥石流流体高度h=H/2坝高(工况1)及h=H(工况2)两种工况进行分析,将数值计算出的抗冲击力限定在一合理区间。计算中加载每一荷载增量后均计算至收敛,并记录坝体的最大位移。加载至破坏时(计算不收敛,坝体位移不断增大)的压力P与坝体最大位移曲线由倾斜直线变为水平线,坝体所能承受的最大冲击力Pu可由压力P与坝体最大位移曲线水平段的和坐标求出。应力以拉为正,以压为负,应力的单位为Pa,长度单位为m,位移单位为mm,其他单位均采用国际单位制。具体模型边界和网格划分图2所示。

    图  2  模型边界和网格划分
    Figure  2.  Model boundary and meshing

    大坝按泥石流冲击高度h=H/2坝高计算,在拦挡坝的一侧施加泥石流冲击力,荷载增量取值100 kPa,每加一次荷载,计算至收敛,并且记录一次坝体的最大位移;一直持续加载至破坏时,即计算不收敛且坝体位移不断增大时停止计算。

    周勇等[12]采用结构动力学的方法,建立了泥石流冲击荷载与拦挡坝的动力方程,提出拦挡坝的坝顶处有最大的位移,为本次工程力学计算提供了一种思路。将泥石流冲击力与相应荷载下坝体位移进行统计,形成图3所示冲击力与坝体最大位移关系曲线,会发现坝体水平位移随着拦挡坝冲击力增大呈对数曲线递增,泥石流流体高度h=H/2工况条件下施加的最大冲击力Pu=3500 kPa(357.14 t/m2)。

    图  3  冲击力与坝体最大位移曲线(h=H/2)
    Figure  3.  Pressure and the maximum dam displacement curve(h=H/2)

    坝体损毁过程如图4所示,冲击力达到800 kPa(水平位移1 mm)时坝体开始出现初始损伤;冲击力达到1100 kPa(水平位移1.4 mm)时两侧坝肩和基础局部都出现较明显损伤;冲击力达到1400 kPa时(水平位移2 mm),泄水孔和泄水涵洞边缘出现局部损伤;冲击力达到2700 kPa(水平位移4.8 mm)时,基础出现大面积损伤,沿正面泄水涵洞和泄水孔形成纵向损伤;冲击力达到3200 kPa(水平位移7.2 mm)时,坝肩、基础及坝体正中损伤贯通,损伤区呈“W”型,坝体已基本失去功能,在工程实际应用中已达到破坏极限;冲击力达到3500 kPa时,坝体大面积损伤,超过坝体总面积的2/3,水平位移高达14 mm,整体性降低或消失,这只是一种模拟现象,在工程实际应用中泥石流物质沿坝体破坏处流通,坝体已不存在整体位移现象。

    图  4  不同泥石流冲击力下拦挡坝的损伤情况(h=H/2)
    Figure  4.  Damage of piles under different impact force of debris flow(h=H/2)

    大坝按泥石流冲击高度h=H坝高计算,荷载增量取值125 kPa,每加一次荷载,计算至收敛,同时记录一次坝体的最大位移,将泥石流冲击力与相应荷载下坝体位移进行统计,形成图5所示冲击力与坝体最大位移关系曲线,会发现坝体水平位移随着拦挡坝冲击力增大也呈对数曲线递增,泥石流流体高度h=H工况条件下施加的最大冲击力Pu=2490 kPa(254.08 t/m2)。

    图  5  冲击力与坝体最大位移曲线(h=H
    Figure  5.  Pressure and the maximum dam displacement curve(h=H

    坝体损毁过程如图6所示,冲击力达到375 kPa(水平位移1.7 mm)时坝体开始出现初始损伤;冲击力达到500 kPa(水平位移2.3 mm)时两侧坝肩和基础局部都出现较明显损伤;冲击力达到1250 kPa(水平位移6.6 mm)时,泄水孔和泄水涵洞边缘出现局部损伤;冲击力达到1500 kPa(水平位移8.4 mm)时,基础出现局部损伤,沿正面泄水涵洞和泄水孔形成纵向损伤,两侧坝肩损伤较严重;冲击力达到2000 kPa(水平位移14.8 mm)时,严重损伤区呈“W”型,坝肩、基础和坝体中心部位损伤基本贯通,坝体已基本失去功能,在工程实际应用中已达到破坏极限;冲击力达到2490 kPa时,坝体大面积损伤,超过坝体总量的2/3,水平位移高达40.4 mm,整体性降低或消失,这也只是一种模拟现象,在工程实际应用中泥石流物质沿坝体破坏处流通,坝体已不存在整体位移。

    图  6  不同泥石流冲击力下拦挡坝的损伤情况(h=H
    Figure  6.  Damage of piles under different impact force of debris flow(h=H

    同样方法计算三眼峪及各支沟泥石流重力式拦挡工程冲击力,得到表3,结合表1可以看出,泥石流经验公式计算的单宽冲击力均小于工况1数值模拟验算结果,均大于工况2数值模拟验算结果,与工况1和2的平均值接近。2012年建成至今,大部分坝体库容淤积过半,部分甚至已淤满,说明拦挡坝经受住了各种泥石流冲击破坏的考验。

    表  3  重力坝冲击力数值模拟验算结果对比表(单位:t/m2
    Table  3.  Comparison of results of numerical simulation of impact of gravity dam (unit: t/m2)
    编号经验公式
    计算冲击力
    h=H/2
    最大冲击力
    h=H
    最大冲击力
    计算平均值
    大1号坝22.4927.0017.5522.28
    大2号坝22.7627.3617.7822.57
    大3号坝22.1726.6417.3221.98
    大4号坝38.1545.8429.8037.82
    小2号坝21.8426.2817.0821.68
    小3号坝51.7762.1640.4051.28
    小4号坝16.0519.3212.5615.94
    小6号坝37.0144.5228.9436.73
    主1号坝44.3553.2834.6343.96
    主2号坝20.2124.3615.8320.10
    下载: 导出CSV 
    | 显示表格

    将2种工况进行比较,工况1的冲击力达到800 kPa时坝体开始出现初始损伤,最大冲击力为3500 kPa,而工况2的冲击力达到375 kPa时桩体开始出现初始损伤,最大冲击力为2490 kPa。说明冲击高度对坝体的影响较大,随高度增加,达到初损的冲击力荷载几乎成倍数减少,而最大冲击力也减少1000 kPa。这说明在拦挡坝设计中泄水涵洞和泄水孔的预留很重要,为减少拦挡坝的冲击破坏,应尽量选择低坝,同时在不影响坝体安全和停淤功能的基础上,应多布设泄水涵洞和泄水孔,降低坝前壅水位,最大可能避免或减少高水位过流。

    拦挡坝的损伤从两侧坝肩开始,再到拦挡坝中间部位的泄水涵洞及泄水孔边缘,然后到基础,最后坝肩、中间部位和基础形成“W”型的贯通破坏,其破损部位按先后顺序依次为“坝肩—泄水涵洞及泄水孔—基础—“W”型贯通”4个过程。设计时应重点考虑这几处薄弱环节,要相应的进行专门的加固处理。

    从安全和经济方面考虑,在拦挡坝设计中冲击力的考虑应该取工况1和工况2之间值较合理,工况1存在风险,工况2偏保守,而工况1和2的中间值接近经验公式计算冲击力。从表3中可知,三眼峪设计中的冲击力选择也是工况1和2的平均值,从而保障了拦挡坝的安全运行。

    由于真实模拟泥石流重力式拦挡坝的室内大型实验难度比较大,野外测定随机性太大,故本文采用数值模拟的方式来分析三眼峪沟拦挡坝的受力情况。结果表明数值模拟对分析问题有一定的指导意义,可以和现有的泥石流设计理论结合,为以后工程设计提供安全对比,但是不能代替物理实验和理论计算。

    (1)本文通过有限元软件ABAQUS进行拦挡坝数值模拟计算和分析,比较2种工况条件发现:随着泥石流冲击高度增加,达到初损的冲击力荷载成倍数减少,而最大冲击力也减少1000 kPa;拦挡坝的损伤从两侧坝肩开始,再到拦挡坝中间部位的泄水涵洞及泄水孔边缘,形成“W”型的贯通破坏。

    (2)通过与经验公式计算冲击力比较,发现拦挡坝设计中冲击力选择工况1和2的平均值较合理,可以为工程设计提供安全对比。

  • 图  1   简化力学模型示意图

    Figure  1.   Mechanical model of concrete dam

    图  2   模型边界和网格划分

    Figure  2.   Model boundary and meshing

    图  3   冲击力与坝体最大位移曲线(h=H/2)

    Figure  3.   Pressure and the maximum dam displacement curve(h=H/2)

    图  4   不同泥石流冲击力下拦挡坝的损伤情况(h=H/2)

    Figure  4.   Damage of piles under different impact force of debris flow(h=H/2)

    图  5   冲击力与坝体最大位移曲线(h=H

    Figure  5.   Pressure and the maximum dam displacement curve(h=H

    图  6   不同泥石流冲击力下拦挡坝的损伤情况(h=H

    Figure  6.   Damage of piles under different impact force of debris flow(h=H

    表  1   泥石流冲击力计算参数及结果

    Table  1   Debris flow impact calculation parameters and results

    编号${\gamma _c}$/(t·m−3${v_c}$/(m·s−1$L$/m$W$/t$V$/(m·s−1$\sin \alpha $$E$/(t·m−2$J$/m4$f$/(t·m−2${F_b}$/(t·m−2
    大1号坝2.096.565.516210.550.9462.8274.6322.497.14
    大2号坝2.096.602.8817.530.9462.8274.6322.767.34
    大3号坝2.036.618.6259.213.200.9462.8216.0022.1719.95
    大4号坝2.038.674.394.59.330.9462.8421.8838.1519.62
    小2号坝2.036.563.183.77.920.9462.8421.8821.844.28
    小3号坝2.139.865.8129.610.840.9462.8274.6351.778.98
    小4号坝2.135.492.875.67.530.9462.8421.8816.0514.17
    小6号坝2.138.124.7121.59.761.0002.8512.0035.1137.01
    主1号坝2.136.5311.2361.815.060.9462.8421.8822.7144.35
    主2号坝2.136.167.5234.912.320.9462.8343.0020.2112.44
    下载: 导出CSV

    表  2   混凝土坝和地基碎石土参数

    Table  2   Concrete dam and gravel soil parameter

    名称坝体沟床碎石土
    弹性模量/GPa泊松比损伤阈值拉压强度比弹性模量/MPa泊松比黏聚力/kPa内摩擦角/(°)剪胀角/(°)
    取值24.00.22×10−40.152400.25.04040
    下载: 导出CSV

    表  3   重力坝冲击力数值模拟验算结果对比表(单位:t/m2

    Table  3   Comparison of results of numerical simulation of impact of gravity dam (unit: t/m2)

    编号经验公式
    计算冲击力
    h=H/2
    最大冲击力
    h=H
    最大冲击力
    计算平均值
    大1号坝22.4927.0017.5522.28
    大2号坝22.7627.3617.7822.57
    大3号坝22.1726.6417.3221.98
    大4号坝38.1545.8429.8037.82
    小2号坝21.8426.2817.0821.68
    小3号坝51.7762.1640.4051.28
    小4号坝16.0519.3212.5615.94
    小6号坝37.0144.5228.9436.73
    主1号坝44.3553.2834.6343.96
    主2号坝20.2124.3615.8320.10
    下载: 导出CSV
  • [1] 魏新平, 胡向德, 李瑞冬, 等. 甘肃省舟曲县三眼峪沟泥石流灾害设计报告[R]. 兰州: 甘肃省地质环境监测院, 2011.

    WEI Xingping, HU Xiangde, LI Ruidong, et al. Design report of the Sanyanyu Gully debris flow hazards in Zhouqu County, Gansu Province[R]. Lanzhou: Gansu Institute of Geological Environmental Monitoring, 2011. (in Chinese)

    [2] 吴宏, 董金义, 李瑞冬, 等. 三维可视化技术在舟曲县城区灾后重建泥石流防治工程中的应用[J]. 冰川冻土,2013,35(2):383 − 388. [WU Hong, DONG Jinyi, LI Ruidong, et al. Application of 3D visualization technology to debris flow control engineering of post-disaster reconstruction in Zhouqu County[J]. Journal of Glaciology and Geocryology,2013,35(2):383 − 388. (in Chinese with English abstract)
    [3] 周龙茂, 龚育龄, 杨普济, 等. 武宁县花香林泥石流灾害成因及防治对策[J]. 东华理工大学学报(自然科学版),2008,31(2):136 − 139. [ZHOU Longmao, GONG Yuling, YANG Puji, et al. Analysis on causes of debris flow disasterin Wuning County and the countermeasures[J]. Journal of East China Institute of Technology (Natural Science Edition),2008,31(2):136 − 139. (in Chinese with English abstract)
    [4] 王念秦, 韩波, 庞琦, 等. 泥石流防治工程效果后评价初探[J]. 工程地质学报,2015(2):219 − 226. [WANG Nianqin, HAN Bo, PANG Qi, et al. Post-evaluation model on effectiveness of debris flow control[J]. Journal of Engineering Geology,2015(2):219 − 226. (in Chinese with English abstract)
    [5] 中华人民共和国国土资源部. 泥石流灾害防治工程设计规范: DZ/T 0239—2004[S]. 北京: 中华人民共和国国土资源部, 2006.

    Ministry of Land and Resources of the People's Republic of China. Specification of design for debris flow prevention: DZ/T 0239—2004[S]. Beijing: Ministry of Land and Resources of the People’s Republic of China, 2006. (in Chinese)

    [6]

    CUI P, CHEN X Q, ZHU Y Y, et al. The Wenchuan Earth-quake(12 May 2008), Sichuan Province, China, and Resulting Geo-hazards[J]. Nature Hazards,2011,56:19 − 36. DOI: 10.1007/s11069-009-9392-1

    [7] 邓楚键, 孔位学, 郑颖人. 极限分析有限元法讲座Ⅲ—增量加载有限元法求解地基极限承载力[J]. 岩土力学,2005,26(3):500 − 504. [DENG Chujian, KONG Weixue, ZHENG Yingren. Analysis of ultimate bearing capacity of foundations by elastoplastic FEM through step loading[J]. Rock and Soil Mechanics,2005,26(3):500 − 504. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2005.03.033
    [8] 杨东旭, 王伟国, 陈晓清, 等. 用于狭陡沟谷泥石流防治的坝基钢管桩初探—以小岗剑沟泥石流治理工程为例[J]. 山地学报,2014,32(1):74 − 80. [YANG Dongxu, WANG Weiguo, CHEN Xiaoqing, et al. Steel pipe piles used for countermeasures in narrow-steep debris flow gullies: A case study of Xiaogangjian debris flow control[J]. Journal of Mountain Science,2014,32(1):74 − 80. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2014.01.010
    [9] 许海亮, 孙金斗, 覃吉宁, 等. 考虑弹性核作用下的冲击地压形成机理模型试验[J]. 中国地质灾害与防治学报,2020,31(1):120 − 126. [XU Hailiang, SUN Jindou, QIN Jining, et al. Experimental study on development mechanism of coal bump considering the elastic core effect[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):120 − 126. (in Chinese with English abstract)
    [10] 张睿骁, 樊晓一, 姜元俊, 等. 滑坡—碎屑流冲击导引结构的离散元模拟[J]. 水文地质工程地质,2019,46(5):161 − 168. [ZHANG Ruixiao, FAN Xiaoyi, JIANG Yuanjun, et al. Discrete element simulation of the landslide-debris flow impact guiding structure[J]. Hydrogeology & Engineering Geology,2019,46(5):161 − 168. (in Chinese with English abstract)
    [11] 冯帅, 吴红刚, 陈小云. 长达坂沟泥石流桩板墙拦挡结构极限抗冲压数值分析[J]. 科学技术与工程,2017,17(31):322 − 327. [FENG Shuai, WU Honggang, CHEN Xiaoyun. A numerical analysis of long daban ditch debris flow sheet pile wall blocking structure ultimate punching[J]. Science Technology and Engineering,2017,17(31):322 − 327. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2017.31.053
    [12] 周勇, 刘贞良, 王秀丽, 等. 泥石流冲击荷载下拦挡坝的动力响应分析[J]. 振动与冲击,2015(8):117 − 120. [ZHOU Yong, LIU Zhenliang, WANG Xiuli, et al. Dynamic response analysis for a dam against impact load of debris flow[J]. Journal of Vibration and Shock,2015(8):117 − 120. (in Chinese with English abstract)
  • 期刊类型引用(7)

    1. 张卫雄,杨校辉,丁保艳,朱文杰,任永忠. 甘肃舟曲江顶崖滑坡堆积层剪切特性与强度参数分析. 中国地质灾害与防治学报. 2025(01): 65-72 . 本站查看
    2. 何胜庆,郑达,张文. 高海拔地区宽级配泥石流冲击拦砂坝试验研究. 水文地质工程地质. 2024(01): 123-134 . 百度学术
    3. 王东坡,廖承兴,瞿华南,闫帅星. 坝后淤积条件下泥石流冲击拦挡坝动力响应研究. 地球科学. 2024(03): 1017-1027 . 百度学术
    4. 王浩,张金涛,代林,王全才,王继华. 基于数值模拟的泥石流拦挡坝群布局优化. 山地学报. 2024(06): 805-815 . 百度学术
    5. 王常明,刘辛磊,王飞. 品字形桩林防护结构对泥石流冲击桥墩作用的影响. 吉林大学学报(地球科学版). 2023(06): 1773-1784 . 百度学术
    6. 周亮,何晓英,晋云超,张展,向灵芝,沈娜. 泥石流拦挡坝工程服役性能特征分析——以甘肃省陇南市武都区为例. 中国地质灾害与防治学报. 2023(06): 37-46 . 本站查看
    7. 张芝艳,周自强,刘兴荣,张国信,贾雪梅,王喜红. 不同类型拦挡坝拦蓄特征试验研究. 科学技术与工程. 2022(29): 12772-12781 . 百度学术

    其他类型引用(4)

图(6)  /  表(3)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  309
  • PDF下载量:  367
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-03-02
  • 修回日期:  2020-04-19
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2021-04-26

目录

/

返回文章
返回