ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
TAO Ze,SUN Chuang,JIN Chunzhe,et al. Characteristics of strength reduction in the weak layer and large-slip displacement of the cut slope on the Fushun west open-pit mining area[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3): 31-39. DOI: 10.16031/j.cnki.issn.1003-8035.202205016
Citation: TAO Ze,SUN Chuang,JIN Chunzhe,et al. Characteristics of strength reduction in the weak layer and large-slip displacement of the cut slope on the Fushun west open-pit mining area[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3): 31-39. DOI: 10.16031/j.cnki.issn.1003-8035.202205016

Characteristics of strength reduction in the weak layer and large-slip displacement of the cut slope on the Fushun west open-pit mining area

More Information
  • Received Date: May 12, 2022
  • Revised Date: July 22, 2022
  • Available Online: April 25, 2023
  • The strength attenuation characteristics of the weak interlayers are one of the key factors leading to instability of the bedding rock slopes. In this study, the Nanbang slope of Fushun west open-pit mine was selected as the research object. A two-dimensional discrete element model of the Nanbang bedding slope was established using the UDEC numerical simulation method in combination with the discrete element theory, and the strength attenuation characteristics and large deformation law of the weak layer were studied. The residual strength decay curve of the weak layer over time was obtained by fitting the results of triaxial tests conducted under different confining pressures, and the FISH language was used to implement the attenuation of weak layer strength during numerical calculations according to the fitting equation. The numerical simulation results showed that deformation first occurred at the toe of the slope. As excavation continued, the strength of the weak layer gradually decreased, resulting in the trailing edge of the slope top being pulled apart, and the original stress balance being destroyed. Eventually, the landslide body slides along the weak layer. By establishing a backfilling numerical model for slope stability, it was found that after backfilling with a presser foot for 100 m, the slope stability coefficient had significantly improved, and the slope was in a basically stable state.
  • [1]
    邹宗兴,唐辉明,熊承仁,等. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报,2012,31(11):2222 − 2231. [ZOU Zongxing,TANG Huiming,XIONG Chengren,et al. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(11):2222 − 2231. (in Chinese with English abstract)

    ZOU Zongxing, TANG Huiming, XIONG Chengren, et al. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2222-2231. (in Chinese with English abstract)
    [2]
    张泽林,王涛,吴树仁,等. 泥岩中软弱夹层的剪切力学特性研究[J]. 岩石力学与工程学报,2021,40(4):713 − 724. [ZHANG Zelin,WANG Tao,WU Shuren,et al. Study on shear mechanical properties of mudstone with weak intercalation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(4):713 − 724. (in Chinese with English abstract)

    ZHANG Zelin, WANG Tao, WU Shuren, et al. Study on shear mechanical properties of mudstone with weak intercalation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 713-724. (in Chinese with English abstract)
    [3]
    SLOAN S W. Geotechnical stability analysis[J]. Géotechnique,2013,63(7):531 − 571.
    [4]
    孔祥曌,李滨,贺凯,等. 柱状岩体崩塌动力特征与破碎规律—以重庆甑子岩崩塌为例[J]. 中国地质灾害与防治学报,2022,33(5):1 − 10. [KONG Xiangzhao, LI Bin, HE Kai, et al. Dynamic characteristics and fragmentation evolution of columnar rockfall: A case study of the Zengziyan rockfall in Chongqing, China[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):1 − 10. (in Chinese with English abstract)

    KONG Xiangzhao, LI Bin, HE Kai, et al. Dynamic characteristics and fragmentation evolution of columnar rockfall: a case study of the Zengziyan rockfall in Chongqing, China[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5)1-10(in Chinese with English abstract)
    [5]
    张家勇,邹银先,杨大山. 基于PFC3D的鱼鳅坡滑坡运动过程分析[J]. 中国地质灾害与防治学报,2021,32(4):33 − 39. [ZHANG Jiayong,ZOU Yinxian,YANG Dashan. Analysis of Yuqiupo landslide motion process based on PFC3D[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):33 − 39. (in Chinese with English abstract)

    ZHANG Jiayong, ZOU Yinxian, YANG Dashan. Analysis of Yuqiupo landslide motion process based on PFC3D[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4)33-39(in Chinese with English abstract)
    [6]
    成浩,韩培锋,苏有文. 含石量和坡度对土石混合体崩塌运动规律的影响[J]. 中国地质灾害与防治学报,2020,31(4):11 − 23. [CHENG Hao,HAN Peifeng,SU Youwen. Influence of rock content and slope on collapse in soil-rock accumulation[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):11 − 23. (in Chinese with English abstract)

    CHENG Hao, HAN Peifeng, SU Youwen. Influence of rock content and slope on collapse in soil-rock accumulation[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4)11-23(in Chinese with English abstract)
    [7]
    宋子岭,杨添,赵立春. 含多层软弱夹层的顺向岩质边坡稳定性评价方法对比分析[J]. 中国地质灾害与防治学报,2016,27(2):20 − 25. [SONG Ziling,YANG Tian,ZHAO Lichun. Applicatyion of combination algorithm in stability analysis of rock slope with contains multilayer weak bedrock layers[J]. The Chinese Journal of Geological Hazard and Control,2016,27(2):20 − 25. (in Chinese with English abstract)

    SONG Ziling, YANG Tian, ZHAO Lichun. Applicatyion of combination algorithm in stability analysis of rock slope with contains multilayer weak bedrock layers[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(2): 20-25. (in Chinese with English abstract)
    [8]
    XUE Demin,LI Tianbin,ZHANG Shuai,et al. Failure mechanism and stabilization of a basalt rock slide with weak layers[J]. Engineering Geology,2018,233:213 − 224. DOI: 10.1016/j.enggeo.2017.12.005
    [9]
    张社荣,谭尧升,王超,等. 多层软弱夹层边坡岩体破坏机制与稳定性研究[J]. 岩土力学,2014,35(6):1695 − 1702. [ZHANG Sherong,TAN Yaosheng,WANG Chao,et al. Research on deformation failure mechanism and stability of slope rock mass containing multi-weak interlayers[J]. Rock and Soil Mechanics,2014,35(6):1695 − 1702. (in Chinese with English abstract)

    ZHANG Sherong, TAN Yaosheng, WANG Chao, et al. Research on deformation failure mechanism and stability of slope rock mass containing multi-weak interlayers[J]. Rock and Soil Mechanics, 2014, 35(6): 1695-1702. (in Chinese with English abstract)
    [10]
    LI Jinglong,ZHANG Bo,SUI Bin. Stability analysis of rock slope with multilayer weak interlayer[J]. Advances in Civil Engineering,2021,2021:1 − 9.
    [11]
    TAN Xin,REN Yakun,LI Tenglong,et al. In-situ direct shear test and numerical simulation of slate structural planes with thick muddy interlayer along bedding slope[J]. International Journal of Rock Mechanics and Mining Sciences,2021,143:104791. DOI: 10.1016/j.ijrmms.2021.104791
    [12]
    ZHENG Qingsong,LIU Enlong,YU Di,et al. Fatigue and damage properties of non-consecutive jointed mudstone samples subjected to cyclic triaxial loading[J]. Bulletin of Engineering Geology and the Environment,2020,79(5):2467 − 2481. DOI: 10.1007/s10064-019-01693-x
    [13]
    YANG Shengqi,TIAN Wenling,JING Hongwen,et al. Deformation and damage failure behavior of mudstone specimens under single-stage and multi-stage triaxial compression[J]. Rock Mechanics and Rock Engineering,2019,52(3):673 − 689. DOI: 10.1007/s00603-018-1622-y
    [14]
    YANG Bing,HOU Jiangrong,LIU Yifei,et al. Dynamic response and failure characteristics of slope with weak interlayer under action of near-fault ground motion[J]. Shock and Vibration,2021,2021:1 − 18.
    [15]
    王来贵,向丽,赵娜,等. 地震作用下顺倾多弱层岩质边坡动力响应[J]. 中国地质灾害与防治学报,2021,32(6):18 − 25. [WANG Laigui,XIANG Li,ZHAO Na,et al. Dynamic response of down-dip multi-weak-layer rock slope under earthquake[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):18 − 25. (in Chinese with English abstract)

    WANG Laigui, XIANG Li, ZHAO Na, et al. Dynamic response of down-dip multi-weak-layer rock slope under earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 18-25. (in Chinese with English abstract)
    [16]
    李鹏, 苏生瑞, 王闫超, 等. 含软弱层岩质边坡的动力响应研究[J]. 岩土力学, 2013, 34(增刊1): 365-370

    LI Peng, SU Shengrui, WANG Yanchao, et al. Research on dynamic response of rock slope with weak layer[J]. Rock and Soil Mechanics, 2013, 34(Sup 1): 365-370. (in Chinese with English abstract)
    [17]
    皮晓清,李亮,唐高朋,等. 基于有限元极限上限法的含软弱夹层边坡稳定性分析[J]. 铁道科学与工程学报,2019,16(2):351 − 358. [PI Xiaoqing,LI Liang,TANG Gaopeng,et al. Stability analysis for soil slopes with weak interlayers using the finite element upper bound limit analysis[J]. Journal of Railway Science and Engineering,2019,16(2):351 − 358. (in Chinese with English abstract)

    PI Xiaoqing, LI Liang, TANG Gaopeng, et al. Stability analysis for soil slopes with weak interlayers using the finite element upper bound limit analysis[J]. Journal of Railway Science and Engineering, 2019, 16(2): 351-358. (in Chinese with English abstract)
    [18]
    杨令强,练继建,陈祖坪. 软弱夹层的接触问题与强度问题探讨[J]. 水利水电技术,2002,33(6):17 − 19. [YANG Lingqiang,LIAN Jijian,CHEN Zuping. Discussion on contact problem and strength problem of weak interlayer[J]. Water Resources and Hydropower Engineering,2002,33(6):17 − 19. (in Chinese)

    YANG Lingqiang, LIAN Jijian, CHEN Zuping. Discussion on contact problem and strength problem of weak interlayer[J]. Water Resources and Hydropower Engineering, 2002, 33(6): 17-19. (in Chinese)
    [19]
    吕布, 杨之俊, 韦秀东, 等. 坝基不同倾角软弱夹层的破坏模式及D-C模型参数研究[J]. 岩土工程学报, 2019, 41(增刊1): 189 − 192

    LU Bu, YANG Zhijun, WEI Xiudong, et al. Failure modes and constitutive model for weak interlayer of dam foundation with different inclination angles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Sup 1): 189 − 192. (in Chinese with English abstract)
    [20]
    郑青松,刘恩龙,刘明星. 三轴试验下结构面倾角对制备岩样力学特性的影响[J]. 岩土力学,2019,40(5):1854 − 1861. [ZHENG Qingsong,LIU Enlong,LIU Mingxing. Influence of dip angle of structural planes on mechanical properties of artificial rock samples under triaxial test conditions[J]. Rock and Soil Mechanics,2019,40(5):1854 − 1861. (in Chinese with English abstract)

    ZHENG Qingsong, LIU Enlong, LIU Mingxing. Influence of dip angle of structural planes on mechanical properties of artificial rock samples under triaxial test conditions[J]. Rock and Soil Mechanics, 2019, 40(5): 1854-1861. (in Chinese with English abstract)
    [21]
    李东. 抚顺西露天矿南帮高陡弱层边坡变形规律研究[D]. 阜新: 辽宁工程技术大学, 2021

    LI Dong. Study on deformation law of high, steep and weak layer slope in the south side of Fushun west open pit mine[D]. Fuxin: Liaoning Technical University, 2021. (in Chinese with English abstract)
    [22]
    刘传正,崔原,陈春利,等. 辽宁抚顺西露天矿南帮滑坡成因[J]. 地质通报,2022,41(5):713 − 726. [LIU Chuanzheng,CUI Yuan,CHEN Chunli,et al. Research on the south side landslide at west open-pit coal mine in Fushun City, Liaoning Province of China[J]. Geological Bulletin of China,2022,41(5):713 − 726. (in Chinese with English abstract)

    LIU Chuanzheng, CUI Yuan, CHEN Chunli, et al. Research on the south side landslide at west open-pit coal mine in Fushun City, Liaoning Province of China[J]. Geological Bulletin of China, 2022, 41(5)713-726(in Chinese with English abstract)
    [23]
    孙闯, 张向东, 张涛, 等. 深部大跨度泥质顶板剪切冒落失稳区预测研究[J]. 中国安全生产科学技术, 2016, 12(1): 23 − 27

    SUN Chuang, ZHANG Xiangdong, ZHANG Tao, et al. Prediction on shear caving instability region of deep and large span muddy roof[J]. Journal of Safety Science and Technplogy, 2016, 12(1): 23 − 27. (in Chinese with English abstract)
    [24]
    孙闯,张树光,贾宝新,等. 花岗岩峰后力学特性试验与模型研究[J]. 岩土工程学报,2015,37(5):847 − 852. [SUN Chuang,ZHANG Shuguang,JIA Baoxin,et al. Physical and numerical model tests on post-peak mechanical properties of granite[J]. Chinese Journal of Geotechnical Engineering,2015,37(5):847 − 852. (in Chinese with English abstract)

    SUN Chuang, ZHANG Shuguang, JIA Baoxin, et al. Physical and numerical model tests on post-peak mechanical properties of granite[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 847-852. (in Chinese with English abstract)
    [25]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 滑坡防治工程勘查规范GB/T 32864-2016[S], 2016.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China.Specification of geological investigation for landslide stabilization GB/T 32864-2016[S], 2016. (in Chinese)
    [26]
    汪美华,李勇,裴叶青. 甘肃临夏盆地韩集北山滑坡群致灾特征与稳定性评价[J]. 地质通报,2023,42(2/3):460 − 468. [WANG Meihua, LI Yong, PEI Yeqing. Disaster characteristics and stability evaluation of the Hanjin Beishan landslide group in Linxia Basin, Gansu Province[J]. Geological Bulletin of China,2023,42(2/3):460 − 468. (in Chinese with English abstract)

    [WANG Meihua, LI Yong, PEI Yeqing. Disaster characteristics and stability evaluation of the Hanjin Beishan landslide group in Linxia Basin, Gansu Province[J]. Geological Bulletin of China, 2023, 42(Sup 1): 460-468.(in Chinese with English abstract)
  • Related Articles

    [1]Xing QI, Huan LIU, Lang YANG, Ruliang CAO. Softening aging characteristics of clayey soil reinforced with cement and polypropylene fibers under water immersion[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202310030
    [2]Zihang DAI, Qiming CHEN, Dan XU, Zhongyuan CHEN. Whole process Finite Element analysis of the load-bearing behavior of slope-stabilizing piles using three-dimensional triple nonlinearity[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202407012
    [3]Xiangfeng LIU, Bing YU, Guoliang HAO, Laigui WANG. Analysis of sliding mechanism of the cut slopes with multi-weak interlayers under rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 70-81. DOI: 10.16031/j.cnki.issn.1003-8035.202302013
    [4]Yu CHEN, Weigang SHEN, Zhongyou SONG, Pan GAO, Fabin YAN, Ping YONG, Rui ZHANG. Analysis of soil cushion buffering characteristic for rockfall impact force through discrete element numerical simulation[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 90-97. DOI: 10.16031/j.cnki.issn.1003-8035.202211020
    [5]Kang WANG, Junbin CHANG, Xiaoke LI, Wenfeng ZHU, Xiao LU, Hui LIU. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangkelandslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 47-56. DOI: 10.16031/j.cnki.issn.1003-8035.202303037
    [6]Yu HU, Nan ZHANG, Dongran WU, Ya CHEN, Hui HE. Analysis on the characteristics and mechanism of Tianwanzi landslide in Jinhaihu newly liberated area, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 11-19. DOI: 10.16031/j.cnki.issn.1003-8035.202203025
    [7]Chenglin MU, Xiangjun PEI, Rui WANG, Chao WANG. Analysis on deformation characteristics of a cutting high bedding rock slope with multiple weak layers based on physical model tests[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 61-67. DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-07
    [8]Yuping YAN, Shiguo XIAO. Physical model test on landslide thrust distribution on double-row stabilizing piles[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 79-87. DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-10
    [9]Ping WANG, Sainan ZHU, Zhihua ZHANG, Xiaobin WU, Liu YANG, Hui ZHAO. Instability mechanism of massive oblique bedding rock landslide in the Three-Gorges Reservoir: A case study of the Longjing landslide in Shizhu County of Chongqing City[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 24-32. DOI: 10.16031/j.cnki.issn.1003-8035.2021.04-04
  • Cited by

    Periodical cited type(3)

    1. 李学良,李凤明,王峰. 含弱层露井联采边坡稳定性研究现状及存在问题. 勘察科学技术. 2025(01): 9-15 .
    2. 程士宜. 特制浆改善边坡裂隙岩体力学性质和控制技术. 露天采矿技术. 2024(04): 69-73 .
    3. 马杰,张耀明,于文罡,王春玲,张国锋,何君毅. 贵州都匀马达岭滑坡碎屑流动力演化过程分析. 中国地质灾害与防治学报. 2024(05): 42-49 . 本站查看

    Other cited types(1)

Catalog

    Article views (1994) PDF downloads (670) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return