Citation: | ZHAO Lei,ZOU Dingfu,ZHANG Lijun,et al. Coupled dynamic response analysis of flexible barrier under slope debris flow[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.202308031 |
Currently, performance testing of flexible barrier only focus on rockfall impacts, lacking research on the coupled dynamic response under slope debris flow impact. In this study, based on LS-DYNA, a full-scale impact test with a nominal energy level of
[1] |
陈晓清,游勇,崔鹏,等. 汶川地震区特大泥石流工程防治新技术探索[J]. 四川大学学报(工程科学版),2013,45(1):14 − 22. [CHEN Xiaoqing,YOU Yong,CUI Peng,et al. New control methods for large debris flows in Wenchuan earthquake area[J]. Journal of Sichuan University (Engineering Science Edition),2013,45(1):14 − 22. (in Chinese with English abstract)]
CHEN Xiaoqing, YOU Yong, CUI Peng, et al. New control methods for large debris flows in Wenchuan earthquake area[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(1): 14 − 22. (in Chinese with English abstract)
|
[2] |
程广志. 基于激光雷达与图像融合的铁路入侵目标检测系统设计[D]. 北京:北京交通大学,2023. [CHENG Guangzhi. Design of railway intrusion target detection system based on LiDAR and image fusion[D]. Beijing:Beijing Jiaotong University,2023]
CHENG Guangzhi. Design of railway intrusion target detection system based on LiDAR and image fusion[D]. Beijing: Beijing Jiaotong University, 2023
|
[3] |
ZHAO Lei,ZHANG Lijun,YU Zhixiang,et al. A case study on the energy capacity of a flexible rockfall barrier in resisting landslide debris[J]. Forests,2022,13:1384. DOI: 10.3390/f13091384
|
[4] |
赵世春,余志祥,韦韬,等. 被动柔性防护网受力机理试验研究与数值计算[J]. 土木工程学报,2013,46(5):122 − 128. [ZHAO Shichun,YU Zhixiang,WEI Tao,et al. Test study of force mechanism and numerical calculation of safety netting system[J]. China Civil Engineering Journal,2013,46(5):122 − 128. (in Chinese with English abstract)]
ZHAO Shichun, YU Zhixiang, WEI Tao, et al. Test study of force mechanism and numerical calculation of safety netting system[J]. China Civil Engineering Journal, 2013, 46(5): 122 − 128. (in Chinese with English abstract)
|
[5] |
KOO R C H,KWAN J S H,LAM C,et al. Dynamic response of flexible rockfall barriers under different loading geometries[J]. Landslides,2017,14(3):905 − 916. DOI: 10.1007/s10346-016-0772-9
|
[6] |
ZHAO Lei,YU Zhixiang,LIU Yaopeng,et al. Numerical simulation of responses of flexible rockfall barriers under impact loading at different positions[J]. Journal of Constructional Steel Research,2020,167:105953. DOI: 10.1016/j.jcsr.2020.105953
|
[7] |
DENATALE J,IVERSON R M,MAJOR J,et al. Experimental testing of flexible barriers for containment of debris flow[R]. Department of the Interior & Geological Survey,1999.
|
[8] |
BUGNION L,MCARDELL B W,BARTELT P,et al. Measurements of hillslope debris flow impact pressure on obstacles[J]. Landslides,2012,9(2):179 − 187. DOI: 10.1007/s10346-011-0294-4
|
[9] |
LAM H W K,SZE E H Y,WONG E K L,et al. Study of dynamic debris impact load on flexible debris-resisting barriers and the dynamic pressure coefficient[J]. Canadian Geotechnical Journal,2022,59(12):2102 − 2118. DOI: 10.1139/cgj-2021-0325
|
[10] |
王秀丽,乔芬,冉永红,等. 新型泥石流柔性防护体系冲击动力响应分析[J]. 中国地质灾害与防治学报,2018,29(5):108 − 115. [WANG Xiuli,QIAO Fen,RAN Yonghong,et al. Dynamic response analysis for a new type of debris flow flexible protection system[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):108 − 115. (in Chinese with English abstract)]
WANG Xiuli, QIAO Fen, RAN Yonghong, et al. Dynamic response analysis for a new type of debris flow flexible protection system[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 108 − 115. (in Chinese with English abstract)
|
[11] |
王东坡,赵军,张小梅,等. 开口柔性防护网调控泥石流性能试验研究[J]. 岩土力学,2022,43(5):1237 − 1248. [WANG Dongpo,ZHAO Jun,ZHANG Xiaomei,et al. Experimental study of regulation performance of open flexible debris flow barriers[J]. Rock and Soil Mechanics,2022,43(5):1237 − 1248. (in Chinese with English abstract)]
WANG Dongpo, ZHAO Jun, ZHANG Xiaomei, et al. Experimental study of regulation performance of open flexible debris flow barriers[J]. Rock and Soil Mechanics, 2022, 43(5): 1237 − 1248. (in Chinese with English abstract)
|
[12] |
SONG D,CHOI C E,NG C W W,et al. Geophysical flows impacting a flexible barrier:Effects of solid-fluid interaction[J]. Landslides,2018,15(1):99 − 110. DOI: 10.1007/s10346-017-0856-1
|
[13] |
WENDELER C. Debris-flow protection systems for mountain torrents[M]. Swiss Federal Institute for Forest,Snow and Landscape Research WSL,2006.
|
[14] |
赵雷,张丽君,余志祥,等. 泥石流柔性防护系统耦合作用数值模拟[J]. 防灾减灾工程学报,2022,42(3):606 − 613. [ZHAO Lei,ZHANG Lijun,YU Zhixiang,et al. Coupled numerical simulation of flexible debris flow barrier[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(3):606 − 613. (in Chinese with English abstract)]
ZHAO Lei, ZHANG Lijun, YU Zhixiang, et al. Coupled numerical simulation of flexible debris flow barrier[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(3): 606 − 613. (in Chinese with English abstract)
|
[15] |
ZHAO Lei,HE Jianwen,YU Zhixiang,et al. Coupled numerical simulation of a flexible barrier impacted by debris flow with boulders in front[J]. Landslides,2020,17(12):2723 − 2736. DOI: 10.1007/s10346-020-01463-x
|
[16] |
KONG Yong,LI Xingyue,ZHAO Jidong. Quantifying the transition of impact mechanisms of geophysical flows against flexible barrier[J]. Engineering Geology,2021,289:106188. DOI: 10.1016/j.enggeo.2021.106188
|
[17] |
国家铁路局. 铁路边坡柔性被动防护产品落石冲击试验方法与评价:TB/T 3449—2016[S]. 北京:中国铁道出版社,2017. [National Railway Administration of the People's Republic of China. Rockfall impact test method and evaluation of railway slope flexible passive protection product:TB/T 3449—2016[S]. Beijing:China Railway Publishing House,2017. (in Chinese)]
National Railway Administration of the People's Republic of China. Rockfall impact test method and evaluation of railway slope flexible passive protection product: TB/T 3449—2016[S]. Beijing: China Railway Publishing House, 2017. (in Chinese)
|
[18] |
EOTA. Falling rock protection kits:EAD 340059-00-0106[S]. European Organization for Technical Approvals,2018.
|
[19] |
EOTA. Guideline for European Technical Approval of Falling Rock Protection Kits:ETAG 027 [S]. European Organization for Technical Approvals,2008.
|
[20] |
QI Xin,PEI Xiangjun,HAN Rui,et al. Analysis of the effects of a rotating rock on rockfall protection barriers[J]. Geotechnical and Geological Engineering,2018,36:3255 − 3267. DOI: 10.1007/s10706-018-0535-6
|
[21] |
赵雷,邹定富,张丽君,等. 落石被动柔性防护网冲击力学响应的参数化研究[J]. 振动与冲击,2023,42(12):8 − 17. [ZHAO Lei,ZOU Dingfu,ZHANG Lijun,et al. Parametric study on the mechanical response of a flexible rockfall barrier[J]. Journal of Vibration and Shock,2023,42(12):8 − 17. (in Chinese with English abstract)]
ZHAO Lei, ZOU Dingfu, ZHANG Lijun, et al. Parametric study on the mechanical response of a flexible rockfall barrier[J]. Journal of Vibration and Shock, 2023, 42(12): 8 − 17. (in Chinese with English abstract)
|
[22] |
EOTA. Evaluation report for the assessment of ETA- 11/0305 (Falling Rock Protection Barrier GBE-5000A)[R]. European Organization for Technical Approvals,2011.
|
[23] |
CHEUNG A K C,YIU J,LAM H W K,et al. Advanced numerical analysis of landslide debris mobility and barrier interaction[J]. HKIE Transactions,2018,25(2):76 − 89. DOI: 10.1080/1023697X.2018.1462106
|
[24] |
赵世春,余志祥,赵雷,等. 被动防护网系统强冲击作用下的传力破坏机制[J]. 工程力学,2016,33(10):24 − 34. [ZHAO Shichun,YU Zhixiang,ZHAO Lei,et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics,2016,33(10):24 − 34. (in Chinese with English abstract)] DOI: 10.6052/j.issn.1000-4750.2016.06.ST08
ZHAO Shichun, YU Zhixiang, ZHAO Lei, et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics, 2016, 33(10): 24 − 34. (in Chinese with English abstract) DOI: 10.6052/j.issn.1000-4750.2016.06.ST08
|
[25] |
吴兵, 梁瑶, 赵晓彦, 等. 破碎岩质边坡锚墩式主动防护网设计方法[J]. 中国地质灾害与防治学报,2021,32(3):101 − 108. [WU Bing, LIANG Yao, ZHAO Xiaoyan, etal. Design method of anchor pier type active protective net on fractured rock slopes[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):101 − 108. (in Chinese with English abstract)]
WU Bing, LIANG Yao, ZHAO Xiaoyan, etal. Design method of anchor pier type active protective net on fractured rock slopes[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 101 − 108. (in Chinese with English abstract)
|
[26] |
吴建利, 胡卸文, 梅雪峰, 等. 高位落石作用下不同缓冲层与钢筋混凝土板组合结构动力响应[J]. 水文地质工程地质,2020,47(4):114 − 122. [WUJianli, HUXiewen,MEIXuefeng, etal. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology,2020,47(4):114 − 122. (in Chinese with English abstract)]
WUJianli, HUXiewen, MEIXuefeng, etal. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 114 − 122. (in Chinese with English abstract)
|
1. |
陈玉波,徐世光,陈梦瑞. 以确定性系数法为基础的不同滑坡易发性评价模型对比分析——以云南保山盆地为例. 中国地质灾害与防治学报. 2025(01): 119-130 .
![]() | |
2. |
郭英,申健,刘晓晓,周亮,石向菲,王聪毅. 北京门头沟区“23·7”特大暴雨诱发地质灾害特征及分布规律研究. 中国防汛抗旱. 2025(03): 39-45 .
![]() | |
3. |
刘磊磊,肖浩,王璨,姚腾飞. 湖南红层地区滑坡地质灾害致灾因子敏感性分析. 矿冶工程. 2024(04): 169-174 .
![]() | |
4. |
卫璐宁,郭永刚. 西藏崩滑流地质灾害孕灾环境分区及形成机制. 西藏科技. 2024(09): 25-36 .
![]() | |
5. |
周鹏,万忠焱,李强,元旦措姆,西若平措,索朗拥措,巴桑吉巴. 拉萨市堆龙德庆区滑坡灾害时空分布规律和孕灾背景分析. 西藏科技. 2024(11): 37-42+75 .
![]() | |
6. |
余明威,郭永刚,苏立彬. 西藏林芝地区崩滑流灾害影响因子定量评价. 中国地质灾害与防治学报. 2024(06): 33-43 .
![]() | |
7. |
欧家婷,陶治强,刘宇宁,刘文荐,朱亦舒. 山南地区某滑坡稳定性分析. 农业灾害研究. 2024(11): 65-67 .
![]() |