Citation: | HE Xin,CUI Hongqing,GUAN Jinfeng,et al. Exploration of hidden structure and prediction of gas anomaly area based on gas control projects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2): 115-126. DOI: 10.16031/j.cnki.issn.1003-8035.202209007 |
The investigation of hidden structures and the prediction of gas abnormal area form the foundation of gas disaster prevention engineering. In accordance with the laws and regulations governing coal mining in our country, a gas pumping project must be implemented prior to mining coal seams with a gas hazard. Typically, geologic anomaly area represent gas hazard zones, where the combination of tectonic stress field and mining-induced stress field can disturb coal bodies and pressurize gas. To accurately locate geologic anomaly areas and evaluate their gas disaster potential, a gas geologic anomaly survey method has been proposed based on gas extraction projects. This method uses drilling parameters and records to calculate the coordinates of the control points of the coal seam roof and bottom, and then utilizes two-dimensional projection diagrams and three-dimensional stress field models to survey and forecast small, hidden geological structures (such as small faults, folds, and locally abnormal coal thicknesses). By analyzing the additional stress field surrounding small geological structures, gas disaster potential can be dynamically predicted. The application of this method enables the detailed investigation of geological anomalies and reveals the general pattern of gas geological evolution at coal mining worksites. The research results provide a scientific basis for the optimal design and effective implementation of disaster prevention and control measures for coal seams with high gas content or at risk of gas outbursts.
[1] |
李忠华,梁影,包思远,等. 断层冲击地压的影响因素分析[J]. 中国地质灾害与防治学报,2020,31(3):126 − 131. [LI Zhonghua,LIANG Ying,BAO Siyuan,et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):126 − 131. (in Chinese with English abstract)
LI Zhonghua, LIANG Ying, BAO Siyuan, et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3)126-131 (in Chinese with English abstract)
|
[2] |
PETER HATHERLY. Overview on the application of geophysics in coal mining[J]. International Journal of Coal Geology,2013,114:74 − 84. DOI: 10.1016/j.coal.2013.02.006
|
[3] |
贾天让,王蔚,张子敏,等. 现代构造应力场下断层走向对瓦斯突出的影响[J]. 采矿与安全工程学报,2013,30(6):930 − 934. [JIA Tianrang,WANG Wei,ZHANG Zhimin,et al. Influence of fault strike on gas outburst under modern tectonic stress field[J]. Journal of Mining & Safety Engineering,2013,30(6):930 − 934. (in Chinese with English abstract)
JIA Tianrang, WEI Wei, ZHANG Zhimin, et al. Influence of fault strike on gas outburst under modern tectonic stress field[J]. Journal of Mining & Safety Engineering, 2013, 30(6): 930-934. (in Chinese with English abstract)
|
[4] |
LI Shucai,LI Shuchen,ZHANG Qingsong,et al. Predicting geological hazards during tunnel construction[J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,2(3):232 − 242. DOI: 10.3724/SP.J.1235.2010.00232
|
[5] |
魏国营,王保军,闫江伟,等. 平顶山八矿突出煤层瓦斯地质控制特征[J]. 煤炭学报,2015,40(3):555 − 561. [WEI Guoying,WANG Baojun,YAN Jiangwei,et al. Gas geological control characteristics of outbursts coal seam in Pingdingshan No. 8 Mine[J]. Journal of China Coal Society,2015,40(3):555 − 561. (in Chinese with English abstract)
WEI Guoying, WANG Baojun, YAN Jiangwei, et al. Gas geological control characteristics of outbursts coal seam in Pingdingshan No. 8 Mine[J]. Journal of China Coal Society, 2015, 40(3): 555-561. (in Chinese with English abstract)
|
[6] |
崔洪庆,姚念岗. 不渗透断层与瓦斯灾害防治[J]. 煤炭学报,2010,35(9):1486 − 1489. [CUI Hongqing,YAO Niangang. Impermeable faults and prevention of gas hazards[J]. Journal of China Coal Society,2010,35(9):1486 − 1489. (in Chinese)
Cui Hongqing, Yao Niangang. Impermeable faults and prevention of gas hazards[J]. Journal of China Coal Society, 2010, 35(9): 1486-1489. (in Chinese)
|
[7] |
ZHU Baolong. Quantitative evaluation of coal-mining geological condition[J]. Procedia Engineering,2011,26:630 − 639. DOI: 10.1016/j.proeng.2011.11.2216
|
[8] |
杨陆武,彭立世,曹运兴. 应用瓦斯地质单元法预测煤与瓦斯突出[J]. 中国地质灾害与防治学报,1997,8(3):21 − 26. [YANG Luwu,PENG Lishi,CAO Yunxing. Application of gas geological division in controlling coal and gas outburst[J]. The Chinese Journal of Geological Hazard and Control,1997,8(3):21 − 26. (in Chinese with English abstract)
YANG Luwu, PENG Lishi, CAO Yunxing. Application of gas geological division in controlling coal and gas outburst[J]. The Chinese Journal of Geological Hazard and Control, 1997, 8(3): 21-26. (in Chinese with English abstract)
|
[9] |
冉恒谦,张金昌,谢文卫,等. 地质钻探技术与应用研究[J]. 地质学报,2011,85(11):1806 − 1822. [RAN Hengqian,ZHANG Jinchang,XIE Wenwei,et al. Applications study of geo-drilling technology[J]. Acta Geologica Sinica,2011,85(11):1806 − 1822. (in Chinese)
RAN Hengqian, ZHANG Jinchang, XIE Wenwei, et al. Applications study of geo-drilling technology[J]. Acta Geologica Sinica, 2011, 85(11): 1806-1822. (in Chinese)
|
[10] |
YAO Ningping,ZHANG Jie,JIN Xing,et al. Status and development of directional drilling technology in coal mine[J]. Procedia Engineering,2014,73:289 − 298. DOI: 10.1016/j.proeng.2014.06.201
|
[11] |
LI Shucai, LIU Bin, XU Xianji, et al. An overview of ahead geological prospecting in tunneling[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2017, 63: 69 − 93.
|
[12] |
汪佩,吕闫生,张金陵. 基于地质构造分区的瓦斯地质单元区划方法[J]. 煤炭技术,2021,40(2):89 − 92. [WANG Pei,LYU Yansheng,ZHANG Jinling. Gas geological unit dividing method based on geological structure zoning[J]. Coal Technology,2021,40(2):89 − 92. (in Chinese with English abstract)
WANG Pei, LYU Runsheng, ZHANG Jinling. Gas geological unit dividing method based on geological structure zoning[J]. Coal Technology, 2021, 40(2): 89-92. (in Chinese with English abstract)
|
[13] |
CAI Yidong,LIU Dameng,YAO Yanbin et al. Geological controls on prediction of coalbed methane of No. 3 coal seam in southern Qinshui Basin,North China[J]. International Journal of Coal Geology,2011,88(2/3):101 − 112.
|
[14] |
PAUL S, CHATTERJEE R. Determination of sub-surface stress direction from coal permeability and underground cleat orientation mapping for coal bed methane exploration, Jharia Coalfield, India[C]//International Conference on Unconventional Sources of Fossil Fuels and Carbon Management (ICUSFFCM 2011), 2011, 87(2): 87 − 96.
|
[15] |
KANG H,ZHANG X,SI L,et al. In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J]. Engineering Geology,2010,116(3 − 4):333 − 345. DOI: 10.1016/j.enggeo.2010.09.015
|
[16] |
YANG Wei,LIN Baiquan,ZHAI Cheng. A new technology for coal and gas control based on the in situ stress distribution and the roadway layout[J]. International Journal of Mining Science and Technology,2012,22(2):145 − 149. DOI: 10.1016/j.ijmst.2011.08.002
|
[17] |
伍小刚,李天斌,张中,等. 传统瞬变电磁法的改进及其在隧道超前地质预报中的应用[J]. 水文地质工程地质,2021,48(1):163 − 170. [WU Xiaogang,LI Tianbin,ZHANG Zhong,et al. Improvement of the traditional transient electromagnetic method and its application to advanced geological forecast of tunnel[J]. Hydrogeology & Engineering Geology,2021,48(1):163 − 170. (in Chinese with English abstract)
WU Xiaogang, LI Tianbin, ZHANG Zhong, et al. Improvement of the traditional transient electromagnetic method and its application to advanced geological forecast of tunnel[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 163-170. (in Chinese with English abstract)
|
[18] |
SUN Xueyang, XIA Yucheng. Research on development character of middle and small size fault structure in DongPang Mine field on fractal theory[C]//2010 International Conference on Computing, Control and Industrial Engineering. June 5 − 6, 2010, Wuhan, China. IEEE, 2010: 170 − 174.
|
[19] |
NIU Yan, ZHAO Jun, LI Zhiyuan, et al. Optimization of geological and mineral exploration by integrating remote sensing technology and borehole database[J]. Wireless Communications and Mobile Computing, 2022: P717749.
|
[20] |
DENG Zhaopeng, CAO Maoyong, GENG Yushui, et al. Generating a cylindrical panorama from a forward-looking borehole video for borehole condition analysis[J]. Applied Sciences, 2019, 9(16): 3437.
|
[21] |
VAN DYKEM, KLEMETTI T, WICKLINE J. Geologic data collection and assessment techniques in coal mining for ground control[J]. International Journal of Mining Science and Technology,2020,30(1):131 − 139. DOI: 10.1016/j.ijmst.2019.12.003
|
[22] |
ZHANG Lei,PAN Jienan,ZHANG Xiaomin. Fuzzy comprehensive evaluation of mining geological condition in the No. 9 coal seam,Linhuan coal mine,Huaibei Coalfield,China[J]. Procedia Environmental Sciences,2012,12:9 − 16. DOI: 10.1016/j.proenv.2012.01.240
|
[23] |
武强,陈红,刘守强. 基于环套原理的ANN型矿井小构造预测方法与应用—以淄博岭子煤矿为例[J]. 煤炭学报,2010,35(3):449 − 453. [WU Qiang,CHEN Hong,LIU Shouqiang. Methodology and application on size-limited structure predictions with ANN based on loop overlapping theory:A case study of Lingzi coal mine in Zibo[J]. Journal of China Coal Society,2010,35(3):449 − 453. (in Chinese with English abstract)
WU Qiang, CHEN Hong, LIU Shouqiang. Methodology and application on size-limited structure predictions with ANN based on loop overlapping theory: a case study of Lingzi Coal Mine in Zibo[J]. Journal of China Coal Society, 2010, 35(3): 449-453. (in Chinese with English abstract)
|
[24] |
孙米银. 基于钻孔成像的煤层地质趋势面分析技术[J]. 煤矿安全,2021,52(8):113 − 117. [SUN Miyin. Coal seam geological trend surface analysis technology based on borehole imaging[J]. Safety in Coal Mines,2021,52(8):113 − 117. (in Chinese with English abstract)
Sun Miyin. Coal seam geological trend surface analysis technology based on borehole imaging[J]. Safety in Coal Mines, 2021, 52(8): 113-117. (in Chinese with English abstract)
|
[25] |
贾晓亮,崔洪庆,张子敏. 断层端部地应力影响因素数值分析[J]. 煤田地质与勘探,2010,38(4):47 − 51. [JIA Xiaoliang,CUI Hongqing,ZHANG Zimin. Numerical simulation of geostatic stress influening factor at the end of fault[J]. Coal Geology & Exploration,2010,38(4):47 − 51. (in Chinese with English abstract)
JIA Xiaoliang, CUI Hongqing, ZHANG Zimin. Numerical simulation of geostatic stress influening factor at the end of fault[J]. Coal Geology & Exploration, 2010, 38(4)47-51 (in Chinese with English abstract)
|
[26] |
刘少伟,焦建康. 九里山井田断层构造区应力分析及区域划分[J]. 中国安全生产科学技术,2014,10(2):44 − 50. [LIU Shaowei,JIAO Jiankang. Stress analysis and division of fault tectonic region in Jiulishan coal field[J]. Journal of Safety Science and Technology,2014,10(2):44 − 50. (in Chinese with English abstract)
LIU Shaowei, JIAO Jiankang. Stress analysis and division of fault tectonic region in Jiulishan coal field[J]. Journal of Safety Science and Technology, 2014, 10(2): 44-50. (in Chinese with English abstract)
|
[27] |
李胜,罗明坤,范超军,等. 采煤工作面煤与瓦斯突出危险性智能判识技术[J]. 中国安全科学学报,2016,26(10):76 − 81. [LI Sheng,LUO Mingkun,FAN Chaojun,et al. Research on coal and gas outburst risk intelligent recognition in mining face[J]. China Safety Science Journal,2016,26(10):76 − 81. (in Chinese with English abstract)
LI Sheng, LUO Mingkun, FAN Chaojun, et al. Research on coal and gas outburst risk intelligent recognition in mining face[J]. China Safety Science Journal, 2016, 26(10)76-81(in Chinese with English abstract)
|
[28] |
关金锋. 采煤工作面小构造探测及动态分析方法研究[D]. 焦作: 河南理工大学, 2016.
GUAN Jinfeng. Study on detection and dynamic analysis method of small structure in coal mining face[D]. Jiaozuo: Henan Polytechnic University, 2016. (in Chinese with English abstract)
|
[29] |
HATHERLY P,LEUNG R,SCHEDING S,et al. Drill monitoring results reveal geological conditions in blasthole drilling[J]. International Journal of Rock Mechanics and Mining Sciences,2015,78:144 − 154. DOI: 10.1016/j.ijrmms.2015.05.006
|
[30] |
YANG Wei,LIN Baiquan,XU Jiangtao. Gas outburst affected by original rock stress direction[J]. Natural Hazards,2014,72(2):1063 − 1074. DOI: 10.1007/s11069-014-1049-z
|
[31] |
刘杰,王恩元,赵恩来,等. 深部工作面采动应力场分布变化规律实测研究[J]. 采矿与安全工程学报,2014,31(1):60 − 65. [LIU Jie,WANG Enyuan,ZHAO Enlai,et al. Distribution and variation of mining-induced stress field in deep workface[J]. Journal of Mining and Safety Engineering,2014,31(1):60 − 65. (in Chinese with English abstract)
LIU Jie, WANG Enyuan, ZHAO Enlai, et al. Distribution and variation of mining-induced stress field in deep workface[J]. Journal of Mining and Safety Engineering, 2014, 31(1): 60-65. (in Chinese with English abstract)
|
[32] |
勾攀峰,韦四江,张盛. 不同水平应力对巷道稳定性的模拟研究[J]. 采矿与安全工程学报,2010,27(2):143 − 148. [GOU Panfeng,WEI Sijiang,ZHANG Sheng. Numerical simulation of effect of horizontal stresses at different levels on stability of roadways[J]. Journal of Mining & Safety Engineering,2010,27(2):143 − 148. (in Chinese with English abstract)
GOU Panfeng, WEI Sijiang, ZHANG Sheng. Numerical simulation of effect of horizontal stresses at different levels on stability of roadways[J]. Journal of Mining & Safety Engineering, 2010, 27(2): 143-148. (in Chinese with English abstract)
|
[33] |
BABAEI KHORZOUGHI M,HALL R. Processing of measurement while drilling data for rock mass characterization[J]. International Journal of Mining Science and Technology,2016,26(6):989 − 994. DOI: 10.1016/j.ijmst.2016.09.005
|
[34] |
张纪星,师修昌. 浅埋采空区大采高条件下覆岩破坏规律[J]. 中国地质灾害与防治学报,2019,30(5):92 − 97. [ZHANG Jixing,SHI Xiuchang. Failure of overburden rock under large mining height in shallow buried goaf area[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):92 − 97. (in Chinese with English abstract)
ZHANG Jixing, SHI Xiuchang. Failure of overburden rock under large mining height in shallow buried goaf area[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(5)92-97 (in Chinese with English abstract)
|
[35] |
蒋金泉,武泉林,曲华. 硬厚覆岩正断层附近采动应力演化特征[J]. 采矿与安全工程学报,2014,31(6):881 − 887. [JIANG Jinquan,WU Quanlin,QU Hua. Evolutionary characteristics of mining stress near the hard-thick overburden normal faults[J]. Journal of Mining & Safety Engineering,2014,31(6):881 − 887. (in Chinese with English abstract)
JIANG Jinquan, WU Quanlin, QU Hua. Evolutionary characteristics of mining stress near the hard-thick overburden normal faults[J]. Journal of Mining & Safety Engineering, 2014, 31(6): 881-887. (in Chinese with English abstract)
|