ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
WANG Mengchen,DENG Yahong,MU Huandong,et al. Study on the calculation method of seismic coefficient for slope stability using shear beam theory[J]. The Chinese Journal of Geological Hazard and Control,2024,35(6): 98-105. DOI: 10.16031/j.cnki.issn.1003-8035.202410024
Citation: WANG Mengchen,DENG Yahong,MU Huandong,et al. Study on the calculation method of seismic coefficient for slope stability using shear beam theory[J]. The Chinese Journal of Geological Hazard and Control,2024,35(6): 98-105. DOI: 10.16031/j.cnki.issn.1003-8035.202410024

Study on the calculation method of seismic coefficient for slope stability using shear beam theory

Funds: This research is financially supported by National Natural Science Foundation of China, No. 41772275
More Information
  • Received Date: October 20, 2024
  • Revised Date: November 03, 2024
  • Available Online: November 12, 2024
  • Pseudo-static method is a common used approach to evaluate the seismic stability of slopes, where the choice of seismic coefficients directly affects the accuracy of the evaluation. Therefore, thoroughly exploring the determination methods and values of seismic coefficients in the quasi-static method is of great significant both theoretically and in engineering practice. Based on shear beam theory, this paper derives the formula for the seismic response acceleration for rectangular trapezoidal slopes and analyzes the impact of various factors on slope response acceleration. Recommended seismic coefficients under different seismic intensities were determined as follows: 0.04 for Intensity Ⅵ, 0.07 for Intensity Ⅶ, 0.11 for Intensity Ⅷ, and 0.21 for Intensity Ⅸ. The research results reflect the dynamic response characteristics of slopes and provide scientific theoretical support for the selection of seismic coefficients.

  • [1]
    阎渊. 青海门源Ms 6.9地震同震破裂的隧道破坏效应与启示[J]. 地质力学学报,2023,29(6):869 − 878. [YAN Yuan. The tunnel damage effects and implications of the coseismic rupture of the Menyuan Ms 6.9 earthquake in Qinghai,China[J]. Journal of Geomechanics,2023,29(6):869 − 878. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2023027

    YAN Yuan. The tunnel damage effects and implications of the coseismic rupture of the Menyuan Ms 6.9 earthquake in Qinghai, China[J]. Journal of Geomechanics, 2023, 29(6): 869 − 878. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2023027
    [2]
    ZHU Y Q,LIU F,ZHANG G Q,et al. Development and prospect of mobile gravity monitoring and earthquake forecasting in recent ten years in China[J]. Geodesy and Geodynamics,2019,10(6):485 − 491. DOI: 10.1016/j.geog.2019.05.006
    [3]
    张培震,邓起东,张竹琪,等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学:地球科学,2013,43(10):1607 − 1620. [ZHANG Peizhen,DENG Qidong,ZHANG Zhuqi,et al. Active faults,earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica (Terrae),2013,43(10):1607 − 1620. (in Chinese with English abstract)] DOI: 10.1360/zd-2013-43-10-1607

    ZHANG Peizhen, DENG Qidong, ZHANG Zhuqi, et al. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica (Terrae), 2013, 43(10): 1607 − 1620. (in Chinese with English abstract) DOI: 10.1360/zd-2013-43-10-1607
    [4]
    LU L,WANG Z J,SONG M L,et al. Stability analysis of slopes with ground water during earthquakes[J]. Engineering Geology,2015,193:288 − 296. DOI: 10.1016/j.enggeo.2015.05.001
    [5]
    ZHANG D X,WANG G H. Study of the 1920 Haiyuan earthquake-induced landslides in loess (China)[J]. Engineering Geology,2007,94(1/2):76 − 88.
    [6]
    张辉,徐珂,李珺,等. 三维地震数据模型驱动下的超深全层系复杂构造地应力建模[J/OL]. 地质通报, 2024 (2024-10-12)[2024-11-11]. [ZHANG Hui,XU Ke,LI Jun,et al. 3D full-layer Geomechanical modeling of complex structures in the ultra-deep system driven by 3D seismic data[J/OL]. Geological Bulletin of China, 2024 (2024-10-12)[2024-11-11]. https://kns.cnki.net/kcms/detail/11.4648.P.20241012.1119.002.html. (in Chinese with English abstract)]

    ZHANG Hui, XU Ke, LI Jun, et al. 3D full-layer Geomechanical modeling of complex structures in the ultra-deep system driven by 3D seismic data[J/OL]. Geological Bulletin of China, 2024 (2024-10-12)[2024-11-11]. https://kns.cnki.net/kcms/detail/11.4648.P.20241012.1119.002.html. (in Chinese with English abstract)
    [7]
    KEEFER D K,WARTMAN J,NAVARRO OCHOA C,et al. Landslides caused by the M 7.6 tecomán,Mexico earthquake of January 21,2003[J]. Engineering Geology,2006,86(2/3):183 − 197.
    [8]
    ZHANG S,LI C,ZHANG L M,et al. Quantification of human vulnerability to earthquake-induced landslides using Bayesian network[J]. Engineering Geology,2020,265:105436. DOI: 10.1016/j.enggeo.2019.105436
    [9]
    赵佳忆,田述军,李凯,等. 岷江上游汶川地震前后泥石流易发性评价[J]. 中国地质灾害与防治学报,2024,35(1):51 − 59. [ZHAO Jiayi,TIAN Shujun,LI Kai,et al. Susceptibility assessment of debris flow in the upper reaches of the Minjiang River before and after the Wenchuan earthquake[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):51 − 59. (in Chinese with English abstract)]

    ZHAO Jiayi, TIAN Shujun, LI Kai, et al. Susceptibility assessment of debris flow in the upper reaches of the Minjiang River before and after the Wenchuan earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 51 − 59. (in Chinese with English abstract)
    [10]
    韩继冲,张朝,曹娟. 基于逻辑回归的地震滑坡易发性评价——以汶川地震、鲁甸地震为例[J]. 灾害学,2021,36(2):193 − 199. [HAN Jichong,ZHANG Hao,CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology,2021,36(2):193 − 199. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-811X.2021.02.034

    HAN Jichong, ZHANG Hao, CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology, 2021, 36(2): 193 − 199. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2021.02.034
    [11]
    许冲,徐锡伟,周本刚,等. 同震滑坡发生概率研究——新一代地震滑坡危险性模型[J]. 工程地质学报,2019,27(5):1122 − 1130. [XU Chong,XU Xiwei,ZHOU Bengang,et al. Probability of coseismic landslides:A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology,2019,27(5):1122 − 1130. (in Chinese with English abstract)]

    XU Chong, XU Xiwei, ZHOU Bengang, et al. Probability of coseismic landslides: A new generation of earthquake-triggered landslide hazard model[J]. Journal of Engineering Geology, 2019, 27(5): 1122 − 1130. (in Chinese with English abstract)
    [12]
    CALLISTO L,RAMPELLO S,FARGNOLI P. Evaluation of slope performance under earthquake loading conditions[J]. Rivista Italiana di Geotecnica,2010,44(4):29 − 41.
    [13]
    姚生海,盖海龙,殷翔,等. 青海门源M6.9级地震地表破裂特征及区域地震活动趋势分析[J]. 地质通报,2024,43(2):340 − 349. [YAO Shenghai,GAI Hailong,YIN Xiang,et al. Analysis on the characteristics of surface rupture and regional seismicity trend of Mengyuan M6.9 earthquake in Qinghai Province[J]. Geological Bulletin of China,2024,43(2):340 − 349. (in Chinese with English abstract)]

    YAO Shenghai, GAI Hailong, YIN Xiang, et al. Analysis on the characteristics of surface rupture and regional seismicity trend of Mengyuan M6.9 earthquake in Qinghai Province[J]. Geological Bulletin of China, 2024, 43(2): 340 − 349. (in Chinese with English abstract)
    [14]
    蒋青江,邓亚虹,杨楠,等. 基于严格条分法的拟动力地震边坡稳定性分析方法研究[J]. 地震工程学报,2023,45(3):716 − 723. [JIANG Qingjiang,DENG Yahong,YANG Nan,et al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal,2023,45(3):716 − 723. (in Chinese with English abstract)]

    JIANG Qingjiang, DENG Yahong, YANG Nan, et al. Pseudo-dynamic seismic slope stability analysis based on rigorous slice method[J]. China Earthquake Engineering Journal, 2023, 45(3): 716 − 723. (in Chinese with English abstract)
    [15]
    DENG D P,LI L. Limit equilibrium analysis of slope stability with coupling nonlinear strength criterion and double-strength reduction technique[J]. International Journal of Geomechanics,2019,19(6):04019052. DOI: 10.1061/(ASCE)GM.1943-5622.0001431
    [16]
    SENGANI F,MULENGA F. Application of limit equilibrium analysis and numerical modeling in a case of slope instability[J]. Sustainability,2020,12(21):8870. DOI: 10.3390/su12218870
    [17]
    TERZAGHI K. Mechanism of landslides[J]. 1950.
    [18]
    杨楠,邓亚虹,慕焕东,等. 一种基于拟动力法和剩余推力法的地震边坡稳定性分析新方法[J]. 工程地质学报,2023,31(2):607 − 616. [YANG Nan,DENG Yahong,MU Huandong,et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology,2023,31(2):607 − 616. (in Chinese with English abstract)]

    YANG Nan, DENG Yahong, MU Huandong, et al. A new method of seismic slope stability analysis based on pseudo-dynamic method and residual thrust method[J]. Journal of Engineering Geology, 2023, 31(2): 607 − 616. (in Chinese with English abstract)
    [19]
    MARCUSON W F. Moderator's report for session on earth dams and stability of slopes under dynamic loads[C]//Proc. ,Int. Conf. on recent adv. In Geotech. Earthquake Engrg. And Soil Dyn.,Univ. of Missori. 1981,3.
    [20]
    HYNES-GRIFFIN M E,Franklin A G. Rationalizing the seismic coefficient method[J]. Miscellaneous Paper GL-84-13,Department of the Army,Waterways E xperiment Station,Corps of Engineers,Vicksburg,MI,1984.
    [21]
    BAKER R,SHUKHA R,OPERSTEIN V,et al. Stability charts for pseudo-static slope stability analysis[J]. Soil Dynamics and Earthquake Engineering,2006,26(9):813 − 823. DOI: 10.1016/j.soildyn.2006.01.023
    [22]
    SEED H B,MARTIN G R. The seismic coefficient in earth dam design[J]. Journal of the Soil Mechanics and Foundations Division,1966,92(3):25 − 58. DOI: 10.1061/JSFEAQ.0000871
    [23]
    陈国兴. 岩土地震工程学[M]. 北京:科学出版社,2007. [CHEN Guoxing. Geotechnical earthquake engineering[M]. Beijing:Science Press,2007. (in Chinese)]

    CHEN Guoxing. Geotechnical earthquake engineering[M]. Beijing: Science Press, 2007. (in Chinese)
    [24]
    MONONOBE N,TAKATA A. MATUMURA M. Seismic stability of earth dam[A]// Proceedings of the 2nd Congress of LaRge Dams[C]. Washington D C,USA,1936,4.
    [25]
    GAZETAS G. A new dynamic model for earth dams evaluated through case histories[J]. Soils and Foundations,1981,21(1):67 − 78. DOI: 10.3208/sandf1972.21.67
    [26]
    DAKOULAS P,GAZETAS G. A class of inhomogeneous shear models for seismic response of dams and embankments[J]. International Journal of Soil Dynamics and Earthquake Engineering,1985,4(4):166 − 182.
    [27]
    言志信,张学东,张森,等. 基于双向地震作用下边坡共振特性与固有频率研究[J]. 水文地质工程地质,2011,38(2):46 − 51. [YAN Zhixin,ZHANG Xuedong,ZHANG Sen,et al. Study on resonance characteristics and natural frequency of slope under bi-directional seismic action[J]. Hydrogeology & Engineering Geology,2011,38(2):46 − 51. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3665.2011.02.008

    YAN Zhixin, ZHANG Xuedong, ZHANG Sen, et al. Study on resonance characteristics and natural frequency of slope under bi-directional seismic action[J]. Hydrogeology & Engineering Geology, 2011, 38(2): 46 − 51. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2011.02.008
    [28]
    KRAMER S L. Geotechnical earthquake engineering[M]. Upper Saddle River,NJ:Prentice Hall,1996.
    [29]
    中华人民共和国住房和城乡建设部,国家质量监督检验检疫总局. 建筑抗震设计规范:GB50011-2010[S]. 北京:中国建筑工业出版社,2010. [People's Republic of China Ministry of Housing and Urban-Rural Development,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China. Code for seismic design of buildings:GB50011-2010[S]. Beijing:China Architecture & Building Press,2010. ( in Chinese with English abstract]

    People's Republic of China Ministry of Housing and Urban-Rural Development, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for seismic design of buildings: GB50011-2010[S]. Beijing: China Architecture & Building Press, 2010. ( in Chinese with English abstract
  • Related Articles

    [1]Chenyang ZHANG, Zhiqian LIU, Guoxu CHEN, Qi ZHAO, Rihui LIANG, Daoyuan TAN, Zhiyi CHEN, Yu HUANG. Application of fiber optic sensing technology in geological safety monitoring[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202501015
    [2]Xin JIANG, Weixiong ZHANG, Xiaohui YANG, Kunquan CHEN, Baoyan DING. Analysis of monitoring and treatment effect of anti-sliping piles for the landslide at Jiangdingya, Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 174-182. DOI: 10.16031/j.cnki.issn.1003-8035.202305037
    [3]Hong ZHOU, Haifeng HUANG, Rui ZHANG, Qinglin YI, Wu YI, Guodong ZHANG, Shuqiang LU, Zhihong DONG, Qing LIU. Suitability Analysis and Recommendations for Professional Monitoring Techniques and Methods of Landslides in the Three Gorges Reservoir: A case study of the Zigui section in Hubei Province[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202404023
    [4]Kang WANG, Junbin CHANG, Xiaoke LI, Wenfeng ZHU, Xiao LU, Hui LIU. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangkelandslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 47-56. DOI: 10.16031/j.cnki.issn.1003-8035.202303037
    [5]Chengye YANG, Tao ZHANG, Gui GAO, Chongyang BU, Hua WU. Application of SBAS-InSAR technology in monitoring of ground deformation of representative giant landslides in Jinsha river basin, Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 94-105. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-11
    [6]Yonggang JIA, Tian CHEN, Peiying LI, Zhenghui LI, Cong HU, Xiaolei LIU, Hongxian SHAN. Research progress on the in-situ monitoring technologies of marine geohazards[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 1-14. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-01
    [7]Yunsheng CHEN, Guangbin LIU, Yiming ZHANG, Haifeng HUANG, Qiujun WU. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 83-91. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-10
    [8]WANG Huimin, LUO Zhongxing, XIAO Yingcheng, LIU Zhengxing, HE Anliang, LIANG Xiaodong. Automatic monitoring system on highway slopes based on GNSS technique[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 60-68. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.08
    [9]LI Xingyu. Research and practice of high-precision intelligent monitoring and early warning technology for landslide deformation[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 21-29. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.03
    [10]ZHANG Kaixiang. Review on geological disaster monitoring and early warning system based on “3S” technology in China[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.01
  • Cited by

    Periodical cited type(11)

    1. 张雪,魏云杰,杨成生,刘勇,杨佳艺. 云南昭通地区滑坡隐患InSAR广域识别与监测. 地球科学与环境学报. 2025(01): 128-142 .
    2. 王林峰,蒋辉,唐宁,黄晓明,谭国金. 无人机贴近摄影技术在高陡边坡的三维重建与结构面识别中的应用. 中国地质灾害与防治学报. 2025(01): 92-100 . 本站查看
    3. 孙成永. InSAR技术在河南信阳新县地质灾害风险调查中的应用. 城市地质. 2024(03): 383-389 .
    4. 孙琪皓,刘桂卫,王飞,张璇钰,王衍汇. 铁路地质灾害早期识别与监测预警技术及应用研究. 铁道标准设计. 2024(09): 24-31 .
    5. 臧烨祺,郭永刚,苏立彬,王国闻,吴升杰,秦得顺. 西藏东南地区滑坡易发性多模型评价方法研究. 中国地质灾害与防治学报. 2024(06): 58-69 . 本站查看
    6. 鲁魏,杨斌,杨坤. 基于时序InSAR的西南科技大学地表形变监测与分析. 中国地质灾害与防治学报. 2023(02): 61-72 . 本站查看
    7. 李凡,李素敏,杨渊,李杰,袁利伟,成睿,毛嘉骐. 基于时序InSAR的沙湾大沟滑坡型泥石流发育特征研究. 地球物理学进展. 2023(02): 532-541 .
    8. 顿佳伟,冯文凯,易小宇,张国强,吴明堂. 白鹤滩库区蓄水前活动性滑坡InSAR早期识别研究——以葫芦口镇至象鼻岭段为例. 工程地质学报. 2023(02): 479-492 .
    9. 于冰,胡云亮,刘国祥,罗小军,胡金龙. 时序InSAR反演唐山市二维地表形变时间序列. 测绘科学. 2023(06): 82-94+230 .
    10. 陈行,刘汉湖,葛宗旭. 时序SBAS-InSAR下的香格里拉市地表形变监测. 宜宾学院学报. 2022(06): 54-59 .
    11. 盖侨侨. PS-InSAR技术在北江下游沿线形变监测中的应用. 水利技术监督. 2022(10): 57-59+72 .

    Other cited types(4)

Catalog

    Article views (74) PDF downloads (30) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return