ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
LIU Dongsheng,WU Yue,LI Ke,et al. Quantitative risk assessment and its application for individual landslide disaster based on slope failure probability[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 67-74. DOI: 10.16031/j.cnki.issn.1003-8035.202212012
Citation: LIU Dongsheng,WU Yue,LI Ke,et al. Quantitative risk assessment and its application for individual landslide disaster based on slope failure probability[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4): 67-74. DOI: 10.16031/j.cnki.issn.1003-8035.202212012

Quantitative risk assessment and its application for individual landslide disaster based on slope failure probability

More Information
  • Received Date: December 22, 2022
  • Revised Date: May 06, 2023
  • Available Online: March 10, 2024
  • Effective risk assessment of potential landslide disasters is crucial for informed decision-making in engineering projects. In practical engineering, the risk assessment of individual landslide disasters still relies mainly on qualitative evaluation methods. The qualitative risk level is obtained through the risk matrix based on danger and loss, which poses problems of multiple and discontinuous risk standards. This makes it difficult to compare and classify risks in actual engineering, and may also lead to errors in risk assessment results, misleading risk management. To address these issues, a probability model is employed to quantitatively describe the stability of landslide disasters, considering the size of losses to the element at risk. A quantified risk index for individual landslide disasters is obtained, introducing the concept of landslide disaster risk surface and risk contour. Corresponding evaluation and calculation software are developed to form a quantified risk assessment method for landslide disasters, eliminating the multiplicity and discontinuity of risk standards brought about by traditional landslide risk matrices. The accuracy of the evaluation is improved. By conducting quantitative risk assessment on six individual landslides in Fengjie County, Chongqing, the correctness and reliability of the quantitative risk assessment method were verified, providing a new approach for landslide disaster risk assessment.

  • [1]
    宋德光, 吴瑞安, 马德芹, 等. 四川泸定昔格达组滑坡灾害运动过程模拟分析[J]. 地质通报,2023,42(12):2185 − 2197. [SONG Deguang, WU Ruian, MA Deqin, et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China,2023,42(12):2185 − 2197. (in Chinese with English abstract)]

    SONG Deguang, WU Ruian, MA Deqin, et al. Simulation analysis of landslide disaster movement process in Xigeda Formation, Luding County, Sichuan Province[J]. Geological Bulletin of China, 2023, 42(12): 2185 − 2197. (in Chinese with English abstract)
    [2]
    陶伟,胡晓波,姜元俊,等. 颗粒粒径对滑坡碎屑流动力特征及能量转化的影响——以四川省三溪村滑坡为例[J]. 地质通报,2023,42(9):1610 − 1619. [TAO Wei,HU Xiaobo,JIANG Yuanjun,et al. Influence of particle size on dynamic characteristics and energy conversion of debris flow in landslide:A case study of Sanxicun landslide in Sichuan Province[J]. Geological Bulletin of China,2023,42(9):1610 − 1619. (in Chinese with English abstract)]

    TAO Wei, HU Xiaobo, JIANG Yuanjun, et al. Influence of particle size on dynamic characteristics and energy conversion of debris flow in landslide: A case study of Sanxicun landslide in Sichuan Province[J]. Geological Bulletin of China, 2023, 42(9): 1610 − 1619. (in Chinese with English abstract)
    [3]
    张宇,徐宗恒,查玲珑,等.不同计算方法的云南省永胜县下院滑坡堰塞湖沉积物粒度特征及沉积历史重建[J/OL]. 中国地质(2022-08-22)[2023-07-12]. [ZHANG Yu,XU Zongheng,ZHA Linglong et al. [J/OL]Geology in China(2022-08-22)[2023-07-12]. http://kns.cnki.net/kcms/detail/11.1167.P.20220822.1500.018.html. (in Chinese with English abstract)]

    ZHANG Yu, XU Zongheng, ZHA Linglong et al. [J/OL]Geology in China(2022-08-22)[2023-07-12]. http://kns.cnki.net/kcms/detail/11.1167.P.20220822.1500.018.html. (in Chinese with English abstract)
    [4]
    邹凤钗,冷洋洋,陶小郎,等. 基于斜坡单元的滑坡风险识别——以贵州万山浅层土质斜坡为例[J]. 中国地质灾害与防治学报,2022,33(3):114 − 122. [ZOU Fengchai,LENG Yangyang,TAO Xiaolang,et al. Landslide hazard identification based on slope unit:A case study of shallow soil slope in Wanshan,Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):114 − 122. (in Chinese with English abstract)]

    ZOU Fengchai, LENG Yangyang, TAO Xiaolang, et al. Landslide hazard identification based on slope unit: A case study of shallow soil slope in Wanshan, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 114 − 122. (in Chinese with English abstract)
    [5]
    曾斌,吕权儒,寇磊,等. 基于Logistic回归和随机森林的清江流域长阳库岸段堆积层滑坡易发性评价[J]. 中国地质灾害与防治学报,2023,34(4):105 − 113. [ZENG Bin, LYU Quanru, KOU Lei, et al. Susceptibility assessment of colluvium landslides along the Changyang section of Qingjiang River using Logistic regression and random forest methods[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):105 − 113. (in Chinese with English abstract)]

    ZENG Bin, LYU Quanru, KOU Lei, et al. Susceptibility assessment of colluvium landslides along the Changyang section of Qingjiang River using Logistic regression and random forest methods[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 105 − 113. (in Chinese with English abstract)
    [6]
    贾雨霏,魏文豪,陈稳,等. 基于SOM-I-SVM耦合模型的滑坡易发性评价[J]. 水文地质工程地质,2023,50(3):125 − 137. [JIA Yufei, WEI Wenhao, CHEN Wen, et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology,2023,50(3):125 − 137. (in Chinese with English abstract)]

    JIA Yufei, WEI Wenhao, CHEN Wen, et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 125 − 137. (in Chinese with English abstract)
    [7]
    ABEDINI M,GHASEMIAN B,SHIRZADI A,et al. A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment[J]. Geocarto International,2019,34(13):1427 − 1457. DOI: 10.1080/10106049.2018.1499820
    [8]
    POURGHASEMI H R,KORNEJADY A,KERLE N,et al. Investigating the effects of different landslide positioning techniques,landslide partitioning approaches,and presence-absence balances on landslide susceptibility mapping[J]. CATENA,2020,187:104364. DOI: 10.1016/j.catena.2019.104364
    [9]
    SHAFIZADEH-MOGHADAM H,MINAEI M,SHAHABI H,et al. Big data in Geohazard;pattern mining and large scale analysis of landslides in Iran[J]. Earth Science Informatics,2019,12(1):1 − 17. DOI: 10.1007/s12145-018-0354-6
    [10]
    GAO Wenwei,GAO Wei,HU Ruilin,et al. Microtremor survey and stability analysis of a soil-rock mixture landslide:A case study in Baidian town,China[J]. Landslides,2018,15(10):1951 − 1961. DOI: 10.1007/s10346-018-1009-x
    [11]
    WU Yiping,MIAO Fasheng,LI Linwei,et al. Time-varying reliability analysis of Huangtupo Riverside No. 2 Landslide in the Three Gorges Reservoir based on water-soil coupling[J]. Engineering Geology,2017,226:267 − 276. DOI: 10.1016/j.enggeo.2017.06.016
    [12]
    YANG Beibei,YIN Kunlong,XIAO Ting,et al. Annual variation of landslide stability under the effect of water level fluctuation and rainfall in the Three Gorges Reservoir,China[J]. Environmental Earth Sciences,2017,76(16):564. DOI: 10.1007/s12665-017-6898-9
    [13]
    重庆市城乡建设委员会. 重庆市城市地质灾害防治工程设计规范:JTG D70—2004[S]. 重庆:2004. [Chongqing Urban Rural Development Committee E. C. S. i (2004) Code for design of geological hazard control engineering:JTG D70—2004[S]. Chongqing:2004. (in Chinese)]

    Chongqing Urban Rural Development Committee E. C. S. i (2004) Code for design of geological hazard control engineering: JTG D70—2004[S]. Chongqing: 2004. (in Chinese)
    [14]
    国家质量监督检验检疫总局,中国国家标准化管理委员会. 滑坡防治工程勘查规范:GB/T 32864—2016[S]. 北京:中国标准出版社,2017. [General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Code for geological investigation of landslide prevention:GB/T 32864—2016[S]. Beijing:Standards Press of China,2017. (in Chinese)]

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Code for geological investigation of landslide prevention: GB/T 32864—2016[S]. Beijing: Standards Press of China, 2017. (in Chinese)
    [15]
    解明礼,巨能攀,刘蕴琨,等,崩塌滑坡地质灾害风险排序方法研究[J]. 水文地质工程地质,2022,48(5):184 − 191. [XIE Mingli,JU Nengpan,LIU Yunkun,et. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology. 2022,48(5):184 − 191(in Chinese with English abstract)]

    XIE Mingli, JU Nengpan, LIU Yunkun, et. A study of the risk ranking method of landslides and collapses[J]. Hydrogeology & Engineering Geology. 2022, 48(5): 184 − 191(in Chinese with English abstract)
    [16]
    吴越,刘东升,孙树国,等. 岩土强度参数正态–逆伽马分布的最大后验估计[J]. 岩石力学与工程学报,2019,38(6):1188 − 1196. [WU Yue,LIU Dongsheng,SUN Shuguo,et al. Maximum posteriori estimation of strength parameters for geotechnical material obeying normal-inverse Gamma distribution[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(6):1188 − 1196. (in Chinese with English abstract)]

    WU Yue, LIU Dongsheng, SUN Shuguo, et al. Maximum posteriori estimation of strength parameters for geotechnical material obeying normal-inverse Gamma distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1188 − 1196. (in Chinese with English abstract)
    [17]
    盛骤,谢式千,潘承毅. 概率论与数理统计[M]. 5版. 北京:高等教育出版社,2019. [SHENG Zhou,XIE Shiqian,PAN Chengyi. Probability and mathematical statistics[M]. 5th ed. Beijing:Higher Education Press,2019. (in Chinese)]

    SHENG Zhou, XIE Shiqian, PAN Chengyi. Probability and mathematical statistics[M]. 5th ed. Beijing: Higher Education Press, 2019. (in Chinese)
    [18]
    VAN DAO D,JAAFARI A,BAYAT M,et al. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility[J]. CATENA,2020,188:104451. DOI: 10.1016/j.catena.2019.104451
    [19]
    CHEN Wei,SHAHABI H,SHIRZADI A,et al. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling[J]. Bulletin of Engineering Geology and the Environment,2019,78(6):4397 − 4419. DOI: 10.1007/s10064-018-1401-8
    [20]
    吴越,向灵均,吴同情,等. 基于受灾体空间概率的滑坡灾害财产风险定量评估[J]. 岩石力学与工程学报,2020,39(增刊2):3464 − 3474. [WU Yue,XIANG Lingjun,WU Tongqing,et al. Quantitative assessment of property risk of landslide disaster based on spatial probability of affected body[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup 2):3464 − 3474. (in Chinese with English abstract)]

    WU Yue, XIANG Lingjun, WU Tongqing, et al. Quantitative assessment of property risk of landslide disaster based on spatial probability of affected body[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 2): 3464 − 3474. (in Chinese with English abstract)

Catalog

    Article views (242) PDF downloads (108) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return