ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
DENG Shirong, XIAO Shiguo. Calculation method of stabilizing piles with broadened top at the built-in section[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 84-91. DOI: 10.16031/j.cnki.issn.1003-8035.202107006
Citation: DENG Shirong, XIAO Shiguo. Calculation method of stabilizing piles with broadened top at the built-in section[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 84-91. DOI: 10.16031/j.cnki.issn.1003-8035.202107006

Calculation method of stabilizing piles with broadened top at the built-in section

More Information
  • Received Date: July 11, 2021
  • Revised Date: August 04, 2021
  • Accepted Date: August 16, 2021
  • Available Online: May 16, 2022
  • In order to solve lacking of horizontal bearing capacity of local strata resistance before built-in section of the stabilizing pile, stabilizing piles with locally broadened top at the built-in section is proposed as a new type pile. According to analysis model of laterally loaded beam on elastic foundation, formulas for internal forces, displacement and strata resistance of the pile built in multiple stable layers are derived. Analysis results of an example show that if the width of the broadened section reaches double width of the normal pile, the resistance of the strata at the top of the broadened section reduces about 25% and the maximum bending moment and shear force of the pile decreases about 5%−10%. Further, influence of main factors such as broadened width and depth, length of the pile part in stable layers and pile spacing on internal forces and displacements of the pile is discussed. The results indicate that compared with the normal piles, the lateral displacement and the strata resistance of the new pile are significantly reduced. The horizontal bearing capacity of the broadened pile is increasing with the broadened width and depth as well as length of the built-in section. However, the improvement of the horizontal bearing capacity of the local strata is limited if the broadened pile width reaches double width of the normal pile and the broadened depth exceeds 40% of the length of the built in section.
  • [1]
    ISMAEL N F. Behavior of step tapered bored piles in sand under static lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(5):669 − 676. DOI: 10.1061/(ASCE)GT.1943-5606.0000265
    [2]
    刘新荣, 方焘, 耿大新, 等. 大直径变径桩横向承载特性模型试验[J]. 中国公路学报,2013,26(6):80 − 86. [LIU Xinrong, FANG Tao, GENG Daxin, et al. Model test on lateral bearing behaviors of large diameter pile with variable cross section[J]. China Journal of Highway and Transport,2013,26(6):80 − 86. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-7372.2013.06.012

    LIU Xinrong, FANG Tao, GENG Daxin, et al. Model test on lateral bearing behaviors of large diameter pile with variable cross section[J]. China Journal of Highway and Transport, 2013, 26(6): 80-86. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-7372.2013.06.012
    [3]
    孙晋超, 金亮星, 欧阳成泓. 填方边坡变截面桩板墙桩身内力及变形数值分析[J]. 铁道科学与工程学报,2018,15(3):629 − 636. [SUN Jinchao, JIN Liangxing, OUYANG Chenghong. Numerical analysis of internal force and deformation of the variable cross-section pile-plank wall on fill slope[J]. Journal of Railway Science and Engineering,2018,15(3):629 − 636. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-7029.2018.03.012

    SUN Jinchao, JIN Liangxing, OUYANG Chenghong. Numerical analysis of internal force and deformation of the variable cross-section pile-plank wall on fill slope[J]. Journal of Railway Science and Engineering, 2018, 15(3): 629-636. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-7029.2018.03.012
    [4]
    FANG T, HUANG M. Deformation and load-bearing characteristics of step-tapered piles in clay under lateral load[J]. International Journal of Geomechanics,2019,19(6):04019053. DOI: 10.1061/(ASCE)GM.1943-5622.0001422
    [5]
    胡文韬, 刘豆, 耿大新, 等. 水平受荷阶梯形变截面桩的内力及变形分析[J]. 浙江大学学报(工学版),2020,54(4):739 − 747. [HU Wentao, LIU Dou, GENG Daxin, et al. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of Zhejiang University (Engineering Science),2020,54(4):739 − 747. (in Chinese with English abstract)

    HU Wentao, LIU Dou, GENG Daxin, et al. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 739-747. (in Chinese with English abstract)
    [6]
    王景梅, 蒋浩然. 大直径阶梯型变截面桩水平承载特性试验研究与理论分析[J]. 公路,2020(3):141 − 147. [WANG Jingmei, JIANG Haoran. Research and theoretical analysis on horizontal bearing capacity of large diameter stepped variable cross-section piles[J]. Highway,2020(3):141 − 147. (in Chinese with English abstract)

    WANG Jingmei, JIANG Haoran. Research and theoretical analysis on horizontal bearing capacity of large diameter stepped variable cross-section piles[J]. Highway, 2020, (3): 141-147. (in Chinese with English abstract)
    [7]
    MURPHY G, DOHERTY P, CADOGAN D, et al. Field experiments on instrumented winged monopiles[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering,2016,169(3):227 − 239. DOI: 10.1680/jgeen.15.00134
    [8]
    BIENEN B, DÜHRKOP J, GRABE J, et al. Response of piles with wings to monotonic and cyclic lateral loading in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2012,138(3):364 − 375. DOI: 10.1061/(ASCE)GT.1943-5606.0000592
    [9]
    李炜, 胡波, 李波, 等. 大直径加翼单桩水平承载性能离心模型试验研究[J]. 岩石力学与工程学报,2015,34(4):831 − 837. [LI Wei, HU Bo, LI Bo, et al. Centrifuge model tests on horizontal bearing capacity of a large diameter pile with wings[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(4):831 − 837. (in Chinese with English abstract)

    LI Wei, HU Bo, LI Bo, et al. Centrifuge model tests on horizontal bearing capacity of a large diameter pile with wings[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 831-837. (in Chinese with English abstract)
    [10]
    铁道部第二勘测设计院. 抗滑桩设计与计算[M]. 北京: 中国铁道出版社, 1983

    The second institute of survey and design of Chinese Railway Ministry. Design and calculation of stabilizing piles[M]. Beijing: China Railway Publishing House, 1983. (in Chinese)
    [11]
    中华人民共和国交通运输部. 公路桥涵地基与基础设计规范: JTG 3363—2019[S]. 北京: 人民交通出版社, 2019.

    Ministry of Transport of the People's Republic of China. Specifications for design of ground base and foundation of highway bridges and culverts: JTG 3363—2019[S]. Beijing: China Communications Press, 2019. (in Chinese)
    [12]
    戴自航, 陈林靖. 多层地基中水平荷载桩计算m法的两种数值解[J]. 岩土工程学报,2007,29(5):690 − 696. [DAI Zihang, CHEN Linjing. Two numerical solutions of laterally loaded piles installed in multi-layered soils by m method[J]. Chinese Journal of Geotechnical Engineering,2007,29(5):690 − 696. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2007.05.010

    DAI Zihang, CHEN Linjing. Two numerical solutions of laterally loaded piles installed in multi-layered soils by m method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 690-696. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2007.05.010
    [13]
    肖世国, 杨豪, 陈廷君. 嵌固于多种地层的抗滑桩设计计算方法[J]. 中国地质灾害与防治学报,2018,29(5):116 − 125. [XIAO Shiguo, YANG Hao, CHEN Tingjun. A calculation method for design of the stabilizing piles embedded in various strata[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):116 − 125. (in Chinese with English abstract)

    XIAO Shiguo, YANG Hao, CHEN Tingjun. A calculation method for design of the stabilizing piles embedded in various strata[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 116-125. (in Chinese with English abstract)
    [14]
    李海光. 新型支挡结构设计与工程实例[M]. 北京: 人民交通出版社, 2011

    LI Haigaung. New supporting structure and engineering examples[M]. China Communications Press, 2011. (in Chinese)
    [15]
    中华人民共和国住房和城乡建设部. 建筑边坡工程技术规范: GB 50330—2013[S]. 北京: 中国建筑工业出版社, 2014

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for building slope engineering: GB 50330—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
    [16]
    重庆市地质环境监测总站. 地质灾害防治工程设计标准: DBJ50/T-029-2019[S]. 重庆: 重庆市住房和城乡建设委员会, 2020

    Chongqing General Station of Geological Environment Monitoring. Standard for Geological Hazard Prevention: DBJ50/T-029-2019[S]. Chongqing: Chongqing Municipal Commission of Housing and Urban-Rural Development, 2020. (in Chinese)
  • Related Articles

    [1]Xiao-wen MA, Xiao-hu HUANG, Lan-yao YANG. Study on deformation mechanism of large expansive soil landslide under rainfall and reservoir water[J]. The Chinese Journal of Geological Hazard and Control. DOI: 10.16031/j.cnki.issn.1003-8035.202407031
    [2]Xia LYU, Gang FAN, Darui LIU, Ziyu LIN. Analysis of slope erosion and failure mechanism under rainfall conditions based on field experiments: A case study of the residual slope of landslide and debris flow in Hexiluo gully, Ganluo County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 82-89. DOI: 10.16031/j.cnki.issn.1003-8035.202306004
    [3]Hailong CHEN, Xiaoling SONG, Yongjun ZHANG, Kaihuan LIU, Li ZHANG, Mingxia LIU, Guan CHEN. Study on rainfall threshold of different lithologic landslides in Bailong River Basin of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 40-46. DOI: 10.16031/j.cnki.issn.1003-8035.202401019
    [4]Yanqi BEN, Wu YI, Huabing LI, Xiaohu HUANG, Wei LIU, Yuhuang XIAO. Preliminary analysis on rainfall thresholds for early warning of the rainfall induced landslides based on “step” deformation characteristics[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 30-38. DOI: 10.16031/j.cnki.issn.1003-8035.202208008
    [5]Wen LIU, Tianbin YU, Meng WANG, Li DAI, Xichao HUANG, Jihong DONG. Analysis on the relationship between geological hazard and lithology , geological structure in Yibin City of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 118-126. DOI: 10.16031/j.cnki.issn.1003-8035.202206011
    [6]Hongming WANG, Ruren LI, Yiting QIN, Zhuqing LIU, Jun GU. Application of time series InSAR technology in monitoring ground deformation of mining area:A case study at Huolinhe open pit mining area in Inner Mongolia[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 71-78. DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-09
    [7]Aiguo HU, Wei ZHOU. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27-34. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-04
    [8]Jianping PAN, Fujiang DENG, Zhengxuan XU, Qiwen XIANG, Wenli TU, Zhanbao FU. Time series InSAR surface deformation monitoring in extremely difficult area based on track refining control points selection[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 98-104. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-12
    [9]Hua HU, Xuan WU, Yue ZHANG. Experimental study on slope collapse characteristics of granite residual soil slope under heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 92-97. DOI: 10.16031/j.cnki.issn.1003-8035.2021.05-11
    [10]Xisheng DENG, Yuan ZHANG, Yu TANG. Investigation on slope rainfall threshold surface based on failure probablolity[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 70-75. DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-09
  • Cited by

    Periodical cited type(2)

    1. 叶永,毛旭巍,谢旋. 三峡库区卧沙溪滑坡变形机理及稳定性的研究. 三峡大学学报(自然科学版). 2024(05): 25-32 .
    2. 张亮华,田秋丰,阮迪,熊华盛,宋琨. 库水位条件影响下的大地坪滑坡稳定性分析及运动预测研究. 资源环境与工程. 2023(06): 766-775 .

    Other cited types(0)

Catalog

    Article views (608) PDF downloads (430) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return