ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
SHI Run,LI Jiayu,CHEN Minghao,et al. Hazard zoning and assessment of rockfalls based on AHP-3DEC[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3): 127-135. DOI: 10.16031/j.cnki.issn.1003-8035.202203020
Citation: SHI Run,LI Jiayu,CHEN Minghao,et al. Hazard zoning and assessment of rockfalls based on AHP-3DEC[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3): 127-135. DOI: 10.16031/j.cnki.issn.1003-8035.202203020

Hazard zoning and assessment of rockfalls based on AHP-3DEC

More Information
  • Received Date: March 13, 2022
  • Revised Date: May 27, 2022
  • Available Online: April 08, 2023
  • Restricted by the surface smoothness and topography, it is impossible for some high-speed railways on mountainous regions to avoid parts of rockfall development sections, posing great safety challenges to construction projects and railway operations. In light of that, this paper laid its focus on the rockfall situated by the entrance of Xinghuayu Tunnel along the proposed Jinan-Zaozhuang Railway project, and leveraged the power of drone-captured 3D aerial photography to perform digital geological survey and mapping so as to accurately identify the development characteristics, scale, as well as modes of deformation and failure of said rockfall. Next, by cross-referencing the results of 3DEC numerical simulation with those from analytic hierarchy process (AHP), color-coded maps highlighting the scope of influence and danger levels of potential rockfalls induced were obtained. Using said maps, zone-by-zone hazard and risk assessment were then performed, based on which corresponding prevention and control measures were put forward. The findings show that among the 12 dangerous rock belts identified from the drone-captured 3D aerial photography model, only Belt No. 5 would threaten the safety of the tunnel entrance and bridge abutments, for which the combination of anti-rockfall passive protective netting and an open-cut tunnel structure was recommended as a comprehensive solution. By virtue of the solution’s effectiveness, this study can offer reliable references for not only zone-by-zone hazard and risk assessment for rockfalls, but also railway route selection and disaster prevention and mitigation.
  • [1]
    王栋,张广泽,李新坡,等. 川藏铁路折多山隧道进口岩崩运动特征及防治措施[J]. 科学技术与工程,2017,17(34):118 − 123. [WANG Dong,ZHANG Guangze,LI Xinpo,et al. Movement characteristics and prevention of talus slope in Zheduoshan tunnel of Sichuan-Tibet railway[J]. Science Technology and Engineering,2017,17(34):118 − 123. (in Chinese with English abstract)

    WANG Dong, ZHANG Guangze, LI Xinpo, et al. Movement characteristics and prevention of talus slope in Zheduoshan tunnel of Sichuan-Tibet railway[J]. Science Technology and Engineering, 2017, 17(34): 118-123. (in Chinese with English abstract)][知网中文][知网英文
    [2]
    王栋,王剑锋,李天斌,等. 西南山区某铁路隧道口高位落石三维运动特征分析[J]. 地质力学学报,2021,27(1):96 − 104. [WANG Dong,WANG Jianfeng,LI Tianbin,et al. Analysis of three-dimensional movement characteristics of rockfall:A case study at a railway tunnel entrance in the southwestern mountainous area,China[J]. Journal of Geomechanics,2021,27(1):96 − 104. (in Chinese with English abstract)

    WANG Dong, WANG Jianfeng, LI Tianbin, et al. Analysis of three-dimensional movement characteristics of rockfall: a case study at a railway tunnel entrance in the southwestern mountainous area, China[J]. Journal of Geomechanics, 2021, 27(1): 96-104. (in Chinese with English abstract)][知网中文][知网英文
    [3]
    王玉锁,杨国柱. 隧道洞口段危岩落石风险评估[J]. 现代隧道技术,2010,47(6):33 − 39. [WANG Yusuo,YANG Guozhu. Rockfall risk assessment for a tunnel portal section[J]. Modern Tunnelling Technology,2010,47(6):33 − 39. (in Chinese with English abstract)

    WANG Yusuo, YANG Guozhu. Rockfall risk assessment for a tunnel portal section[J]. Modern Tunnelling Technology, 2010, 47(6): 33-39. (in Chinese with English abstract)][知网中文][知网英文
    [4]
    黄海宁,巨能攀,黄健,等. 郑万高铁宜万段边坡危岩崩落破坏特征[J]. 水文地质工程地质,2020,47(3):164 − 172. [HUANG Haining,JU Nengpan,HUANG Jian,et al. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou−Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology,2020,47(3):164 − 172. (in Chinese with English abstract)

    HUANG Haining, JU Nengpan, HUANG Jian, et al. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou—Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 164-172. (in Chinese with English abstract)][知网中文][知网英文
    [5]
    HE S M,YAN S X,DENG Y,et al. Impact protection of bridge piers against rockfall[J]. Bulletin of Engineering Geology and the Environment,2019,78(4):2671 − 2680. DOI: 10.1007/s10064-018-1250-5
    [6]
    董秀军,裴向军,黄润秋. 贵州凯里龙场镇山体崩塌基本特征与成因分析[J]. 中国地质灾害与防治学报,2015,26(3):3 − 9. [DONG Xiujun,PEI Xiangjun,HUANG Runqiu. The Longchangzhen collapse in Kaili,Guizhou:Characteristics and failure causes[J]. The Chinese Journal of Geological Hazard and Control,2015,26(3):3 − 9. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2015.03.02

    DONG Xiujun, PEI Xiangjun, HUANG Runqiu. The Longchangzhen collapse in Kaili, Guizhou: characteristics and failure causes[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(3): 3-9. (in Chinese with English abstract)][知网中文][知网英文 DOI: 10.16031/j.cnki.issn.1003-8035.2015.03.02
    [7]
    Federal Highway Administration of USA. 1993 Rockfall Hazard Rating System: Paricipant’s Manual[M]. FHWA SA-93-057.
    [8]
    JABOYEDOFF M,DUDT J P,LABIOUSE V. An attempt to refine rockfall hazard zoning based on the kinetic energy,frequency and fragmentation degree[J]. Natural Hazards and Earth System Sciences,2005,5(5):621 − 632. DOI: 10.5194/nhess-5-621-2005
    [9]
    HASEGAWA A,URAKOSHI T. Hazard mapping method for rock Falls using a digital elevation model[J]. Quarterly Report of RTRI,2018,59(1):51 − 56. DOI: 10.2219/rtriqr.59.1_51
    [10]
    FANOS A M. A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS[J]. CATENA,2019,172:435 − 450. DOI: 10.1016/j.catena.2018.09.012
    [11]
    叶四桥,唐红梅,祝辉. 基于AHP-Fuzzy方法的危岩危险度评价[J]. 武汉理工大学学报(交通科学与工程版),2006,30(5):800 − 803. [YE Siqiao,TANG Hongmei,ZHU Hui. Dangerous degree estimation of perilous rock based on AHP-fuzzy method[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering),2006,30(5):800 − 803. (in Chinese with English abstract)

    YE Siqiao, TANG Hongmei, ZHU Hui. Dangerous degree estimation of perilous rock based on AHP-fuzzy method[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2006, 30(5): 800-803. (in Chinese with English abstract)][知网中文][知网英文
    [12]
    叶四桥,陈洪凯. 隧道洞口坡段落石灾害危险性等级评价方法[J]. 中国铁道科学,2010,31(5):59 − 65. [YE Siqiao,CHEN Hongkai. The evaluation method for the hazard grading of the rockfall at the slope segment of the tunnel entrance[J]. China Railway Science,2010,31(5):59 − 65. (in Chinese with English abstract)

    YE Siqiao, CHEN Hongkai. The evaluation method for the hazard grading of the rockfall at the slope segment of the tunnel entrance[J]. China Railway Science, 2010, 31(5): 59-65. (in Chinese with English abstract)][知网中文][知网英文
    [13]
    唐红梅,韩明明,闫凝. 基于GIS的重庆巫山县崩塌灾害危险性分区评价[J]. 重庆师范大学学报(自然科学版),2019,36(5):72 − 79. [TANG Hongmei,HAN Mingming,YAN Ning. The GIS-based danger zoning evaluation of collapse disaster in Wushan County,Chongqing[J]. Journal of Chongqing Normal University (Natural Science),2019,36(5):72 − 79. (in Chinese with English abstract)

    TANG Hongmei, HAN Mingming, YAN Ning. The GIS-based danger zoning evaluation of collapse disaster in Wushan County, Chongqing[J]. Journal of Chongqing Normal University (Natural Science), 2019, 36(5): 72-79. (in Chinese with English abstract)][知网中文][知网英文
    [14]
    唐红梅,韩明明,王林峰. 基于AHP-Fuzzy法的灰岩地区崩塌体失稳危险性评价[J]. 灾害学,2019,34(3):1 − 7. [TANG Hongmei,HAN Mingming,WANG Linfeng. Hazard assessment of collapsed rock mass in limestone area based on AHP-fuzzy method[J]. Journal of Catastrophology,2019,34(3):1 − 7. (in Chinese with English abstract)

    TANG Hongmei, HAN Mingming, WANG Linfeng. Hazard assessment of collapsed rock mass in limestone area based on AHP-fuzzy method[J]. Journal of Catastrophology, 2019, 34(3): 1-7. (in Chinese with English abstract)][知网中文][知网英文
    [15]
    高买燕,唐红梅,曾云松,等. 崩塌灾害危险性评价方法及应用[J]. 重庆交通大学学报(自然科学版),2013,32(3):446 − 450. [GAO Maiyan,TANG Hongmei,ZENG Yunsong,et al. Rockfall hazard assessment method and its application[J]. Journal of Chongqing Jiaotong University (Natural Science),2013,32(3):446 − 450. (in Chinese with English abstract)

    GAO Maiyan, TANG Hongmei, ZENG Yunsong, et al. Rockfall hazard assessment method and its application[J]. Journal of Chongqing Jiaotong University (Natural Science), 2013, 32(3): 446-450. (in Chinese with English abstract)][知网中文][知网英文
    [16]
    巩尚卿,叶四桥,杨威. 落石灾害危险性概率评价方法[J]. 灾害学,2014,29(4):215 − 219. [GONG Shangqing,YE Siqiao,YANG Wei. Evaluation method for probability of rockfall hazard[J]. Journal of Catastrophology,2014,29(4):215 − 219. (in Chinese with English abstract)

    GONG Shangqing, YE Siqiao, YANG Wei. Evaluation method for probability of rockfall hazard[J]. Journal of Catastrophology, 2014, 29(4): 215-219. (in Chinese with English abstract)][知网中文][知网英文
    [17]
    武中鹏,刘宏,董秀群,等. 单体危岩崩塌灾害危险性评价—以贵州威宁县新发乡樊家岩为例[J]. 中国地质灾害与防治学报,2019,30(2):30 − 34. [WU Zhongpeng,LIU Hong,DONG Xiuqun,et al. Hazard assessment of rockfall disaster of a dangerous rock:A case study at Fanjiayan,Xinfa Township,Weining County of Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(2):30 − 34. (in Chinese with English abstract)

    WU Zhongpeng, LIU Hong, DONG Xiuqun, et al. Hazard assessment of rockfall disaster of a dangerous rock: a case study at Fanjiayan, Xinfa Township, Weining County of Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(2): 30-34. (in Chinese with English abstract)][知网中文][知网英文
    [18]
    王栋,邹杨,张广泽,等. 无人机技术在超高位危岩勘查中的应用[J]. 成都理工大学学报(自然科学版),2018,45(6):754 − 759. [WANG Dong,ZOU Yang,ZHANG Guangze,et al. Application of photographic technique by unmanned aerial vehicle to dangerous rock exploration[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(6):754 − 759. (in Chinese with English abstract)

    WANG Dong, ZOU Yang, ZHANG Guangze, et al. Application of photographic technique by unmanned aerial vehicle to dangerous rock exploration[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2018, 45(6): 754-759. (in Chinese with English abstract)][知网中文][知网英文
    [19]
    李嘉雨,李欣,樊金,等. Ⅰ类轻型无人机在铁路地质勘察中的应用与展望[J]. 铁道勘察,2020,46(4):28 − 31. [LI Jiayu,LI Xin,FAN Jin,et al. The application and prospect of type Ⅰ light unmanned aerial vehicle in railway geological survey[J]. Railway Investigation and Surveying,2020,46(4):28 − 31. (in Chinese with English abstract)

    LI Jiayu, LI Xin, FAN Jin, et al. The application and prospect of type Ⅰ light unmanned aerial vehicle in railway geological survey[J]. Railway Investigation and Surveying, 2020, 46(4): 28-31. (in Chinese with English abstract)][知网中文][知网英文
    [20]
    李嘉雨, 张广泽, 陈明浩, 等. 一种获取危岩体地形剖面的方法: CN113946982A[P]. 2022-01-18

    LI Jiayu, ZHANG Guangze, CHEN Minghao, et al. Method for acquiring dangerous rock body terrain profile: CN113946982A[P]. 2022-01-18. (in Chinese)
    [21]
    李嘉雨,王崇艮,毛邦燕,等. 基于滑距计算与危险性评价的某平推式滑坡防治对策研究[J]. 长江科学院院报,2021,38(4):63 − 69. [LI Jiayu,WANG Chonggen,MAO Bangyan,et al. Prevention and control countermeasures of translational landslide based on sliding distance calculation and hazard evaluation[J]. Journal of Yangtze River Scientific Research Institute,2021,38(4):63 − 69. (in Chinese with English abstract)

    LI Jiayu, WANG Chonggen, MAO Bangyan, et al. Prevention and control countermeasures of translational landslide based on sliding distance calculation and hazard evaluation[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(4): 63-69. (in Chinese with English abstract)][知网中文][知网英文
    [22]
    李嘉雨,毛邦燕,陈亮,等. 基于3DEC模拟的既有铁路单体滑坡危险性分区与评价—以川黔线裁缝岩滑坡为例[J]. 铁道勘察,2019,45(1):40 − 46. [LI Jiayu,MAO Bangyan,CHEN Liang,et al. The hazard division and evaluation of single landslide based on 3 dimension distinct element simulation of the existing Chuan-Qian railway[J]. Railway Investigation and Surveying,2019,45(1):40 − 46. (in Chinese with English abstract)

    LI Jiayu, MAO Bangyan, CHEN Liang, et al. The hazard division and evaluation of single landslide based on 3 dimension distinct element simulation of the existing Chuan-Qian railway[J]. Railway Investigation and Surveying, 2019, 45(1): 40-46. (in Chinese with English abstract)][知网中文][知网英文
    [23]
    SAATY T L. The analytic hierarchy process[M]. New York: McGraw-Hill, 1980: 35 − 40.
    [24]
    中国地质灾害防治工程行业协会. 崩塌防治工程设计规范: T/CAGHP032—2018[S]. 武汉: 中国地质大学出版社, 2018

    China Association of Geological Hazard Prevention. Code for design of rock fall control engineering: T/CAGPH032-2018[S]. Wuhan: China University of Geosciences Press, 2018. (in Chinese)
  • Cited by

    Periodical cited type(4)

    1. 刘美琳,邓睿,李嘉雨,丁浩江,刘芝勇,刘毅. 基于无人机和Rocfall的危岩落石特征分析与运动学模拟研究——以圆宝山隧道出口为例. 铁道技术标准(中英文). 2024(01): 36-44 .
    2. 陈宇,沈位刚,宋忠友,高攀,鄢发斌,雍平,张锐. 土垫层缓冲落石冲击力特性离散元数值模拟分析. 中国地质灾害与防治学报. 2024(02): 90-97 . 本站查看
    3. 李松岩,李嘉雨,张可,陈亮,罗文豪. 大巴山峡谷区高陡危岩发育特征与风险评价. 路基工程. 2024(04): 34-41 .
    4. 苏国韶,甘衍垦,刘友能,王钧沐. 危岩稳定性分析的三维离散元超载法与强度折减法对比研究. 山西建筑. 2024(24): 1-5 .

    Other cited types(1)

Catalog

    Article views (1645) PDF downloads (255) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return