ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
HAN Zheng, FANG Zhenxiong, FU Bangjie, et al. Interpretation method for regional co-seismic collapses based on multi-feature fusion of optical remote sensing[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 103-113. DOI: 10.16031/j.cnki.issn.1003-8035.202111008
Citation: HAN Zheng, FANG Zhenxiong, FU Bangjie, et al. Interpretation method for regional co-seismic collapses based on multi-feature fusion of optical remote sensing[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 103-113. DOI: 10.16031/j.cnki.issn.1003-8035.202111008

Interpretation method for regional co-seismic collapses based on multi-feature fusion of optical remote sensing

More Information
  • Received Date: November 02, 2021
  • Revised Date: January 27, 2022
  • Available Online: September 12, 2022
  • Interpretation of co-seismic collapse landslides is a key problem that needs to be solved in the post-disaster recovery work in earthquake areas. The issue regarding continuously improvement of interpretation accuracy for rapid and automatic interpretation of disasters is currently a hot topic, which is also a prerequisite to promote the development of early recognition of geological disasters towards intelligence and scientific. Based on the local threshold binarization method of remote sensing image proposed by the team in the early stage, this paper analyzes the optical and geometric characteristics of false positive features and proposes a fusion for the high false positive rate of the interpreted results of co-seismic mountain collapse. The multi-feature fusion interpretation method of the co-seismic mountain collapse with the gray feature of the optical image of the target area, the regional slope information, the NDVI feature and the interpretation of the main axis feature of the ground feature. In order to verify the accuracy of the proposed model, based on the 2014 Ludian earthquake in Yunnan, a case study was carried out in the Longtoushan town area. The Gaofen-1 (GF-1) satellite image data obtained after the earthquake and the digital elevation model were used for the earthquake in this area. The interpretation and recognition of the collapse of the cracked mountain shows that the method proposed in this paper accurately interprets the collapsed area of the cracked mountain body, effectively removes the false positive ground object interference, and improves the accuracy of interpretation.
  • [1]
    范一大,吴玮,王薇,等. 中国灾害遥感研究进展[J]. 遥感学报,2016,20(5):1170 − 1184. [FAN Yida,WU Wei,WANG Wei,et al. Research progress of disaster remote sensing in China[J]. Journal of Remote Sensing,2016,20(5):1170 − 1184. (in Chinese with English abstract)
    [2]
    常昊,张吕. 云南鲁甸Ms6.5级地震震区滑坡易发性分析[J]. 中国地质灾害与防治学报,2017,28(2):38 − 48. [CHANG Hao,ZHANG Lyu. Analysis of Susceptibility causes of landslides triggered by earthquake in Ludian Ms6.5 earthquake region[J]. The Chinese Journal of Geological Hazard and Control,2017,28(2):38 − 48. (in Chinese with English abstract)
    [3]
    曹颖,黄江培,钱佳威,等. 利用时移层析成像方法揭示与2014年云南鲁甸MS6.5地震有关的P波速度变化[J]. 地球物理学报,2021,64(5):1569 − 1584. [CAO Ying,HUANG Jiangpei,QIAN Jiawei,et al. Application of time-lapse seismic tomography based on double-difference tomography to reveal P wave velocity changes related to the 2014 Ludian MS6.5 earthquake[J]. Chinese Journal of Geophysics,2021,64(5):1569 − 1584. (in Chinese with English abstract)
    [4]
    韩继冲,张朝,曹娟. 基于逻辑回归的地震滑坡易发性评价—以汶川地震、鲁甸地震为例[J]. 灾害学,2021,36(2):193 − 199. [HAN Jichong,ZHANG Zhao,CAO Juan. Assessing earthquake-induced landslide susceptibility based on logistic regression in 2008 Wenchuan earthquake and 2014 Ludian earthquake[J]. Journal of Catastrophology,2021,36(2):193 − 199. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2021.02.034
    [5]
    胡华,吴轩,张越. 基于模拟试验的强降雨条件下花岗岩残积土斜坡滑塌破坏机理分析[J]. 中国地质灾害与防治学报,2021,32(5):92 − 97. [HU Hua,WU Xuan,ZHANG Yue. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):92 − 97. (in Chinese with English abstract)
    [6]
    魏正发,张俊才,曹小岩,等. 青海西宁南北山滑坡、崩塌成因及影响分析[J]. 中国地质灾害与防治学报,2021,32(4):47 − 55. [WEI Zhengfa,ZHANG Juncai,CAO Xiaoyan,et al. Causes and influential factor analysis of landslides and rockfalls in north & south mountain areas of Xining City,Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):47 − 55. (in Chinese with English abstract)
    [7]
    龙玉洁,李为乐,黄润秋,等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报·信息科学版,2020,45(11):1792 − 1800. [LONG Yujie,LI Weile,HUANG Runqiu,et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1792 − 1800. (in Chinese with English abstract)
    [8]
    孙国庆,陈方,于博,等. 2001—2017年尼泊尔中部地区滑坡变化及其影响因素[J]. 中国科学院大学学报,2020,37(3):308 − 316. [SUN Guoqing,CHEN Fang,YU Bo,et al. Landslide change and its influence factors in central Nepal from 2001 to 2017[J]. Journal of University of Chinese Academy of Sciences,2020,37(3):308 − 316. (in Chinese with English abstract) DOI: 10.7523/j.issn.2095-6134.2020.03.003
    [9]
    许冲,戴福初,陈剑,等. 汶川Ms8.0地震重灾区次生地质灾害遥感精细解译[J]. 遥感学报,2009,13(4):754 − 762. [XU Chong,DAI Fuchu,CHEN Jian,et al. Remote sensing fine interpretation of secondary geological disasters in the hardest hit areas of Wenchuan Ms8.0 earthquake[J]. Journal of Remote Sensing,2009,13(4):754 − 762. (in Chinese) DOI: 10.11834/jrs.20090416
    [10]
    LU P,QIN Y Y,LI Z B,et al. Landslide mapping from multi-sensor data through improved change detection-based Markov random field[J]. Remote Sensing of Environment,2019,231:111235. DOI: 10.1016/j.rse.2019.111235
    [11]
    LI Z B,SHI W Z,LU P,et al. Landslide mapping from aerial photographs using change detection-based Markov random field[J]. Remote Sensing of Environment,2016,187:76 − 90. DOI: 10.1016/j.rse.2016.10.008
    [12]
    STUMPF A,KERLE N. Object-oriented mapping of landslides using Random Forests[J]. Remote Sensing of Environment,2011,115(10):2564 − 2577. DOI: 10.1016/j.rse.2011.05.013
    [13]
    VAN DEN EECKHAUT M,KERLE N,POESEN J,et al. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data[J]. Geomorphology,2012,173/174:30 − 42. DOI: 10.1016/j.geomorph.2012.05.024
    [14]
    MARTHA T R,KERLE N,JETTEN V,et al. Characterising spectral,spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods[J]. Geomorphology,2010,116(1/2):24 − 36.
    [15]
    SUN W Y,TIAN Y S,MU X M,et al. Loess landslide inventory map based on GF-1 satellite imagery[J]. Remote Sensing,2017,9(4):314. DOI: 10.3390/rs9040314
    [16]
    LESHCHINSKY B A,OLSEN M J,TANYU B F. Contour Connection Method for automated identification and classification of landslide deposits[J]. Computers & Geosciences,2015,74:27 − 38.
    [17]
    LI Y G,CHEN G Q,HAN Z,et al. A hybrid automatic thresholding approach using panchromatic imagery for rapid mapping of landslides[J]. GIScience & Remote Sensing,2014,51(6):710 − 730.
    [18]
    HAN Z,SU B,LI Y G,et al. An enhanced image binarization method incorporating with Monte-Carlo simulation[J]. Journal of Central South University,2019,26(6):1661 − 1671. DOI: 10.1007/s11771-019-4120-9
    [19]
    HAN Z,LI Y G,DU Y F,et al. Noncontact detection of earthquake-induced landslides by an enhanced image binarization method incorporating with Monte-Carlo simulation[J]. Geomatics,Natural Hazards and Risk,2019,10(1):219 − 241. DOI: 10.1080/19475705.2018.1520745
    [20]
    CASTELLANOS F J,GALLEGO A J,CALVO-ZARAGOZA J. Unsupervised neural domain adaptation for document image binarization[J]. Pattern Recognition,2021,119:108099. DOI: 10.1016/j.patcog.2021.108099
    [21]
    XIONG W,ZHOU L,YUE L,et al. An enhanced binarization framework for degraded historical document images[J]. EURASIP Journal on Image and Video Processing,2021,2021(1):13. DOI: 10.1186/s13640-021-00556-4
    [22]
    皮新宇,曾永年,贺城墙. 融合多源遥感数据的高分辨率城市植被覆盖度估算[J]. 遥感学报,2021,25(6):1216 − 1226. [PI Xinyu,ZENG Yongnian,HE Chengqiang. High-resolution urban vegetation coverage estimation based on multi-source remote sensing data fusion[J]. National Remote Sensing Bulletin,2021,25(6):1216 − 1226. (in Chinese with English abstract)
    [23]
    ASHOK A,RANI H P,JAYAKUMAR K V. Monitoring of dynamic wetland changes using NDVI and NDWI based landsat imagery[J]. Remote Sensing Applications:Society and Environment,2021,23:100547. DOI: 10.1016/j.rsase.2021.100547
    [24]
    陈安,李景吉,黎文婷,等. 2001—2018年雅砻江流域植被NDVI时空动态及其对气候变化的响应[J]. 水土保持研究,2022,29(1):169 − 175. [CHEN An,LI Jingji,LI Wenting,et al. Spatiotemporal of NDVI in the Yalong River basin from 2001 to 2018 and its response to climate change[J]. Research of Soil and Water Conservation,2022,29(1):169 − 175. (in Chinese with English abstract)
    [25]
    SHEN J X,EVANS F. The potential of landsat NDVI sequences to explain wheat yield variation in fields in western Australia[J]. Remote Sensing,2021,13(11):2202. DOI: 10.3390/rs13112202
    [26]
    岳思聪,赵荣椿,王庆. 基于象素主轴方向灰度变化特征的特征点检测算法[J]. 西北工业大学学报,2008,26(2):162 − 167. [YUE Sicong,ZHAO Rongchun,WANG Qing. Feature point detection using intensity variations along pixel principal orientation axes[J]. Journal of Northwestern Polytechnical University,2008,26(2):162 − 167. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-2758.2008.02.006
    [27]
    杨雨奇,高晓光,冯晓毅,等. 基于主轴分析和团块特征提取的ISAR目标检测方法[J]. 西北工业大学学报,2010,28(5):689 − 694. [YANG Yuqi,GAO Xiaoguang,FENG Xiaoyi,et al. A new method for ISAR target detection based on chief axis analysis and block feature extraction[J]. Journal of Northwestern Polytechnical University,2010,28(5):689 − 694. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-2758.2010.05.010
    [28]
    郝军保,邵磊. 惯性主轴方向的最佳判别[J]. 连云港职业大学学报,1993,6(1):92 − 95. [HAO Junbao,SHAO Lei. The best discrimination of the direction of inertia spindle[J]. Journal of Lianyungang Technical College,1993,6(1):92 − 95. (in Chinese)
    [29]
    蔡建乐. 用特征矩阵的伴随矩阵求解惯量主轴方向[J]. 大学物理,1995,14(9):21 − 22. [CAI Jianle. A calculation for the principal axes of inertia by adjoint matrix of eigen matrix[J]. College Physics,1995,14(9):21 − 22. (in Chinese with English abstract)
    [30]
    罗斌. 灰度图象的惯性主轴方向特征[J]. 安徽大学学报(自然科学版),1998,22(4):40 − 42. [LUO Bin. Least inertia moment axis of grey scale image[J]. Journal of Anhui University (Natural Sciences),1998,22(4):40 − 42. (in Chinese with English abstract)
    [31]
    周智勇. 基于Landsat遥感影像的围场县植被覆盖时空格局变化[J]. 水文地质工程地质,2020,47(6):81 − 90. [ZHOU Zhiyong. Change in temporal-spatial pattern of vegetation coverage in Weichang County based on Landsat remote sensing image[J]. Hydrogeology & Engineering Geology,2020,47(6):81 − 90. (in Chinese with English abstract)
    [32]
    贺军亮,韦锐,李丽,等. 基于时间序列植被指数资料的承德市植被覆盖时空演变分析[J]. 水文地质工程地质,2020,47(6):91 − 98. [HE Junliang,WEI Rui,LI Li,et al. Temporal and spatial evolution of vegetation cover in Chengde based ontime series NDVI data[J]. Hydrogeology & Engineering Geology,2020,47(6):91 − 98. (in Chinese with English abstract)
    [33]
    杜春雨,范文义. 叶面积指数与植被指数关系研究[J]. 林业勘查设计,2013(2):77 − 80. [DU Chunyu,FAN Wenyi. Research and analysis of the correlation between leaf area index and vegetation index[J]. Forest Investigation Design,2013(2):77 − 80. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-4505.2013.02.035
    [34]
    潘霞,高永,汪季,等. 植被指数遥感演化研究进展[J]. 北方园艺,2018(20):162 − 169. [PAN Xia,GAO Yong,WANG Ji,et al. Review on vegetation index using remote sensing evolution[J]. Northern Horticulture,2018(20):162 − 169. (in Chinese with English abstract)
    [35]
    张慧,李平衡,周国模,等. 植被指数的地形效应研究进展[J]. 应用生态学报,2018,29(2):669 − 677. [ZHANG Hui,LI Pingheng,ZHOU Guomo,et al. Advances in the studies on topographic effects of vegetation indices[J]. Chinese Journal of Applied Ecology,2018,29(2):669 − 677. (in Chinese with English abstract)
    [36]
    张华,李明,宋金岳,等. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志,2021,40(8):2530 − 2540. [ZHANG Hua,LI Ming,SONG Jinyue,et al. Analysis of driving factors of vegetation NDVI change in Qilian Mountain National Park based on geographic detector[J]. Chinese Journal of Ecology,2021,40(8):2530 − 2540. (in Chinese with English abstract)
    [37]
    武正丽. 2000~2012年祁连山植被覆盖变化及其对气候的响应研究[D]. 兰州: 西北师范大学, 2014

    WU Zhengli. The research of the vegetation change and the sensitivity between NDVI and climatic factors in Qilian Mountains from2000to2012[D]. Lanzhou: Northwest Normal University, 2014. (in Chinese with English abstract)
    [38]
    周庆,吴果. 鲁甸6.5级地震崩滑地质灾害分布与成因探讨[J]. 地震地质,2015,37(1):269 − 278. [ZHOU Qing,WU Guo. Seismic landslides and seismogenic structure of the 2014 Ludian ms6.5 earthquake[J]. Seismology and Geology,2015,37(1):269 − 278. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2015.01.021
    [39]
    田颖颖,许冲,徐锡伟,等. 2014年鲁甸MS6.5地震震前与同震滑坡空间分布规律对比分析[J]. 地震地质,2015,37(1):291 − 306. [TIAN Yingying,XU Chong,XU Xiwei,et al. Spatial distribution analysis of coseismic and pre-earthquake landslides triggered by the 2014 Ludian ms6.5 earthquake[J]. Seismology and Geology,2015,37(1):291 − 306. (in Chinese with English abstract) DOI: 10.3969/j.issn.0253-4967.2015.01.023
    [40]
    许强, 李为乐. 汶川地震诱发滑坡方向效应研究[J]. 四川大学学报(工程科学版), 2010, 42(增刊1): 7 − 14

    XU Qiang, LI Weile. Study on the direction effects of landslides triggered by Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(Sup 1): 7 − 14. (in Chinese with English abstract)
    [41]
    许强,李为乐. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报,2010,18(6):818 − 826. [XU Qiang,LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2010,18(6):818 − 826. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2010.06.002
  • Related Articles

    [1]Xiao-wen MA, Xiao-hu HUANG, Lan-yao YANG. Study on deformation mechanism of large expansive soil landslide under rainfall and reservoir water[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202407031
    [2]Xia LYU, Gang FAN, Darui LIU, Ziyu LIN. Analysis of slope erosion and failure mechanism under rainfall conditions based on field experiments: A case study of the residual slope of landslide and debris flow in Hexiluo gully, Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 82-89. DOI: 10.16031/j.cnki.issn.1003-8035.202306004
    [3]Hailong CHEN, Xiaoling SONG, Yongjun ZHANG, Kaihuan LIU, Li ZHANG, Mingxia LIU, Guan CHEN. Study on rainfall threshold of different lithologic landslides in Bailong River Basin of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 40-46. DOI: 10.16031/j.cnki.issn.1003-8035.202401019
    [4]Yanqi BEN, Wu YI, Huabing LI, Xiaohu HUANG, Wei LIU, Yuhuang XIAO. Preliminary analysis on rainfall thresholds for early warning of the rainfall induced landslides based on “step” deformation characteristics[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 30-38. DOI: 10.16031/j.cnki.issn.1003-8035.202208008
    [5]Wen LIU, Tianbin YU, Meng WANG, Li DAI, Xichao HUANG, Jihong DONG. Analysis on the relationship between geological hazard and lithology , geological structure in Yibin City of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 118-126. DOI: 10.16031/j.cnki.issn.1003-8035.202206011
    [6]Hongming WANG, Ruren LI, Yiting QIN, Zhuqing LIU, Jun GU. Application of time series InSAR technology in monitoring ground deformation of mining area:A case study at Huolinhe open pit mining area in Inner Mongolia[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 71-78. DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-09
    [7]Aiguo HU, Wei ZHOU. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27-34. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-04
    [8]Jianping PAN, Fujiang DENG, Zhengxuan XU, Qiwen XIANG, Wenli TU, Zhanbao FU. Time series InSAR surface deformation monitoring in extremely difficult area based on track refining control points selection[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 98-104. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-12
    [9]Hua HU, Xuan WU, Yue ZHANG. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 92-97. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-11
    [10]Xisheng DENG, Yuan ZHANG, Yu TANG. Investigation on slope rainfall threshold surface based on failure probablolity[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 70-75. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-09
  • Cited by

    Periodical cited type(2)

    1. 叶永,毛旭巍,谢旋. 三峡库区卧沙溪滑坡变形机理及稳定性的研究. 三峡大学学报(自然科学版). 2024(05): 25-32 .
    2. 张亮华,田秋丰,阮迪,熊华盛,宋琨. 库水位条件影响下的大地坪滑坡稳定性分析及运动预测研究. 资源环境与工程. 2023(06): 766-775 .

    Other cited types(0)

Catalog

    Article views (1727) PDF downloads (283) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return