ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
YUAN Yusi,FENG Xiaopeng,LI Yong,et al. Prediction of mine slope deformation based on PSO-DSRVM[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1): 1-7. DOI: 10.16031/j.cnki.issn.1003-8035.202112032
Citation: YUAN Yusi,FENG Xiaopeng,LI Yong,et al. Prediction of mine slope deformation based on PSO-DSRVM[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1): 1-7. DOI: 10.16031/j.cnki.issn.1003-8035.202112032

Prediction of mine slope deformation based on PSO-DSRVM

More Information
  • Received Date: December 26, 2021
  • Revised Date: April 17, 2022
  • Available Online: November 06, 2022
  • In order to establish a high-precision prediction model of mine slope displacement, Doubly Sparse Relevance Vector Machine (DSRVM) based on Particle Swarm Optimization (PSO) was used to establish the nonlinear relationship between slope stability and influencing factors in this paper. DSRVM was a multi-core combinatorial optimization method, which was proposed under the framework of variational and Relevance Vector Machines (RVM). Compared with RVM and other multiple-kernel learning methods, DSRVM not only had less training time, but also can obtained higher prediction accuracy. Aiming at the influence of the parameter’s selection of DSRVM on the final prediction effect, the optimal multiple kernel parameters was determined by PSO algorithm to be used in the mine slope displacement prediction. Compared the computational results of DSRVM with Extreme Learning Machine (ELM) and Wavelet Neural Network (WNN), the feasibility of PSO-DSRVM in slope deformation prediction was verified by the evaluation indicators such as RMSE, R2 and ARPE.
  • [1]
    王鹏飞. 基于GM-RBF组合模型的高路堑边坡稳定性预测研究[J]. 建筑结构,2021,51(20):140 − 145. [WANG Pengfei. Study on stability prediction of high cutting slope based on GM-RBF combination model[J]. Building Structure,2021,51(20):140 − 145. (in Chinese with English abstract) DOI: 10.19701/j.jzjg.2021.20.023
    [2]
    方然可,刘艳辉,苏永超,等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke,LIU Yanhui,SU Yongchao,et al. A early warning model of regional landslide in Qingchuan County,Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201911034
    [3]
    史笑凡,杨春风. 基于支持向量机的边坡垂直位移方向率预测及边坡稳定性研究[J]. 河北工业大学学报,2021,50(1):92 − 98. [SHI Xiaofan,YANG Chunfeng. Support vector machine for vertical displacement direction rate of slope estimate and slope stability research[J]. Journal of Hebei University of Technology,2021,50(1):92 − 98. (in Chinese with English abstract)
    [4]
    晏红波,杨庆,任超,等. 基于EEMD的BP神经网络边坡预测研究[J]. 水力发电,2017,43(7):37 − 40. [YAN Hongbo,YANG Qing,REN Chao,et al. Research on side slope prediction using BP neural network based on EEMD[J]. Water Power,2017,43(7):37 − 40. (in Chinese with English abstract) DOI: 10.3969/j.issn.0559-9342.2017.07.010
    [5]
    邓超,胡焕校,张天乐,等. 基于改进极限学习机模型的岩质边坡稳定性评价与参数反演[J]. 中国地质灾害与防治学报,2020,31(3):1 − 10. [DENG Chao,HU Huanxiao,ZHANG Tianle,et al. Stability evaluation and parameter inversion of rock slope using modified extreme learning machine model[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):1 − 10. (in Chinese with English abstract) DOI: 10.16031/j.cnki.issn.1003-8035.2020.03.01
    [6]
    韩连生,宋光仁. 基于灰色理论的露天矿边坡位移预测预警研究[J]. 化工矿物与加工,2018,47(5):48 − 52. [HAN Liansheng,SONG Guangren. Research of prediction and early warning of slope displacement in open-pit mines based on Gray Theory[J]. Industrial Minerals & Processing,2018,47(5):48 − 52. (in Chinese with English abstract) DOI: 10.16283/j.cnki.hgkwyjg.2018.05.012
    [7]
    李麟玮,吴益平,苗发盛,等. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报,2018,37(6):1395 − 1406. [LI Linwei,WU Yiping,MIAO Fasheng,et al. Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(6):1395 − 1406. (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2017.1508
    [8]
    LIU Z Q,GUO D,LACASSE S,et al. Algorithms for intelligent prediction of landslide displacements[J]. Journal of Zhejiang University-SCIENCE A,2020,21(6):412 − 429. DOI: 10.1631/jzus.A2000005
    [9]
    罗亦泳,张豪,张立亭. 基于进化相关向量机的边坡安全系数估算[J]. 人民黄河,2016,38(2):103 − 107. [LUO Yiyong,ZHANG Hao,ZHANG Liting. Estimation of slope safety factor based on evolutionary relevance vector machine[J]. Yellow River,2016,38(2):103 − 107. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1379.2016.02.027
    [10]
    江婷,沈振中,徐力群,等. 基于支持向量机-小波神经网络的边坡位移时序预测模型[J]. 武汉大学学报(工学版),2017,50(2):174 − 181. [JIANG Ting,SHEN Zhenzhong,XU Liqun,et al. Time series prediction model of slope displacement based on support vector machines-wavelet nerual network[J]. Engineering Journal of Wuhan University,2017,50(2):174 − 181. (in Chinese with English abstract)
    [11]
    TIPPING M E. Escaping the convex hull with extrapolated vector machines[M]//Advances in Neural Information Processing Systems 14. MIT: The MIT Press, 2002: .
    [12]
    沈力华,陈吉红,曾志刚,等. 多稀疏回声状态网络预测模型[J]. 控制理论与应用,2018,35(4):421 − 428. [SHEN Lihua,CHEN Jihong,ZENG Zhigang,et al. Prediction model with multiple sparse echo state network[J]. Control Theory & Applications,2018,35(4):421 − 428. (in Chinese with English abstract) DOI: 10.7641/CTA.2017.70315
    [13]
    KALTWANG S,TODOROVIC S,PANTIC M. Doubly sparse relevance vector machine for continuous facial behavior estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(9):1748 − 1761. DOI: 10.1109/TPAMI.2015.2501824
    [14]
    LUO Z Y,BUI X N,NGUYEN H,et al. A novel artificial intelligence technique for analyzing slope stability using PSO-CA model[J]. Engineering with Computers,2021,37(1):533 − 544. DOI: 10.1007/s00366-019-00839-5
    [15]
    李胜,韩永亮. 基于MFOA-SVR露天矿边坡变形量预测研究[J]. 中国安全生产科学技术,2015,11(1):11 − 16. [LI Sheng,HAN Yongliang. Research on forecasting of slope deformation in open-pit mine based on MFOA-SVR[J]. Journal of Safety Science and Technology,2015,11(1):11 − 16. (in Chinese with English abstract)
  • Cited by

    Periodical cited type(11)

    1. 任恩,石美晴,姚巍,罗刚,张静. 基于有效降雨阈值的区域滑坡灾害预警分析. 河北工业科技. 2025(01): 70-79 .
    2. 郭典衡,马晓怡. 基于AE插件式的豫西滑坡监测预警系统设计与实现. 水利规划与设计. 2025(03): 101-106 .
    3. 曾韬睿,王林峰,张俞,程平,吴帆. 基于CatBoost-SHAP模型的滑坡易发性建模及可解释性. 中国地质灾害与防治学报. 2024(01): 37-50 . 本站查看
    4. 周诗凯,刘正华,余丰华,朱浩濛,黄丽,佘恬钰. 浙江省地质灾害气象风险预警一体化建设的探索与实践. 中国地质灾害与防治学报. 2024(02): 21-29 . 本站查看
    5. 黄炜敏,陈全明,陈吉祥. 湖南省“631”地质灾害预警模式及避险案例研究. 中国地质灾害与防治学报. 2024(02): 74-80 . 本站查看
    6. 杨连伟,黄传胜,李华,李鹏,欧阳昊明. 基于普适型降雨监测设备的江西省滑坡灾害降雨阈值分析. 江西科学. 2024(03): 538-543+667 .
    7. 张群,肖智林,马志刚,金圣杰,李俊峰,许钟元,曾普,张小琼. 四川巴中红层滑坡降雨阈值克里金插值法研究. 中国地质灾害与防治学报. 2024(04): 36-44 . 本站查看
    8. 曾新雄,刘佳,赖波,赵风顺,江山. 广东珠海市降雨型崩塌滑坡预警阈值研究. 中国地质灾害与防治学报. 2024(05): 141-150 . 本站查看
    9. 马娟,张鸣之,齐干,叶思卿,黄喆,丁帆. 地质灾害监测复杂场景下压电式雨量计精度标定及适宜性分析. 中国地质灾害与防治学报. 2023(05): 91-96 . 本站查看
    10. 康晓波,杨迎冬,王宇,祝传兵,黄成,张杰,周翠琼,柴金龙,张文鋆. 云南省地质灾害综合防治体系建设系列专项研究进展. 中国地质灾害与防治学报. 2023(06): 146-157 . 本站查看
    11. 高子雁,李瑞冬,石鹏卿,周小龙,张娟. 基于长短期记忆网络的甘肃舟曲立节北山滑坡变形预测. 中国地质灾害与防治学报. 2023(06): 30-36 . 本站查看

    Other cited types(2)

Catalog

    Article views (1974) PDF downloads (319) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return