ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
ZHAO Lei,ZOU Dingfu,ZHANG Lijun,et al. Coupled dynamic response analysis of flexible barrier under slope debris flow[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.202308031
Citation: ZHAO Lei,ZOU Dingfu,ZHANG Lijun,et al. Coupled dynamic response analysis of flexible barrier under slope debris flow[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.202308031

Coupled dynamic response analysis of flexible barrier under slope debris flow

More Information
  • Received Date: August 18, 2023
  • Revised Date: October 07, 2023
  • Accepted Date: May 28, 2024
  • Available Online: June 16, 2024
  • Currently, performance testing of flexible barrier only focus on rockfall impacts, lacking research on the coupled dynamic response under slope debris flow impact. In this study, based on LS-DYNA, a full-scale impact test with a nominal energy level of 5000 kJ of flexible barrier was firstly back-analyzed, comparing and analyzing the key rope forces, elongation of energy dissipators, and buffer distance to verify the effectiveness of the computational model. Next, an ALE-FEM numerical calculation model was built to investigate the mechanical response characteristics of the flexible barrier under slope debris flow impact, and compared them with rockfall impact conditions. Finally, parametric numerical simulations of debris flow velocity and impact energy were carried out to analyze the dissipation and transformation characteristics of impact energy and explore the ultimate protective capacity of flexible barrier from an energy perspective. The results showed that the flexible barrier can successfully intercept slope debris flows under the nominal energy levels, with overall mechanical responses significantly smaller than those under rockfall impacts. The impact energy mainly converted into internal energy of debris flows. Flexible barriers can successfully intercept slope debris flows up to four times the impact energy of rockfalls.

  • [1]
    陈晓清,游勇,崔鹏,等. 汶川地震区特大泥石流工程防治新技术探索[J]. 四川大学学报(工程科学版),2013,45(1):14 − 22. [CHEN Xiaoqing,YOU Yong,CUI Peng,et al. New control methods for large debris flows in Wenchuan earthquake area[J]. Journal of Sichuan University (Engineering Science Edition),2013,45(1):14 − 22. (in Chinese with English abstract)]

    CHEN Xiaoqing, YOU Yong, CUI Peng, et al. New control methods for large debris flows in Wenchuan earthquake area[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(1): 14 − 22. (in Chinese with English abstract)
    [2]
    程广志. 基于激光雷达与图像融合的铁路入侵目标检测系统设计[D]. 北京:北京交通大学,2023. [CHENG Guangzhi. Design of railway intrusion target detection system based on LiDAR and image fusion[D]. Beijing:Beijing Jiaotong University,2023]

    CHENG Guangzhi. Design of railway intrusion target detection system based on LiDAR and image fusion[D]. Beijing: Beijing Jiaotong University, 2023
    [3]
    ZHAO Lei,ZHANG Lijun,YU Zhixiang,et al. A case study on the energy capacity of a flexible rockfall barrier in resisting landslide debris[J]. Forests,2022,13:1384. DOI: 10.3390/f13091384
    [4]
    赵世春,余志祥,韦韬,等. 被动柔性防护网受力机理试验研究与数值计算[J]. 土木工程学报,2013,46(5):122 − 128. [ZHAO Shichun,YU Zhixiang,WEI Tao,et al. Test study of force mechanism and numerical calculation of safety netting system[J]. China Civil Engineering Journal,2013,46(5):122 − 128. (in Chinese with English abstract)]

    ZHAO Shichun, YU Zhixiang, WEI Tao, et al. Test study of force mechanism and numerical calculation of safety netting system[J]. China Civil Engineering Journal, 2013, 46(5): 122 − 128. (in Chinese with English abstract)
    [5]
    KOO R C H,KWAN J S H,LAM C,et al. Dynamic response of flexible rockfall barriers under different loading geometries[J]. Landslides,2017,14(3):905 − 916. DOI: 10.1007/s10346-016-0772-9
    [6]
    ZHAO Lei,YU Zhixiang,LIU Yaopeng,et al. Numerical simulation of responses of flexible rockfall barriers under impact loading at different positions[J]. Journal of Constructional Steel Research,2020,167:105953. DOI: 10.1016/j.jcsr.2020.105953
    [7]
    DENATALE J,IVERSON R M,MAJOR J,et al. Experimental testing of flexible barriers for containment of debris flow[R]. Department of the Interior & Geological Survey,1999.
    [8]
    BUGNION L,MCARDELL B W,BARTELT P,et al. Measurements of hillslope debris flow impact pressure on obstacles[J]. Landslides,2012,9(2):179 − 187. DOI: 10.1007/s10346-011-0294-4
    [9]
    LAM H W K,SZE E H Y,WONG E K L,et al. Study of dynamic debris impact load on flexible debris-resisting barriers and the dynamic pressure coefficient[J]. Canadian Geotechnical Journal,2022,59(12):2102 − 2118. DOI: 10.1139/cgj-2021-0325
    [10]
    王秀丽,乔芬,冉永红,等. 新型泥石流柔性防护体系冲击动力响应分析[J]. 中国地质灾害与防治学报,2018,29(5):108 − 115. [WANG Xiuli,QIAO Fen,RAN Yonghong,et al. Dynamic response analysis for a new type of debris flow flexible protection system[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):108 − 115. (in Chinese with English abstract)]

    WANG Xiuli, QIAO Fen, RAN Yonghong, et al. Dynamic response analysis for a new type of debris flow flexible protection system[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 108 − 115. (in Chinese with English abstract)
    [11]
    王东坡,赵军,张小梅,等. 开口柔性防护网调控泥石流性能试验研究[J]. 岩土力学,2022,43(5):1237 − 1248. [WANG Dongpo,ZHAO Jun,ZHANG Xiaomei,et al. Experimental study of regulation performance of open flexible debris flow barriers[J]. Rock and Soil Mechanics,2022,43(5):1237 − 1248. (in Chinese with English abstract)]

    WANG Dongpo, ZHAO Jun, ZHANG Xiaomei, et al. Experimental study of regulation performance of open flexible debris flow barriers[J]. Rock and Soil Mechanics, 2022, 43(5): 1237 − 1248. (in Chinese with English abstract)
    [12]
    SONG D,CHOI C E,NG C W W,et al. Geophysical flows impacting a flexible barrier:Effects of solid-fluid interaction[J]. Landslides,2018,15(1):99 − 110. DOI: 10.1007/s10346-017-0856-1
    [13]
    WENDELER C. Debris-flow protection systems for mountain torrents[M]. Swiss Federal Institute for Forest,Snow and Landscape Research WSL,2006.
    [14]
    赵雷,张丽君,余志祥,等. 泥石流柔性防护系统耦合作用数值模拟[J]. 防灾减灾工程学报,2022,42(3):606 − 613. [ZHAO Lei,ZHANG Lijun,YU Zhixiang,et al. Coupled numerical simulation of flexible debris flow barrier[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(3):606 − 613. (in Chinese with English abstract)]

    ZHAO Lei, ZHANG Lijun, YU Zhixiang, et al. Coupled numerical simulation of flexible debris flow barrier[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(3): 606 − 613. (in Chinese with English abstract)
    [15]
    ZHAO Lei,HE Jianwen,YU Zhixiang,et al. Coupled numerical simulation of a flexible barrier impacted by debris flow with boulders in front[J]. Landslides,2020,17(12):2723 − 2736. DOI: 10.1007/s10346-020-01463-x
    [16]
    KONG Yong,LI Xingyue,ZHAO Jidong. Quantifying the transition of impact mechanisms of geophysical flows against flexible barrier[J]. Engineering Geology,2021,289:106188. DOI: 10.1016/j.enggeo.2021.106188
    [17]
    国家铁路局. 铁路边坡柔性被动防护产品落石冲击试验方法与评价:TB/T 3449—2016[S]. 北京:中国铁道出版社,2017. [National Railway Administration of the People's Republic of China. Rockfall impact test method and evaluation of railway slope flexible passive protection product:TB/T 3449—2016[S]. Beijing:China Railway Publishing House,2017. (in Chinese)]

    National Railway Administration of the People's Republic of China. Rockfall impact test method and evaluation of railway slope flexible passive protection product: TB/T 3449—2016[S]. Beijing: China Railway Publishing House, 2017. (in Chinese)
    [18]
    EOTA. Falling rock protection kits:EAD 340059-00-0106[S]. European Organization for Technical Approvals,2018.
    [19]
    EOTA. Guideline for European Technical Approval of Falling Rock Protection Kits:ETAG 027 [S]. European Organization for Technical Approvals,2008.
    [20]
    QI Xin,PEI Xiangjun,HAN Rui,et al. Analysis of the effects of a rotating rock on rockfall protection barriers[J]. Geotechnical and Geological Engineering,2018,36:3255 − 3267. DOI: 10.1007/s10706-018-0535-6
    [21]
    赵雷,邹定富,张丽君,等. 落石被动柔性防护网冲击力学响应的参数化研究[J]. 振动与冲击,2023,42(12):8 − 17. [ZHAO Lei,ZOU Dingfu,ZHANG Lijun,et al. Parametric study on the mechanical response of a flexible rockfall barrier[J]. Journal of Vibration and Shock,2023,42(12):8 − 17. (in Chinese with English abstract)]

    ZHAO Lei, ZOU Dingfu, ZHANG Lijun, et al. Parametric study on the mechanical response of a flexible rockfall barrier[J]. Journal of Vibration and Shock, 2023, 42(12): 8 − 17. (in Chinese with English abstract)
    [22]
    EOTA. Evaluation report for the assessment of ETA- 11/0305 (Falling Rock Protection Barrier GBE-5000A)[R]. European Organization for Technical Approvals,2011.
    [23]
    CHEUNG A K C,YIU J,LAM H W K,et al. Advanced numerical analysis of landslide debris mobility and barrier interaction[J]. HKIE Transactions,2018,25(2):76 − 89. DOI: 10.1080/1023697X.2018.1462106
    [24]
    赵世春,余志祥,赵雷,等. 被动防护网系统强冲击作用下的传力破坏机制[J]. 工程力学,2016,33(10):24 − 34. [ZHAO Shichun,YU Zhixiang,ZHAO Lei,et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics,2016,33(10):24 − 34. (in Chinese with English abstract)] DOI: 10.6052/j.issn.1000-4750.2016.06.ST08

    ZHAO Shichun, YU Zhixiang, ZHAO Lei, et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics, 2016, 33(10): 24 − 34. (in Chinese with English abstract) DOI: 10.6052/j.issn.1000-4750.2016.06.ST08
    [25]
    吴兵, 梁瑶, 赵晓彦, 等. 破碎岩质边坡锚墩式主动防护网设计方法[J]. 中国地质灾害与防治学报,2021,32(3):101 − 108. [WU Bing, LIANG Yao, ZHAO Xiaoyan, etal. Design method of anchor pier type active protective net on fractured rock slopes[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):101 − 108. (in Chinese with English abstract)]

    WU Bing, LIANG Yao, ZHAO Xiaoyan, etal. Design method of anchor pier type active protective net on fractured rock slopes[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 101 − 108. (in Chinese with English abstract)
    [26]
    吴建利, 胡卸文, 梅雪峰, 等. 高位落石作用下不同缓冲层与钢筋混凝土板组合结构动力响应[J]. 水文地质工程地质,2020,47(4):114 − 122. [WUJianli, HUXiewen,MEIXuefeng, etal. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology,2020,47(4):114 − 122. (in Chinese with English abstract)]

    WUJianli, HUXiewen, MEIXuefeng, etal. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 114 − 122. (in Chinese with English abstract)
  • Related Articles

    [1]Xiaogang CHEN, Hongwei LI, Qianyi ZHANG. Deformation characteristics and treatment measures of dangerous rock collapse in an expressway in Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 43-51. DOI: 10.16031/j.cnki.issn.1003-8035.202302010
    [2]Yuyuan WANG, Youyi ZHANG, Yunjun WANG. Stability of dangerous rockmasses and prediction of rockfall trajectory: A case study at Wansui Mountain in Ganzi County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 12-25. DOI: 10.16031/j.cnki.issn.1003-8035.202304020
    [3]Xirui CHEN, Hongqiang LIU, Jianhong YANG, Qikai AI, Bo ZHONG, Guojun CAI. Analysis of stability and kinematics of the dangerous rock mass in Zhangjiagou, Baoxing, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 81-89. DOI: 10.16031/j.cnki.issn.1003-8035.202209043
    [4]Xiaobo KANG, Yingdong YANG, Yu WANG, Chuanbing ZHU, Cheng HUANG, Jie ZHANG, Cuiqiong ZHOU, Jinlong CHAI, Wenyun ZHANG. Progress of the special-subjects study on the construction of comprehensive geological disaster prevention and control system in Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 146-157. DOI: 10.16031/j.cnki.issn.1003-8035.202211044
    [5]Fuyun GUO, Xiaolong ZHOU, Feibiao HUO, Yi ZHANG. Study on the disaster effect and prevention countermeasures of landslide in Zhouqu fault zone[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 80-89. DOI: 10.16031/j.cnki.issn.1003-8035.202202038
    [6]Yonghai ZHANG, Wuping XIE, Zhongxing LUO, Shibin ZHAI. Stability evaluation and rockfall trajectory analysis of the Baimagou dangerous rock mass in Mingshan County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 37-46. DOI: 10.16031/j.cnki.issn.1003-8035.202202045
    [7]Xiangbin YANG, Xiewen HU, Xichao CAO, Tao JIN, Chuanjie XI, Jian HUANG, Ying YANG. Analysis on disaster characteristics and prevention measures of the post-fire debris flow in Dianchichang gully, Xichang of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 1-8. DOI: 10.16031/j.cnki.issn.1003-8035.202203039
    [8]Wenming JIANG, Luqi WANG, Peng ZHAO, Bolin HUANG, Zhihua ZHANG, Mingjun HU. Analyses on failure modes and effectiveness of the prevention measures of Jianchuandong dangerous rock mass in the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 105-112. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-13
    [9]Xianghua XIA, Decheng LIU, Yuqian LI, Xueyuan GAO. Basic characteristics and stability evaluation of dangerous rockmasses in Yanqi Town, Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 28-34. DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.04
    [10]WEI Sailajia, YAN Huijun, ZHANG Juncai, WEI Zhengfa, WU Jing. Analysis of funding used for geological disaster prevention in Qinghai Province and its effects[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5): 112-116. DOI: 10.16031/j.cnki.issn.1003-8035.2020.05.15
  • Cited by

    Periodical cited type(7)

    1. 陈玉波,徐世光,陈梦瑞. 以确定性系数法为基础的不同滑坡易发性评价模型对比分析——以云南保山盆地为例. 中国地质灾害与防治学报. 2025(01): 119-130 . 本站查看
    2. 郭英,申健,刘晓晓,周亮,石向菲,王聪毅. 北京门头沟区“23·7”特大暴雨诱发地质灾害特征及分布规律研究. 中国防汛抗旱. 2025(03): 39-45 .
    3. 刘磊磊,肖浩,王璨,姚腾飞. 湖南红层地区滑坡地质灾害致灾因子敏感性分析. 矿冶工程. 2024(04): 169-174 .
    4. 卫璐宁,郭永刚. 西藏崩滑流地质灾害孕灾环境分区及形成机制. 西藏科技. 2024(09): 25-36 .
    5. 周鹏,万忠焱,李强,元旦措姆,西若平措,索朗拥措,巴桑吉巴. 拉萨市堆龙德庆区滑坡灾害时空分布规律和孕灾背景分析. 西藏科技. 2024(11): 37-42+75 .
    6. 余明威,郭永刚,苏立彬. 西藏林芝地区崩滑流灾害影响因子定量评价. 中国地质灾害与防治学报. 2024(06): 33-43 . 本站查看
    7. 欧家婷,陶治强,刘宇宁,刘文荐,朱亦舒. 山南地区某滑坡稳定性分析. 农业灾害研究. 2024(11): 65-67 .

    Other cited types(0)

Catalog

    Article views (67) PDF downloads (1) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return