Citation: | GAO Xingyue, WANG Shijie, GAO Pengcheng. Active landslide identification with a combined method of D-InSAR and random forest model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 102-108. DOI: 10.16031/j.cnki.issn.1003-8035.202203029 |
[1] |
李为乐,许强,陆会燕,等. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报(信息科学版),2019,44(7):1043 − 1053. [LI Weile,XU Qiang,LU Huiyan,et al. Tracking the deformation history of large-scale rocky landslides and its enlightenment[J]. Geomatics and Information Science of Wuhan University,2019,44(7):1043 − 1053. (in Chinese with English abstract)
|
[2] |
代聪,李为乐,陆会燕,等. 甘肃省舟曲县城周边活动滑坡InSAR探测[J]. 武汉大学学报(信息科学版),2021,46(7):994 − 1002. [DAI Cong,LI Weile,LU Huiyan,et al. Active landslides detection in Zhouqu County,Gansu Province using InSAR technology[J]. Geomatics and Information Science of Wuhan University,2021,46(7):994 − 1002. (in Chinese with English abstract)
|
[3] |
林荣福,刘纪平,徐胜华,等. 随机森林赋权信息量的滑坡易发性评价方法[J]. 测绘科学,2020,45(12):131 − 138. [LIN Rongfu,LIU Jiping,XU Shenghua,et al. Evaluation method of landslide susceptibility based on random forest weighted information[J]. Science of Surveying and Mapping,2020,45(12):131 − 138. (in Chinese with English abstract)
|
[4] |
赵延岭. 基于InSAR技术的树坪滑坡识别与研究[D]. 西安: 长安大学, 2017
ZHAO Yanling. Identification and research of Shuping landslide based on InSAR technology[D]. Xi’an: Chang’an University, 2017. (in Chinese with English abstract)
|
[5] |
赵超英,刘晓杰,张勤,等. 甘肃黑方台黄土滑坡 InSAR 识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版),2019,44(7):996 − 1007. [ZHAO Chaoying,LIU Xiaojie,ZHANG Qin,et al. Research on loess landslide identification,monitoring and failure mode with InSAR technique in Heifangtai,Gansu[J]. Geomatics and Information Science of Wuhan University,2019,44(7):996 − 1007. (in Chinese with English abstract)
|
[6] |
DONG J,LIAO M S,XU Q,et al. Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry:A case study of Danba County in the Dadu River Basin[J]. Engineering Geology,2018,240:95 − 109.
|
[7] |
张拴宏,纪占胜. 合成孔径雷达干涉测量(InSAR)在地面形变监测中的应用[J]. 中国地质灾害与防治学报,2004,15(1):112 − 117. [ZHANG Shuanhong,JI Zhansheng. A review on the application of interferometric synthetic aperture radar on surface deformation monitoring[J]. The Chinese Journal of Geological Hazard and Control,2004,15(1):112 − 117. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2004.01.024
|
[8] |
SHIRVANI Z,ABDI O,BUCHROITHNER M. A synergetic analysis of Sentinel-1 and -2 for mapping historical landslides using object-oriented random forest in the Hyrcanian forests[J]. Remote Sens,2019,11(19):2300. DOI: 10.3390/rs11192300
|
[9] |
PIRALILOU S T,SHAHABI H,JARIHANI B,et al. Landslide detection using multi-scale image segmentation and different machine learning models in the Higher Himalayas[J]. Remote Sensing,2019,11(21):2575. DOI: 10.3390/rs11212575
|
[10] |
涂宽,王文龙,谌华,等. 联合升降轨InSAR与高分辨率光学遥感的滑坡隐患早期识别—以宁夏隆德为例[J]. 中国地质灾害与防治学报,2021,32(6):72 − 81. [TU Kuan,WANG Wenlong,CHEN Hua,et al. Early identification of hidden dangers of lanslides based on the combination of ascending and descending orbits InSAR and high spatial resolution optical remote sensing:A case study of landslides in Longde County,southern Ningxia[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):72 − 81. (in Chinese with English abstract)
|
[11] |
王高峰,叶振南,李刚,等. 白龙江流域舟曲县城区地质灾害危险性评价[J]. 灾害学,2019,34(3):128 − 133. [WANG Gaofeng,YE Zhennan,LI Gang,et al. Geological hazard risk assessment of Zhouqu County in Bailong River basin[J]. Journal of Catastrophology,2019,34(3):128 − 133. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2019.03.024
|
[12] |
SUN Q,ZHANG L,DING X L,et al. Slope deformation prior to Zhouqu,China landslide from InSAR time series analysis[J]. Remote Sensing of Environment,2015,156:45 − 57. DOI: 10.1016/j.rse.2014.09.029
|
[13] |
张之贤,张强,陶际春,等. 2010年“8·8”舟曲特大山洪泥石流灾害形成的气候特征及地质地理环境分析[J]. 冰川冻土,2012,34(4):898 − 905. [ZHANG Zhixian,ZHANG Qiang,TAO Jichun,et al. Climatic and geological environmental characteristics of the exceptional debris flow outburst in Zhouqu,Gansu Province,on 8 August,2010[J]. Journal of Glaciology and Geocryology,2012,34(4):898 − 905. (in Chinese with English abstract)
|
[14] |
韩旭东,付杰,李严严,等. 舟曲江顶崖滑坡的早期判识及风险评估研究[J]. 水文地质工程地质,2021,48(6):180 − 186. [HAN Xudong,FU Jie,LI Yanyan,et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu County[J]. Hydrogeology & Engineering Geology,2021,48(6):180 − 186. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202104028
|
[15] |
戴可人,卓冠晨,许强,等. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报(信息科学版),2019,44(12):1778 − 1786. [DAI Keren,ZHUO Guanchen,XU Qiang,et al. Tracing the pre-failure two-dimensional surface displacements of Nanyu landslide,Gansu Province with radar interferometry[J]. Geomatics and Information Science of Wuhan University,2019,44(12):1778 − 1786. (in Chinese with English abstract)
|
[16] |
JI S,YU D W,SHEN C Y,et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides,2020,17(6):1337 − 1352. DOI: 10.1007/s10346-020-01353-2
|
[17] |
郝国栋. 基于随机森林模型的商南县滑坡易发性评价[D]. 西安: 西安科技大学, 2019
HAO Guodong. Landslide susceptibility assessment based on random forest model in Shangnan County[D]. Xi’an: Xi’an University of Science and Technology, 2019. (in Chinese with English abstract)
|
[18] |
GHORBANZADEH O,BLASCHKE T,GHOLAMNIA K,et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sens,2019,11(2):196. DOI: 10.3390/rs11020196
|
1. |
郭明娟,徐哈宁,肖慧,范凌峰,胡佳超,游丝露. 基于双采样随机森林的临滑阶段的预测算法:以湖北黄石5号铁矿石治理地块为例. 科学技术与工程. 2024(14): 5733-5741 .
![]() | |
2. |
汪美华,赵慧,倪天翔,余洋,陈红旗. 近30年滑坡研究文献图谱可视化分析. 中国地质灾害与防治学报. 2023(04): 75-85 .
![]() |