ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
BAI Jinzhao,HU Xiewen,FENG Xiao,et al. Development characteristics and kinematic characteristic of debris flow in Maojia gully, Kangding-Xinduqiao Expressway[J]. The Chinese Journal of Geological Hazard and Control,2025,36(3): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202312015
Citation: BAI Jinzhao,HU Xiewen,FENG Xiao,et al. Development characteristics and kinematic characteristic of debris flow in Maojia gully, Kangding-Xinduqiao Expressway[J]. The Chinese Journal of Geological Hazard and Control,2025,36(3): 1-12. DOI: 10.16031/j.cnki.issn.1003-8035.202312015

Development characteristics and kinematic characteristic of debris flow in Maojia gully, Kangding-Xinduqiao Expressway

More Information
  • Received Date: December 14, 2023
  • Revised Date: March 20, 2024
  • Accepted Date: May 09, 2024
  • Available Online: May 16, 2024
  • Maojia gully is located in the high mountain canyon area of the western Sichuan and eastern Tibet transportation corridor, with strong terrain cutting, steep mountains, large reserves and wide distribution of loose material sources in gully, and frequent short-term heavy rainfall, which has the possibility of large-scale debris flow disasters. The comparison scheme of the proposed Kangding to Xinduqiao Expressway route selection needs to pass through Maojia gully, and the debris flow becomes an important factor controlling the geological route selection. In this paper, the morphological parameters of Maojia gully and its two large branches gullies were obtained by field investigation, remote sensing interpretation and GIS technology. By using the stormwater correction method, Matlab and Python were used to reveal the kinematic characteristic of debris flow, such as flow rate, velocity, depth of debris flow and overall impact force of debris flow in different parts of the channel and different rainfall frequencies, and systematically evaluated the level of threat of the two route selection schemes of Kangding—Xinduqiao Expressway by debris flow outbreak. The results show that when the rainfall frequency P=1%, Flow rate increases of 20.8% to 122.9% at the plugging and collapse points, the flow rate of N3 line 1# bridge (K line 1# bridge), N3 line 2# bridge and K line 2# bridge are 203.71, 298.34, 148.73 m3/s, and the affected height is 12.06, 12.18, 11.64 m, respectively. There is a risk that the piers of the four Bridges will be silted attacked by debris flow impact, and debris flow early warning and management and protection measures will be vital.

  • [1]
    张明,王章琼,白俊龙,等. 基于ArcGIS的“三高” 地区高速公路泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(2):24 − 32. [ZHANG Ming,WANG Zhangqiong,BAI Junlong,et al. Hazard assessment of debris flow along highway of high altitude cold and intensity regions with aid of ArcGIS[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):24 − 32. (in Chinese with English abstract)]

    ZHANG Ming, WANG Zhangqiong, BAI Junlong, et al. Hazard assessment of debris flow along highway of high altitude cold and intensity regions with aid of ArcGIS[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2): 24 − 32. (in Chinese with English abstract)
    [2]
    李元灵,王军朝,陈龙,等. 2016年帕隆藏布流域群发性泥石流的活动特征及成因分析[J]. 水土保持研究,2018,25(6):397 − 402. [LI Yuanling,WANG Junchao,CHEN Long,et al. Characteristics and geneses of the group-occurring debris flows along parlung Zangbo River zone in 2016[J]. Research of Soil and Water Conservation,2018,25(6):397 − 402. (in Chinese with English abstract)]

    LI Yuanling, WANG Junchao, CHEN Long, et al. Characteristics and geneses of the group-occurring debris flows along parlung Zangbo River zone in 2016[J]. Research of Soil and Water Conservation, 2018, 25(6): 397 − 402. (in Chinese with English abstract)
    [3]
    张元军. 基于RS和GIS的炉霍县地质灾害危险性评价[D]. 成都:西南交通大学,2015. [ZHANG Yuanjun. Luhuo County based on RS & GIS geological hazard assessment[D]. Chengdu:Southwest Jiaotong University,2015. (in Chinese with English abstract)]

    ZHANG Yuanjun. Luhuo County based on RS & GIS geological hazard assessment[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese with English abstract)
    [4]
    陈世龙,罗加,刘晓钦. 江达县觉布寺沟泥石流发育特征及防治对策研究[J]. 四川地质学报,2020,40(2):274 − 277. [CHEN Shilong,LUO Jia,LIU Xiaoqin. The development and control of debris flow in the Juebusi valley,Jomda,Tibet[J]. Acta Geologica Sichuan,2020,40(2):274 − 277. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-0995.2020.02.021

    CHEN Shilong, LUO Jia, LIU Xiaoqin. The development and control of debris flow in the Juebusi valley, Jomda, Tibet[J]. Acta Geologica Sichuan, 2020, 40(2): 274 − 277. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-0995.2020.02.021
    [5]
    刘佳,赵海军,马凤山,等. 我国高寒山区泥石流研究现状[C]//中国地质学会. 中国科学院地质与地球物理研究所中国科学院页岩气与地质工程重点实验室;中国科学院大学,2020. [LIU Jia,ZHAO Haijun,MA Fengshan et al. Research status of debris flow in China's alpine mountains[C]//Geological Society of China. Key Laboratory of Shale Gas and Geological Engineering,Institute of Geology and Geophysics,Chinese Academy of Sciences;University of Chinese Academy of Sciences,2020. (in Chinese)]

    LIU Jia, ZHAO Haijun, MA Fengshan et al. Research status of debris flow in China's alpine mountains[C]//Geological Society of China. Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences;University of Chinese Academy of Sciences, 2020. (in Chinese)
    [6]
    杨志华,郭长宝,吴瑞安,等. 川西藏东交通廊道区域工程地质条件评价[J/OL]. 地质通报,1 − 16. [Yang Zhihua,Guo Changbao,Wu Rui'an,et al. Evaluation of engineering geological conditions in the eastern Sichuan-Tibet traffic corridor[J/OL]. Geological Bulletin,1 − 16. (in Chinese)]

    Yang Zhihua, Guo Changbao, Wu Rui'an, et al. Evaluation of engineering geological conditions in the eastern Sichuan-Tibet traffic corridor[J/OL]. Geological Bulletin, 1 − 16. (in Chinese)
    [7]
    卓冠晨,戴可人,周福军,等. 川藏交通廊道典型工点InSAR监测及几何畸变精细判识[J]. 地球科学,2022(6):2031 − 2047. [ZHUO Guanchen,DAI Keren,ZHOU Fujun,et al. Monitoring typical construction sites of Sichuan-Tibet traffic corridor by InSAR and intensive distortion analysis[J]. Earth Science,2022(6):2031 − 2047. (in Chinese)] DOI: 10.3321/j.issn.1000-2383.2022.6.dqkx202206010

    ZHUO Guanchen, DAI Keren, ZHOU Fujun, et al. Monitoring typical construction sites of Sichuan-Tibet traffic corridor by InSAR and intensive distortion analysis[J]. Earth Science, 2022(6): 2031 − 2047. (in Chinese) DOI: 10.3321/j.issn.1000-2383.2022.6.dqkx202206010
    [8]
    周斌,邹强,蒋虎,等. 川西高原气候变化特征及泥石流动态危险性响应研究[J]. 自然灾害学报,2022,31(4):241 − 255. [ZHOU Bin,ZOU Qiang,JIANG Hu,et al. Research on climate change characteristics and change of debris flow hazard in the Chuanxi Plateau[J]. Journal of Natural Disasters,2022,31(4):241 − 255. (in Chinese with English abstract)]

    ZHOU Bin, ZOU Qiang, JIANG Hu, et al. Research on climate change characteristics and change of debris flow hazard in the Chuanxi Plateau[J]. Journal of Natural Disasters, 2022, 31(4): 241 − 255. (in Chinese with English abstract)
    [9]
    向兵,谢万银,苏玉杰,等. 川西公路低频泥石流发育特征与防治综述[J]. 山西建筑,2023,49(17):1 − 8. [XIANG Bing,XIE Wanyin,SU Yujie,et al. Summary of development characteristics and prevention models of low-frequency debris flow on the traffic arteries in west Sichuan[J]. Shanxi Architecture,2023,49(17):1 − 8. (in Chinese)]

    XIANG Bing, XIE Wanyin, SU Yujie, et al. Summary of development characteristics and prevention models of low-frequency debris flow on the traffic arteries in west Sichuan[J]. Shanxi Architecture, 2023, 49(17): 1 − 8. (in Chinese)
    [10]
    符方熹,聂德新,任光明,等. 川西泥石流分布特征与防治原则研究[J]. 中国地质灾害与防治学报,1998,9(1):41 − 46. [FU Fangxi,NIE Dexin,REN Guangming,et al. The study on debris flow’s distribution character in western Sichuan[J]. The Chinese Journal of Geological Hazard and Control,1998,9(1):41 − 46. (in Chinese with English abstract)]

    FU Fangxi, NIE Dexin, REN Guangming, et al. The study on debris flow’s distribution character in western Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(1): 41 − 46. (in Chinese with English abstract)
    [11]
    王运生,程万强,刘江伟. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制[J]. 地球科学,2022(3):950 − 958. [WANG Yunsheng,CHENG Wanqiang,LIU Jiangwei. Forming process and mechanisms of geo-hazards in Luding section of the Sichuan-Tibet railway[J]. Earth Science,2022(3):950 − 958. (in Chinese)] DOI: 10.3321/j.issn.1000-2383.2022.3.dqkx202203015

    WANG Yunsheng, CHENG Wanqiang, LIU Jiangwei. Forming process and mechanisms of geo-hazards in Luding section of the Sichuan-Tibet railway[J]. Earth Science, 2022(3): 950 − 958. (in Chinese) DOI: 10.3321/j.issn.1000-2383.2022.3.dqkx202203015
    [12]
    袁东,张广泽,王栋,等. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报,2023,42(5):743 − 752. [YUAN Dong,ZHANG Guangze,WANG Dong,et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of western China[J]. Geological Bulletin of China,2023,42(5):743 − 752. (in Chinese with English abstract)] DOI: 10.12097/j.issn.1671-2552.2023.05.007

    YUAN Dong, ZHANG Guangze, WANG Dong, et al. Analysis on development characteristics of debris flow and route selection countermeasures along the traffic lines in mountain areas of western China[J]. Geological Bulletin of China, 2023, 42(5): 743 − 752. (in Chinese with English abstract) DOI: 10.12097/j.issn.1671-2552.2023.05.007
    [13]
    王喜安,陈剑刚,陈华勇,等. 考虑浆体黏度的泥石流流速计算方法[J]. 长江科学院院报,2020,37(4):56 − 61. [WANG Xi’an,CHEN Jiangang,CHEN Huayong,et al. Calculation of debris flow velocity in consideration of viscosity of slurry[J]. Journal of Yangtze River Scientific Research Institute,2020,37(4):56 − 61. (in Chinese with English abstract)] DOI: 10.11988/ckyyb.20181354

    WANG Xi’an, CHEN Jiangang, CHEN Huayong, et al. Calculation of debris flow velocity in consideration of viscosity of slurry[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(4): 56 − 61. (in Chinese with English abstract) DOI: 10.11988/ckyyb.20181354
    [14]
    吴积善. 泥石流流态及流速计算[C]//中国科学院成都地理研究所. 泥石流论文集 (1). 重庆:科学技术文献出版社重庆分社,1981:79 − 86. [WU Jishan. Flow pattern and velocity calculation of debris flow[C] //Chengdu Institute of Geography,Chinese Academy of Sciences. Debris Flow Proceedings (1). Chongqing:Chongqing Branch,Scientific and Technical Literature Press,1981:79 − 86. (in Chinese with English abstract)]

    WU Jishan. Flow pattern and velocity calculation of debris flow[C] //Chengdu Institute of Geography, Chinese Academy of Sciences. Debris Flow Proceedings (1). Chongqing: Chongqing Branch, Scientific and Technical Literature Press, 1981: 79 − 86. (in Chinese with English abstract)
    [15]
    朱兴华,崔鹏,唐金波,等. 粘性泥石流流速计算方法[J]. 泥沙研究,2013(3):59 − 64. [ZHU Xinghua,CUI Peng,TANG Jinbo,et al. Calculation of viscous debris flow velocity[J]. Journal of Sediment Research,2013(3):59 − 64. (in Chinese with English abstract)] DOI: 10.3969/j.issn.0468-155X.2013.03.011

    ZHU Xinghua, CUI Peng, TANG Jinbo, et al. Calculation of viscous debris flow velocity[J]. Journal of Sediment Research, 2013(3): 59 − 64. (in Chinese with English abstract) DOI: 10.3969/j.issn.0468-155X.2013.03.011
    [16]
    张雄,裴向军,裴钻,等. 极震区泥石流流量计算方法的研究[J]. 自然灾害学报,2014,23(6):227 − 233. [ZHANG Xiong,PEI Xiangjun,PEI Zuan,et al. Study on discharge calculation method of debris flows in meizoseismal areas[J]. Journal of Natural Disasters,2014,23(6):227 − 233. (in Chinese with English abstract)]

    ZHANG Xiong, PEI Xiangjun, PEI Zuan, et al. Study on discharge calculation method of debris flows in meizoseismal areas[J]. Journal of Natural Disasters, 2014, 23(6): 227 − 233. (in Chinese with English abstract)
    [17]
    易伟,余斌,胡卸文,等. 山火后首次泥石流预警[J]. 地球科学,2023. [YI Wei,YU Bin,HU Xiewen et al. The first warning of debris flow after mountain fire [J]. Earth Science,2023. (in Chinese with English abstract)]

    YI Wei, YU Bin, HU Xiewen et al. The first warning of debris flow after mountain fire [J]. Earth Science, 2023. (in Chinese with English abstract)
    [18]
    胡卸文,吕小平,黄润秋,等. 唐家山堰塞湖大水沟泥石流发育特征及堵江危害性评价[J]. 岩石力学与工程学报,2009,28(4):850 − 858. [HU Xiewen,LYU Xiaoping,HUANG Runqiu,et al. Developmental features and evaluation of blocking Dangers of dashui ditch debris flow in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(4):850 − 858. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2009.04.026

    HU Xiewen, LYU Xiaoping, HUANG Runqiu, et al. Developmental features and evaluation of blocking Dangers of dashui ditch debris flow in Tangjiashan dammed lake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4): 850 − 858. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2009.04.026
    [19]
    刘波,胡卸文,何坤,等. 西藏洛隆县巴曲冰湖溃决型泥石流演进过程模拟研究[J]. 水文地质工程地质,2021,48(5):150 − 160. [LIU Bo,HU Xiewen,HE Kun,et al. Characteristics and evolution process simulation of the Baqu gully debris flow triggered by ice-lake outburst in Luolong County of Tibet,China[J]. Hydrogeology & Engineering Geology,2021,48(5):150 − 160. (in Chinese with English abstract)]

    LIU Bo, HU Xiewen, HE Kun, et al. Characteristics and evolution process simulation of the Baqu gully debris flow triggered by ice-lake outburst in Luolong County of Tibet, China[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 150 − 160. (in Chinese with English abstract)
    [20]
    杨洋,曾繁如,赵银兵,等. GIS和MATLAB在泥石流防治工程流量计算中的应用研究—以北川县苏保河为例[J]. 地球与环境,2013,41(3):266 − 273. [YANG Yang,ZENG Fanru,ZHAO Yinbing,et al. Application of flow calculation of debris flow in control engineering by GIS technology and MATLAB:A case study of the Su-Bao River in Beichuan County[J]. Earth and Environment,2013,41(3):266 − 273. (in Chinese with English abstract)]

    YANG Yang, ZENG Fanru, ZHAO Yinbing, et al. Application of flow calculation of debris flow in control engineering by GIS technology and MATLAB: A case study of the Su-Bao River in Beichuan County[J]. Earth and Environment, 2013, 41(3): 266 − 273. (in Chinese with English abstract)
    [21]
    康志成,李焯芬,马蔼乃,等. 中国泥石流研究[M]. 北京:科学出版社,2004. [KANG Zhicheng,LI Zhuofen,MA Ainai,etal. Study on debris flow in China[M]. Beijing:Science Press,2004. (in Chinese)]

    KANG Zhicheng, LI Zhuofen, MA Ainai, etal. Study on debris flow in China[M]. Beijing: Science Press, 2004. (in Chinese)
    [22]
    王敏,王严琪,孙树峻,等. 四川省康定市泥石流灾害与降水预报阈值确定[J]. 高原山地气象研究,2021,41(4):125 − 130. [WANG Min,WANG Yanqi,SUN Shujun,et al. Debris flow disasters and precipitation forecast threshold determination in Kangding City[J]. Plateau and Mountain Meteorology Research,2021,41(4):125 − 130. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1674-2184.2021.04.018

    WANG Min, WANG Yanqi, SUN Shujun, et al. Debris flow disasters and precipitation forecast threshold determination in Kangding City[J]. Plateau and Mountain Meteorology Research, 2021, 41(4): 125 − 130. (in Chinese with English abstract) DOI: 10.3969/j.issn.1674-2184.2021.04.018
    [23]
    中华人民共和国国土资源部. 泥石流防治工程勘查规范:DZ/T0220—2006[S]. 北京:中国标准出版社,2006. [Ministry of Land and Resources of the People’s Repiblic of China. Specification of geological investigation for debris flow stabilization:DZ/T0220—2006[S]. Beijing:China Standards Press,2006. (in Chinese)]

    Ministry of Land and Resources of the People’s Repiblic of China. Specification of geological investigation for debris flow stabilization: DZ/T0220—2006[S]. Beijing: China Standards Press, 2006. (in Chinese)
  • Related Articles

    [1]Xiao FENG, Xiewen HU, Jinzhao BAI, Chuanjie XI, Kun HE, Ruichen ZHOU, Yonghao ZHOU. Characteristics and Risk assessment of debris flows in the Zheduotang Section of the G4218 Highway[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202312020
    [2]Ling LI, Ningsheng CHEN, Yi YANG, Zheng ZHONG, Na HUANG. Differential analysis of sediment volume on fluid properties and debris flow disaster impact in the northwest traffic corridor of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 90-102. DOI: 10.16031/j.cnki.issn.1003-8035.202312029
    [3]Xiaogang CHEN, Hongwei LI, Qianyi ZHANG. Deformation characteristics and treatment measures of dangerous rock collapse in an expressway in Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 43-51. DOI: 10.16031/j.cnki.issn.1003-8035.202302010
    [4]Jianguo CHEN, Lianxiang ZHONG. Assessment of rockfall susceptibility along the expressway based on the CF-AHP coupling model: A case study of the Tucheng-Wanglong section of the Rongzun expressway[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 105-115. DOI: 10.16031/j.cnki.issn.1003-8035.202208013
    [5]Feng WANG, Fan YANG, Zhongrong JIANG, E WU, Guan WANG. Susceptibility assessment of debris flow based on watershed units in Kangding City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 145-156. DOI: 10.16031/j.cnki.issn.1003-8035.202205038
    [6]Lei ZHANG, Yinpeng ZHOU, Yu ZHUANG, Aiguo XING, Junyi HE, Yanbo ZHANG. Dynamic analysis and prediction of rear slope affected area of the Jianshanying landslide in Shuicheng County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 1-7. DOI: 10.16031/j.cnki.issn.1003-8035.202204006
    [7]Shengsen ZHOU, Weile LI, Junyi CHEN, Yuyang JIANG, Yi WANG. Remote sensing detection of adverse geological bodies along Xichang-Shangri-La expressway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 90-102. DOI: 10.16031/j.cnki.issn.1003-8035.202110011
    [8]Huaming LI, Yonghui ZHANG, Zhiping HU, Fangtao LI, Lejun CAI. Analysis of karst development characteristics and influence of Miaoziping tunnel in E-Han expressway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 92-98. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-11
    [9]Yunsheng CHEN, Guangbin LIU, Yiming ZHANG, Haifeng HUANG, Qiujun WU. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 83-91. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-10
    [10]Xiaoping LIAO, Fengguang XU, Xudong CAI, Wenjiao ZHOU, Jiaxu WEI. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 121-129. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-15
  • Cited by

    Periodical cited type(40)

    1. 刘正兴,王华,金鑫. 基于LoRa自组网的山区高边坡集成监测预警技术及应用. 公路交通科技. 2025(02): 97-102+130 .
    2. 张官清,卢芝,江志刚,姜万夫. 软弱松散土层库岸斜坡破坏特征及变形监测分析. 水利科技与经济. 2025(03): 26-29+33 .
    3. 盖卫鹏,马玉杰,刘军勇,黄亚飞,赵亚伟,贾德生. 公路深路堑稳定性监测的关键问题探讨. 路基工程. 2024(01): 7-13 .
    4. 刘李彦,杨豪,张军辉,郭凯丽. 公路路基工程智能建养关键技术研究与展望. 长沙理工大学学报(自然科学版). 2024(01): 59-87 .
    5. 桑蕊. 水库大坝GNSS监测系统设计和应用分析. 水利科学与寒区工程. 2024(02): 138-140 .
    6. 董侨 ,杜豫川 ,郭猛 ,黄优 ,贾彦顺 ,蒋玮 ,金娇 ,李峰 ,刘成龙 ,刘鹏飞 ,刘状壮 ,罗雪 ,吕松涛 ,马涛 ,沙爱民 ,单丽岩 ,司春棣 ,王朝辉 ,王大为 ,肖月 ,徐慧宁 ,杨旭 ,张久鹏 ,张园 ,朱兴一. 中国路面工程学术研究综述·2024. 中国公路学报. 2024(03): 1-81 .
    7. 冯元生,张豹,田卿燕,李佩峻,李宏文,陈文山. GNSS定位技术在营运高速公路边坡变形监测中的应用. 广州建筑. 2024(01): 101-104 .
    8. 田恒. 边坡变形监测技术在山区农村公路工程中的应用. 交通世界. 2024(13): 37-39 .
    9. 梁鹏,陈川,黄庭华,邵羽,刘先林,陈有东,戴可人. 天巴公路典型边坡空地协同综合监测分析. 测绘科学. 2024(03): 108-116 .
    10. 张春良,刘红,向丽,邓华锐,景胜,金苗. 高边坡GNSS自动化监测技术应用. 路基工程. 2024(04): 165-170 .
    11. 刘运才,侯诚,刘卫其,史俊波,邹进贵. 面向海量北斗变形监测数据的站点健康诊断自动化技术. 长江科学院院报. 2024(10): 201-205+214 .
    12. 乔仲发,黄煜寰,周炯,古海东,周密,邬赛,朱鸿鹄. 基于物联网技术的高边坡监测系统研究. 黑龙江大学自然科学学报. 2024(05): 590-596 .
    13. 宿林,张帅. 基于GNSS的滑坡自动化监测应用分析. 地理空间信息. 2023(02): 122-124+152 .
    14. 夏选莉,商经睿,张春禹,沈锋. 高精度GNSS在滑坡监测预警中的应用. 云南电力技术. 2023(01): 2-5+12 .
    15. 冯云龙,周振东,张静晓,朱哲,史小丽. 沥青混凝土路面施工质量监测系统的构建与实现. 施工技术(中英文). 2023(05): 13-19 .
    16. 聂瑞,孙虎,杜祝遥,陈蓉,何佳. 公路路网不良斜坡智能检测及预警系统的研究. 科技创新与生产力. 2023(03): 127-129+134 .
    17. 杨帆. 光纤侦听高速公路灾害监测报警系统设计研究. 交通科技与管理. 2023(10): 19-21 .
    18. 孟繁贺,胡卫军,韦超俊. 公路边坡及坡顶电塔应急抢险工程监测方案研究. 西部交通科技. 2023(05): 22-25 .
    19. 杜玉柱. 铁路安全遥感新技术动态监测. 测绘通报. 2023(09): 129-134 .
    20. 孙凯强,刘惊灏,苏谦,程李娜,牛云彬,李艳东. 基于地质BIM模型与有限元分析的铁路高边坡多源融合健康监测. 铁道标准设计. 2023(11): 31-37+60 .
    21. 梁文广,陈圣甜,余道明,张彦忠,况联飞. 公路边坡空天地孔一体化监测平台架构与工程应用. 工程勘察. 2023(12): 54-58 .
    22. 常志宏,马晓刚,谷丽蕊,李永建. 基于高速摄像头的高速公路路况异常监控方法. 中国交通信息化. 2023(11): 104-105+118 .
    23. 杨燕炜,苏义坤,苏伟胜,何廷全. 基于无人机系统的高速公路边坡数据采集模式研究. 森林工程. 2022(02): 140-145 .
    24. 马明康,缪海宾,王丹. 基于安全监测与预警系统的边坡稳定性研究. 煤矿机械. 2022(05): 29-32 .
    25. 孙泽信,段举举,张安银. 基于物联网的自动化监测系统在地质灾害监测中的应用. 地质学刊. 2022(01): 60-66 .
    26. 卢世杰,王海峰,韩微微. 公路高填方路堤稳定性监测设计探讨. 路基工程. 2022(03): 18-22 .
    27. 陈昌富,李伟,张嘉睿,廖佳卉,吕晓玺. 山区公路边坡工程智能分析与设计研究进展. 湖南大学学报(自然科学版). 2022(07): 15-31 .
    28. 晏务强. 深层位移自动化监测技术在公路边坡(滑坡)治理工程中的应用. 产业科技创新. 2022(02): 62-64 .
    29. 刘雪梅,刘焕军. GNSS技术在地质灾害安全监测预警系统中的应用. 世界有色金属. 2022(11): 10-12 .
    30. 张振威,刘滋源,张帅. 自动化监测预警系统在滑坡监测中的应用. 地理空间信息. 2022(09): 110-112 .
    31. 张龙,白旭光,田腾飞,杨御博,汤玉兵. 基于物联网的公路工程边坡智能动态监测系统研究. 公路. 2022(09): 122-127 .
    32. 周波,唐桂彬. 徕卡测量机器人的公路边坡监测研究. 自动化与仪器仪表. 2022(09): 206-210 .
    33. 兰素恋,潘前,张黎明. 自动化监测预警系统在路基边坡中的应用. 西部交通科技. 2022(09): 17-20 .
    34. 赵帅,王胜,杨淑娟,崔维久. 基于GNSS技术的结构位移监测应用研究进展. 施工技术(中英文). 2022(21): 6-10+16 .
    35. 赵昕,范红英,张浩,米国兴,赵毅. BIM在滑坡智能监测中的应用研究. 工程勘察. 2022(12): 12-16 .
    36. 傅炎发. GNSS技术在莆田至炎陵高速公路中的应用效果评价. 江西建材. 2022(11): 107-108 .
    37. 张靓. 一种基于5G+北斗的边坡监测解决方案. 长江信息通信. 2021(05): 156-158 .
    38. 凌建明,张玉,满立,李想. 公路边坡智能化监测体系研究进展. 中南大学学报(自然科学版). 2021(07): 2118-2136 .
    39. 张艳艳,郭朋朋. 基于物联网的公路边坡危岩体监控预警系统. 自动化与仪器仪表. 2021(10): 144-147 .
    40. 李海成. 水电工程边坡锚杆支护位移自动监测技术研究. 自动化与仪器仪表. 2021(12): 97-100 .

    Other cited types(18)

Catalog

    Article views (55) PDF downloads (26) Cited by(58)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return