Citation: | YUAN Yusi,FENG Xiaopeng,LI Yong,et al. Prediction of mine slope deformation based on PSO-DSRVM[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1): 1-7. DOI: 10.16031/j.cnki.issn.1003-8035.202112032 |
[1] |
王鹏飞. 基于GM-RBF组合模型的高路堑边坡稳定性预测研究[J]. 建筑结构,2021,51(20):140 − 145. [WANG Pengfei. Study on stability prediction of high cutting slope based on GM-RBF combination model[J]. Building Structure,2021,51(20):140 − 145. (in Chinese with English abstract) DOI: 10.19701/j.jzjg.2021.20.023
|
[2] |
方然可,刘艳辉,苏永超,等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke,LIU Yanhui,SU Yongchao,et al. A early warning model of regional landslide in Qingchuan County,Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201911034
|
[3] |
史笑凡,杨春风. 基于支持向量机的边坡垂直位移方向率预测及边坡稳定性研究[J]. 河北工业大学学报,2021,50(1):92 − 98. [SHI Xiaofan,YANG Chunfeng. Support vector machine for vertical displacement direction rate of slope estimate and slope stability research[J]. Journal of Hebei University of Technology,2021,50(1):92 − 98. (in Chinese with English abstract)
|
[4] |
晏红波,杨庆,任超,等. 基于EEMD的BP神经网络边坡预测研究[J]. 水力发电,2017,43(7):37 − 40. [YAN Hongbo,YANG Qing,REN Chao,et al. Research on side slope prediction using BP neural network based on EEMD[J]. Water Power,2017,43(7):37 − 40. (in Chinese with English abstract) DOI: 10.3969/j.issn.0559-9342.2017.07.010
|
[5] |
邓超,胡焕校,张天乐,等. 基于改进极限学习机模型的岩质边坡稳定性评价与参数反演[J]. 中国地质灾害与防治学报,2020,31(3):1 − 10. [DENG Chao,HU Huanxiao,ZHANG Tianle,et al. Stability evaluation and parameter inversion of rock slope using modified extreme learning machine model[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):1 − 10. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2020.03.01
|
[6] |
韩连生,宋光仁. 基于灰色理论的露天矿边坡位移预测预警研究[J]. 化工矿物与加工,2018,47(5):48 − 52. [HAN Liansheng,SONG Guangren. Research of prediction and early warning of slope displacement in open-pit mines based on Gray Theory[J]. Industrial Minerals & Processing,2018,47(5):48 − 52. (in Chinese with English abstract) DOI: 10.16283/j.cnki.hgkwyjg.2018.05.012
|
[7] |
李麟玮,吴益平,苗发盛,等. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报,2018,37(6):1395 − 1406. [LI Linwei,WU Yiping,MIAO Fasheng,et al. Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(6):1395 − 1406. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2017.1508
|
[8] |
LIU Z Q,GUO D,LACASSE S,et al. Algorithms for intelligent prediction of landslide displacements[J]. Journal of Zhejiang University-SCIENCE A,2020,21(6):412 − 429. DOI: 10.1631/jzus.A2000005
|
[9] |
罗亦泳,张豪,张立亭. 基于进化相关向量机的边坡安全系数估算[J]. 人民黄河,2016,38(2):103 − 107. [LUO Yiyong,ZHANG Hao,ZHANG Liting. Estimation of slope safety factor based on evolutionary relevance vector machine[J]. Yellow River,2016,38(2):103 − 107. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1379.2016.02.027
|
[10] |
江婷,沈振中,徐力群,等. 基于支持向量机-小波神经网络的边坡位移时序预测模型[J]. 武汉大学学报(工学版),2017,50(2):174 − 181. [JIANG Ting,SHEN Zhenzhong,XU Liqun,et al. Time series prediction model of slope displacement based on support vector machines-wavelet nerual network[J]. Engineering Journal of Wuhan University,2017,50(2):174 − 181. (in Chinese with English abstract)
|
[11] |
TIPPING M E. Escaping the convex hull with extrapolated vector machines[M]//Advances in Neural Information Processing Systems 14. MIT: The MIT Press, 2002: .
|
[12] |
沈力华,陈吉红,曾志刚,等. 多稀疏回声状态网络预测模型[J]. 控制理论与应用,2018,35(4):421 − 428. [SHEN Lihua,CHEN Jihong,ZENG Zhigang,et al. Prediction model with multiple sparse echo state network[J]. Control Theory & Applications,2018,35(4):421 − 428. (in Chinese with English abstract) DOI: 10.7641/CTA.2017.70315
|
[13] |
KALTWANG S,TODOROVIC S,PANTIC M. Doubly sparse relevance vector machine for continuous facial behavior estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(9):1748 − 1761. DOI: 10.1109/TPAMI.2015.2501824
|
[14] |
LUO Z Y,BUI X N,NGUYEN H,et al. A novel artificial intelligence technique for analyzing slope stability using PSO-CA model[J]. Engineering with Computers,2021,37(1):533 − 544. DOI: 10.1007/s00366-019-00839-5
|
[15] |
李胜,韩永亮. 基于MFOA-SVR露天矿边坡变形量预测研究[J]. 中国安全生产科学技术,2015,11(1):11 − 16. [LI Sheng,HAN Yongliang. Research on forecasting of slope deformation in open-pit mine based on MFOA-SVR[J]. Journal of Safety Science and Technology,2015,11(1):11 − 16. (in Chinese with English abstract)
|
1. |
任恩,石美晴,姚巍,罗刚,张静. 基于有效降雨阈值的区域滑坡灾害预警分析. 河北工业科技. 2025(01): 70-79 .
![]() | |
2. |
郭典衡,马晓怡. 基于AE插件式的豫西滑坡监测预警系统设计与实现. 水利规划与设计. 2025(03): 101-106 .
![]() | |
3. |
曾韬睿,王林峰,张俞,程平,吴帆. 基于CatBoost-SHAP模型的滑坡易发性建模及可解释性. 中国地质灾害与防治学报. 2024(01): 37-50 .
![]() | |
4. |
周诗凯,刘正华,余丰华,朱浩濛,黄丽,佘恬钰. 浙江省地质灾害气象风险预警一体化建设的探索与实践. 中国地质灾害与防治学报. 2024(02): 21-29 .
![]() | |
5. |
黄炜敏,陈全明,陈吉祥. 湖南省“631”地质灾害预警模式及避险案例研究. 中国地质灾害与防治学报. 2024(02): 74-80 .
![]() | |
6. |
杨连伟,黄传胜,李华,李鹏,欧阳昊明. 基于普适型降雨监测设备的江西省滑坡灾害降雨阈值分析. 江西科学. 2024(03): 538-543+667 .
![]() | |
7. |
张群,肖智林,马志刚,金圣杰,李俊峰,许钟元,曾普,张小琼. 四川巴中红层滑坡降雨阈值克里金插值法研究. 中国地质灾害与防治学报. 2024(04): 36-44 .
![]() | |
8. |
曾新雄,刘佳,赖波,赵风顺,江山. 广东珠海市降雨型崩塌滑坡预警阈值研究. 中国地质灾害与防治学报. 2024(05): 141-150 .
![]() | |
9. |
马娟,张鸣之,齐干,叶思卿,黄喆,丁帆. 地质灾害监测复杂场景下压电式雨量计精度标定及适宜性分析. 中国地质灾害与防治学报. 2023(05): 91-96 .
![]() | |
10. |
康晓波,杨迎冬,王宇,祝传兵,黄成,张杰,周翠琼,柴金龙,张文鋆. 云南省地质灾害综合防治体系建设系列专项研究进展. 中国地质灾害与防治学报. 2023(06): 146-157 .
![]() | |
11. |
高子雁,李瑞冬,石鹏卿,周小龙,张娟. 基于长短期记忆网络的甘肃舟曲立节北山滑坡变形预测. 中国地质灾害与防治学报. 2023(06): 30-36 .
![]() |