ISSN 1003-8035 CN 11-2852/P
  • Included in Scopus
  • Included in DOAJ
  • The key magazine of China technology
  • Included in CSCD
  • Caj-cd Standard Award winning journals
Wechat
GUO Song, GUO Guangli, LI Huaizhan, YANG Xiangsheng. Goaf-collapse sites stability evaluation based on principal component hierarchical clustering model[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 116-121. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.15
Citation: GUO Song, GUO Guangli, LI Huaizhan, YANG Xiangsheng. Goaf-collapse sites stability evaluation based on principal component hierarchical clustering model[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6): 116-121. DOI: 10.16031/j.cnki.issn.1003-8035.2020.06.15

Goaf-collapse sites stability evaluation based on principal component hierarchical clustering model

More Information
  • Received Date: August 27, 2020
  • Revised Date: September 24, 2020
  • Available Online: January 21, 2021
  • Stability evaluation of goaf-collapse sites is the primary problem to be solved in the subsequent engineering construction. In this paper, a principal component hierarchical clustering analysis method for a goaf-collapse site stability evaluation has been proposed to solve the problem caused by multiple influencing factors and complicated geological and mining conditions of a steeply pitching phosphate orebody. On the basis of determining the stability evaluation range of the goaf-collapse site, 8 major indicators representing stability of goaf-collapse sites were selected after principal component analysis (PCA) as learning samples for training. AGNES (AGglomerative NESting) hierarchical clustering analysis model for evaluating stability of goaf-collapse sites was established. After dimensionality reduction, first four principal components of cumulative contribution rate were 81.8%. The results show that the goaf-collapse site can adapt to different land bearing capacity of urban planning in the study area, the discriminant result is consistent with other methods, it indicates that the hierarchical cluster analysis model has a good discriminant ability. The proposed approach demonstrates the feasibility and effectiveness in the field of stability assessment of goaf-collapse sites.
  • [1]
    李怀展, 查剑锋, 元亚菲. 关闭煤矿诱发灾害的研究现状及展望[J]. 煤矿安全, 2015, 46(5):201-204.

    [LI H Z, ZHA J F, YUAN Y F. Research status and prospect of hazards caused by close coal mine[J]. Safety in Coal Mines, 2015, 46(5):201-204.(in Chinese)]
    [2]
    国家安全监管总局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S].北京:煤炭工业出版社,2017.[State Administration of Work Safety. Code for coal pillar leaving and coal mining under building, water body, railway and main shaft[S]. Beijing:China Coal Industry Press, 2017. (in Chinese)]
    [3]
    GUO G L, ZHU X J, ZHA J F, et al. Subsidence prediction method based on equivalent mining height theory for solid backfilling mining[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10):3302-3308.
    [4]
    谭志祥, 邓喀中. 采动区建筑物地基、基础和结构协同作用模型[J]. 中国矿业大学学报, 2004, 33(3):264-267.

    [TAN Z X, DENG K Z. Coordinating work model of ground, foundation and structure of building in mining area[J]. Journal of China University of Mining & Technology, 2004, 33(3):264-267.(in Chinese)]
    [5]
    张永波. 老采空区建筑地基稳定性及其变形破坏规律的研究[D]. 太原:太原理工大学, 2005.[ZHANG Y B. Research on the stability of building foundation above old mine goafs and its damage regular[D]. Taiyuan:Taiyuan University of Technology, 2005.(in Chinese)]
    [6]
    沈瑾, 赵铁政. 棕地与绿色空间网络——唐山南湖采煤沉陷区空间再利用[J]. 建筑学报, 2006(8):28-30.[SHEN J, ZHAO T Z. Brown land and green space network:spacial reutilization of the Nanhu coal mining settlement area in Tangshan[J]. Architectural Journal, 2006

    (8):28-30.(in Chinese)]
    [7]
    廖谌婳, 吴克宁. 矿区农田景观生态适宜性评价——以徐州市潘安采煤塌陷区为例[J]. 资源与产业, 2012, 14(3):36-42.

    [LIAO C H, WU K N. A case study on xuzhou's pan'an coal mine subsidence:assessment of farmland landscape ecological suitability in mining area[J]. Resources & Industries, 2012, 14(3):36-42.(in Chinese)]
    [8]
    熊彩霞, 梁恒昌, 马金荣, 等. 煤矿采空区建筑场地地基适宜性分析[J]. 采矿与安全工程学报, 2010, 27(1):100-105.

    [XIONG C X, LIANG H C, MA J R, et al. Stability analysis of the building foundation over goal area[J]. Journal of Mining and Safety Engineering, 2010, 27(1):100-105.(in Chinese)]
    [9]
    张曦沐, 张国锋, 马靖华. 关于采煤沉陷区人居环境建设的思考[J]. 建筑科学, 2010, 26(11):103-105.

    [ZHANG X M, ZHANG G F, MA J H. Thinking of settlement environment construction in mining subsidence area[J]. Building Science, 2010, 26(11):103-105.(in Chinese)]
    [10]
    周翠竹, 朱建军, 石岩. 一种基于双重距离约束的多层次空间聚类方法[J]. 测绘科学, 2014, 39(10):98-101.

    [ZHOU C Z, ZHU J J, SHI Y. A multi-level spatial clustering method based on dual distance constraints[J]. Science of Surveying and Mapping, 2014, 39(10):98-101.(in Chinese)]
    [11]
    李光强, 邓敏, 程涛, 等. 一种基于双重距离的空间聚类方法[J]. 测绘学报, 2008, 37(4):482-488.

    [LI G Q, DENG M, CHENG T, et al. A dual distance based spatial clustering method[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4):482-488.(in Chinese)]
    [12]
    宫凤强, 刘科伟, 李志国. 矿区采空塌陷危险性预测的Bayes判别分析法[J]. 采矿与安全工程学报, 2010, 27(1):30-34.

    [GONG F Q, LIU K W, LI Z G. The Bayes discriminant method for forcasting the stability of underground goaf[J]. Journal of Mining and Safety Engineering, 2010, 27(1):30-34.(in Chinese)]
    [13]
    孙云华, 郭涛, 崔希民, 等. 基于行为聚类算法的土地利用聚类适宜性分析研究[J]. 地球信息科学学报, 2016, 18(3):396-405.

    [SUN Y H, GUO T, CUI X M, et al. Suitability analysis on behavior-based aggregation of land use classification in Yunnan Province[J]. Journal of Geo-information Science, 2016, 18(3):396-405.(in Chinese)]
    [14]
    CUI X M, ZHAO Y L, WANG G R, et al. Calculation of residual surface subsidence above abandoned longwall coal mining[J]. Sustainability, 2020, 12(4):1528.
  • Cited by

    Periodical cited type(11)

    1. 张雪,魏云杰,杨成生,刘勇,杨佳艺. 云南昭通地区滑坡隐患InSAR广域识别与监测. 地球科学与环境学报. 2025(01): 128-142 .
    2. 王林峰,蒋辉,唐宁,黄晓明,谭国金. 无人机贴近摄影技术在高陡边坡的三维重建与结构面识别中的应用. 中国地质灾害与防治学报. 2025(01): 92-100 . 本站查看
    3. 孙成永. InSAR技术在河南信阳新县地质灾害风险调查中的应用. 城市地质. 2024(03): 383-389 .
    4. 孙琪皓,刘桂卫,王飞,张璇钰,王衍汇. 铁路地质灾害早期识别与监测预警技术及应用研究. 铁道标准设计. 2024(09): 24-31 .
    5. 臧烨祺,郭永刚,苏立彬,王国闻,吴升杰,秦得顺. 西藏东南地区滑坡易发性多模型评价方法研究. 中国地质灾害与防治学报. 2024(06): 58-69 . 本站查看
    6. 鲁魏,杨斌,杨坤. 基于时序InSAR的西南科技大学地表形变监测与分析. 中国地质灾害与防治学报. 2023(02): 61-72 . 本站查看
    7. 李凡,李素敏,杨渊,李杰,袁利伟,成睿,毛嘉骐. 基于时序InSAR的沙湾大沟滑坡型泥石流发育特征研究. 地球物理学进展. 2023(02): 532-541 .
    8. 顿佳伟,冯文凯,易小宇,张国强,吴明堂. 白鹤滩库区蓄水前活动性滑坡InSAR早期识别研究——以葫芦口镇至象鼻岭段为例. 工程地质学报. 2023(02): 479-492 .
    9. 于冰,胡云亮,刘国祥,罗小军,胡金龙. 时序InSAR反演唐山市二维地表形变时间序列. 测绘科学. 2023(06): 82-94+230 .
    10. 陈行,刘汉湖,葛宗旭. 时序SBAS-InSAR下的香格里拉市地表形变监测. 宜宾学院学报. 2022(06): 54-59 .
    11. 盖侨侨. PS-InSAR技术在北江下游沿线形变监测中的应用. 水利技术监督. 2022(10): 57-59+72 .

    Other cited types(4)

Catalog

    Article views (459) PDF downloads (392) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return