ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
TAO Xiaohu,YE Ming,GONG Jianshi,et al. Analysis of the formation process of the covered karst ground collapse induced by groundwater changes based on the coupled LBM-DEM numerical simulation at micro scale[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 124-131. DOI: 10.16031/j.cnki.issn.1003-8035.202207027
Citation: TAO Xiaohu,YE Ming,GONG Jianshi,et al. Analysis of the formation process of the covered karst ground collapse induced by groundwater changes based on the coupled LBM-DEM numerical simulation at micro scale[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1): 124-131. DOI: 10.16031/j.cnki.issn.1003-8035.202207027

Analysis of the formation process of the covered karst ground collapse induced by groundwater changes based on the coupled LBM-DEM numerical simulation at micro scale

More Information
  • Received Date: July 20, 2022
  • Revised Date: March 05, 2023
  • Accepted Date: April 16, 2023
  • Available Online: April 24, 2023
  • To investigate the hydraulic characteristics and soil behaviors during the formation of covered karst ground collapse induced by the groundwater changes, a 2D fluid-solid coupling model was developed based on discrete element method and lattice Boltzmann method. This model utilizes the linearly interpolated bounce-back scheme of Bouzidi and the momentum exchange method, allowing for the simulation of the formation of covered karst ground collapse from a microscopic perspective. Using the fluid-solid coupling model, an exploratory study was conducted to simulate the formation of covered karst ground collapse induced by a decrease in the hydraulic head of confined aquifers. Simulation results indicate that when the water level of a confined aquifer declines, the groundwater flow mainly affects the particles located above a cave opening and produces a downward force on the surrounding soil. When soil particles spall, the hydraulic heads at the positions of the spalled soil particles drop sharply. This results in a significant increase in the hydraulic gradient, causing the groundwater force on internal particles to sharply increase as well. As a result, the upper particles lose stability due to the combined force of groundwater dragging and gravitational force, which can lead to a gradual acceleration process of collapse. The research results provide valuable insights into the understanding of covered karst ground collapse formation induced by the groundwater changes.

  • [1]
    ZALASIEWICZ J,WILLIAMS M,STEFFEN W,et al. The new world of the anthropocene[J]. Environmental Science & Technology,2010,44(7):2228 − 2231.
    [2]
    PRICE S J,FORD J R,COOPER A H,et al. Humans as major geological and geomorphological agents in the Anthropocene:The significance of artificial ground in Great Britain[J]. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences,2011,369(1938):1056 − 1084.
    [3]
    李前银. 再论岩溶塌陷的形成机制[J]. 中国地质灾害与防治学报,2009,20(3):52 − 55. [LI Qianyin. Further study on formation mechanism of karst collaps[J]. The Chinese Journal of Geological Hazard and Control,2009,20(3):52 − 55. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2009.03.018

    LI Qianyin. Further study on formation mechanism of karst collaps[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(3): 52-55. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2009.03.018
    [4]
    余政兴,金福喜,段选亮. 河床透-阻型岩溶塌陷形成机理[J]. 中国地质灾害与防治学报,2020,31(2):57 − 66. [YU Zhengxing,JIN Fuxi,DUAN Xuanliang. Formation mechanism of karst collapse with unconfined aquifer-aquitaed system in riverbed[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):57 − 66. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2020.02.08

    YU Zhengxing, JIN Fuxi, DUAN Xuanliang. Formation mechanism of karst collapse with unconfined aquifer-aquitaed system in riverbed[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2)57-66(in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2020.02.08
    [5]
    车增光,刘洪,喻永祥. 苏州市金庭镇蒋东岩溶塌陷地质条件及形成机理研究[J]. 华东地质,2021,42(1):85 − 92. [CHE Zengguang,LIU Hong,YU Yongxiang. Study on geological conditions and formation mechanism of karst collapse in Jiangdong Village,Jinting Town,Suzhou City[J]. East China Geology,2021,42(1):85 − 92. (in Chinese with English abstract)

    Che Zengguang, LIU Hong, YU Yongxiang. Study on geological conditions and formation mechanism of karst collapse in Jiangdong Village, Jinting Town, Suzhou City[J]. East China Geology, 2021, 42(1): 85-92. (in Chinese with English abstract)
    [6]
    缪世贤,黄敬军,武鑫,等. 徐州岩溶地质调查及其发育特征分析[J]. 水文地质工程地质,2017,44(2):172 − 177. [MIAO Shixian,HUANG Jingjun,WU Xin,et al. Karst geological survey and analysis of its development characteristics in Xuzhou[J]. Hydrogeology and Engineering Geology,2017,44(2):172 − 177. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2017.02.26

    MIAO Shixian, HUANG Jingjun, WU Xin, et al. Karst geological survey and analysis of its development characteristics in Xuzhou[J]. Hydrogeology and Engineering Geology, 2017, 44(2)172-177(in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2017.02.26
    [7]
    万志清,秦四清,李志刚,等. 土洞形成的机理及起始条件[J]. 岩石力学与工程学报,2003,22(8):1377 − 1382. [WAN Zhiqing,QIN Siqing,LI Zhigang,et al. Formation mechanism and initial condition of soil cavity[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(8):1377 − 1382. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2003.08.028

    WAN Zhiqing, QIN Siqing, LI Zhigang, et al. Formation mechanism and initial condition of soil cavity[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(8): 1377-1382. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2003.08.028
    [8]
    王滨,贺可强. 岩溶塌陷临界土洞的极限平衡高度公式[J]. 岩土力学,2006,27(3):458 − 462. [WANG Bin,HE Keqiang. Study on limit equilibrium height expression of critical soil cave of karst collapse[J]. Rock and Soil Mechanics,2006,27(3):458 − 462. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2006.03.024

    WANG Bin, HE Keqiang. Study on limit equilibrium height expression of critical soil cave of karst collapse[J]. Rock and Soil Mechanics, 2006, 27(3): 458-462. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2006.03.024
    [9]
    陶小虎,赵坚,WANG Xiaoming,等. 地下水位变化对透-阻型岩溶塌陷影响的分析[J]. 中国岩溶,2017,36(6):777 − 785. [TAO Xiaohu,ZHAO Jian,WANG Xiaoming,et al. Analysis of seepage effect on the formation of sinkhole in unconfined aquifer-aquitard system caused by groundwater changes[J]. Carsologica Sinica,2017,36(6):777 − 785. (in Chinese with English abstract) DOI: 10.11932/karst2017y50

    TAO Xiaohu, ZHAO Jian, WANG Xiaoming, et al. Analysis of seepage effect on the formation of sinkhole in unconfined aquifer-aquitard system caused by groundwater changes[J]. Carsologica Sinica, 2017, 36(6): 777-785. (in Chinese with English abstract) DOI: 10.11932/karst2017y50
    [10]
    孙金辉. 覆盖型岩溶塌陷临界参数模型试验与数值模拟研究[D]. 成都: 西南交通大学, 2011: 7 − 35

    SUN Jinhui. Study on critical parameterin cover karst collapseby model experimentand numerical simulation[D]. Chengdu: Southwest Jiaotong University, 2011: 7 − 35. (in Chinese with English abstract)
    [11]
    LEI Mingtang, GAO Yongli, JIANG Xiaozhen, et al. Experimental study of physical models for sinkhole collapses in Wuhan, China[C]//Sinkholes and the Engineering and Environmental Impacts of Karst. San Antonio, Texas, USA. Reston, VA: American Society of Civil Engineers, 2005: 91-102.
    [12]
    MAHMOUD A. Application of digital image cross correlation to study sinkhole collapse[J]. ISRN Soil Science,2013:1 − 6.
    [13]
    Y F,ZHOU. The mechanism of soil failures along cracks subjected to water infiltration[J]. Computers and Geotechnics,2014,55:330 − 341. DOI: 10.1016/j.compgeo.2013.09.009
    [14]
    ALI S M. Modelling the effect of void migration underneath landfill liner system [D]. University of Nottingham, 2003.
    [15]
    金晓文,陈植华,曾斌,等. 岩溶塌陷机理定量研究的初步思考[J]. 中国岩溶,2013,32(4):437 − 446. [JIN Xiaowen,CHEN Zhihua,ZENG Bin,et al. Preliminary thinking of quantitative research on the mechanism of karst collapse[J]. Carsologica Sinica,2013,32(4):437 − 446. (in Chinese with English abstract)

    JIN Xiaowen, CHEN Zhihua, ZENG Bin, et al. Preliminary thinking of quantitative research on the mechanism of karst collapse[J]. Carsologica Sinica, 2013, 32(4): 437-446. (in Chinese with English abstract)
    [16]
    CUNDALL P A. A computer model for simulating progressive large scale movements in blocky rock systems[M]. In Proc Int Symp Rock Fracture. Nancy; ISRM. 1971: 2 − 8.
    [17]
    周健, 贾敏才. 土工细观模型试验与数值模拟[M]. 北京: 科学出版社, 2008

    ZHOU Jian, JIA Mincai. Meso-model test and numerical simulation of geotechnical engineering[M]. Beijing: Science Press, 2008. (in Chinese)
    [18]
    陈松贵. 宾汉姆流体的LBM-DEM方法及自密实混凝土复杂流动研究[D]. 北京: 清华大学, 2014: 44 − 50

    CHEN Songgui. Development of LBM-DEM for Bingham suspensions with application to self-compacting concrete[D]. Beijing: Tsinghua University, 2014: 44 − 50. (in Chinese with English abstract)
    [19]
    QIAN Y H,D'HUMIÈRES D,LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters (EPL),1992,17(6):479 − 484. DOI: 10.1209/0295-5075/17/6/001
    [20]
    BOUZIDI M,FIRDAOUSS M,LALLEMAND P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J]. Physics of Fluids,2001,13(11):3452 − 3459. DOI: 10.1063/1.1399290
    [21]
    MEI Renwei, YU Dazhi, SHYY W, et al. Force evaluation in the lattice Boltzmann method involving curved geometry[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(4 Pt 1): 041203.
    [22]
    CUI Xilin. Numerical simulation of internal fluidisation and cavity evolution due to a leaking pipe using the coupled Dem-lbm technique[D]. Birmingham, West Midlands, UK: University of Birmingham, 2013.
    [23]
    陈玉璞, 王惠民. 流体动力学[M]. 2版. 北京: 清华大学出版社, 2013.

    CHEN Yupu, WANG Huimin. Fluid dynamics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013. (in Chinese)
    [24]
    LOMINÉ F,SCHOLTÈS L,SIBILLE L,et al. Modeling of fluid-solid interaction in granular media with coupled lattice Boltzmann/discrete element methods:Application to piping erosion[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(6):577 − 596. DOI: 10.1002/nag.1109
    [25]
    LHL A,GN B,ZB A,et al. Hydro-mechanical modeling of sinkhole occurrence processes in covered karst terrains during a flood[J]. Engineering Geology,2019,260:105249. DOI: 10.1016/j.enggeo.2019.105249
    [26]
    HENTZ S. Modélisation d’une structure en béton armé soumise à un choc par la méthode des eléments discrets [D]. Grenoble: Université Grenoble 1 - Joseph Fourier, 2003.
    [27]
    MIKIO,SAKAI. Study on a large-scale discrete element model for fine particles in a fluidized bed[J]. Advanced Powder Technology,2012,23(5):673 − 681. DOI: 10.1016/j.apt.2011.08.006
    [28]
    汤志刚,蔡承刚,王艳红,等. 基于光纤传感的石膏矿地面塌陷监测预警系统[J]. 中国地质灾害与防治学报,2022,33(5):93 − 101. [TANG Zhigang,CAI Chenggang,WANG Yanhong,et al. Monitoring and warning system for ground subsidence of gypsum mine based on fiber sensing[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):93 − 101. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.202108034

    TANG Zhigang, CAI Chenggang, WANG Yanhong, et al. Monitoring and warning system for ground subsidence of gypsum mine based on fiber sensing[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5)93-101(in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.202108034
    [29]
    何军,刘磊,黎清华,等. 隐伏岩溶区地下空间探测技术方法研究—以武汉市为例[J]. 水文地质工程地质,2020,47(6):47 − 56. [HE Jun,LIU Lei,LI Qinghua,et al. Techniques for detecting underground space in hidden karst region:Taking Wuhan as an example[J]. Hydrogeology & Engineering Geology,2020,47(6):47 − 56. (in Chinese with English abstract)

    HE Jun, LIU Lei, LI Qinghua, et al. Techniques for detecting underground space in hidden karst region: taking Wuhan as an example[J]. Hydrogeology & Engineering Geology, 2020, 47(6): 47-56. (in Chinese with English abstract)
    [30]
    查甫生,刘从民,苏晶文,等. 铜陵市朝山地区岩溶塌陷形成条件与地面稳定性评价分析[J]. 地质论评,2020,66(1):246 − 254. [ZHA Fusheng,LIU Congmin,SU Jingwen,et al. Formation conditions of karst collapse and evaluation of ground stability in Chaoshan area of Tongling City[J]. Geological Review,2020,66(1):246 − 254. (in Chinese with English abstract) DOI: 10.16509/j.georeview.2020.01.018

    ZHA Fusheng, LIU Congmin, SU Jingwen, et al. Formation conditions of karst collapse and evaluation of ground stability in Chaoshan area of Tongling City[J]. Geological Review, 2020, 66(1): 246-254. (in Chinese with English abstract) DOI: 10.16509/j.georeview.2020.01.018
  • Cited by

    Periodical cited type(2)

    1. 陈小茜,黄荷,朱燕,曾斌. 覆盖型岩溶土洞形成的临界水流速度数值模拟研究. 水文地质工程地质. 2024(04): 189-196 .
    2. 张磊,向喜琼,刘宏,李麟玮,王文俊. 潜蚀土拱塌陷流固耦合数值模拟研究. 土工基础. 2024(06): 1027-1032 .

    Other cited types(1)

Catalog

    Article views (1277) PDF downloads (211) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return