Development characteristics and reactivation deformation mechanism of the Lumai landslide in Shannan City, Xizang
-
摘要:
青藏高原地质条件复杂,历史上形成了大量古滑坡,近年来在极端天气和人类工程活动影响下,古滑坡复活变形呈加剧趋势,潜在危害严重。文章以西藏山南鲁麦古滑坡作为研究对象,利用野外地质调查、无人机测绘、数值模拟等技术方法,在剖析其变形特征的基础上,分析了古滑坡复活的影响因素,探究了地表水入渗与堆载作用下古滑坡复活失稳机制。研究结果表明:鲁麦古滑坡体积为2.5×106~15.1×106 m3,前缘剪出口与坡脚的当许雄曲最大高差超过200 m,最深层的滑带位于基岩与堆积体间的接触面;受地表水入渗与堆载作用影响,古滑坡复活变形目前集中分布在堆积区前部,地表发育大量地表裂缝和下错陡坎;在地表水集中入渗影响下,滑坡前缘表层岩土体多次发生局部滑动;前缘堆载增加后,滑坡前部的形变整体增加,并呈高位剪出的趋势。研究成果对深化西藏山南地区古滑坡复活机理和支撑当地防灾减灾工作具有一定意义。
Abstract:The complex geological conditions of the Tibetan Plateau have historically fostered the development of numerous ancient landslides. In recent years, the reactivation of these landslides has exhibited a concerning escalation, driven by extreme weather events and human activities, thereby posing significant hazards. This study examines the Lumai ancient landslide in Shannan City, Xizang, employing a combination of field geological investigation, drone mapping, numerical simulation, and other technical methodologies. The research focuses on analysing the reactivation characteristics and influencing factors, specifically investigating the reactivation mechanism of the ancient landslide under the effects of surface water infiltration and loading. The results indicate that the Lumai ancient landslide has a volume of 2.5×106 to 15.1×106 m3. The maximum height difference between the landslide’s leading edge shear outlet and the Dangxuxiongqu River at the slope foot exceeds 200 meters, with the deepest sliding zone located at the interface between bedrock and loose deposits. Deformation is primarily concentrated in the front part of the landslide’s accumulation zone, characterized by numerous cracks and steep scarps. The reactivation is significantly influenced by surface water infiltration and overloading. Under concentrated water infiltration, localized sliding frequently occurs at the landslide front. Additionally, increased loading at the front leads to overall deformation and a tendency toward high-position shear failure. These findings enhance the understanding of reactivation mechanisms for ancient landslides in the Shannan City, Xizang, and provide valuable insights for local disaster prevention and mitigation efforts.
-
0. 引 言
受高陡地形、构造活动与特殊气候条件的影响,构造活跃区内外动力作用强烈,历史上形成了大量的古滑坡。近年来,随着中国工程建设加速与极端天气加剧,古滑坡复活致灾现象频繁出现[1 − 3]。例如,从2011年开始青海海东乐都区高家湾古滑坡堆积体后缘出现多条拉裂缝,最长达500 m,至2016年1月裂缝最长已增加至950 m,严重威胁前缘兰新铁路及居民区安全,潜在经济损失达22.5亿元[4];甘肃舟曲县江顶崖古滑坡自1985年以来发生过4次较大规模的复活,其中2018年约3.38×106 m3的滑坡堆积体滑入白龙江挤占河道,造成严重经济损失[5 − 6]。
不少学者针对古滑坡变形特征与复活机制等方面开展了大量研究工作,并取得了一系列的成果[7 − 11]。Zhang等[12]结合室内试验与PS-InSAR技术,指出川西巴塘的茶树山古滑坡受巴塘断裂带蠕变的影响,地表裂缝不断发育扩展,成为雨水入渗的优先路径,遭遇极端降雨时茶树山古滑坡极易再次复活。Tu等[13]研究发现位于澜沧江一古滑坡上的引水沟渠长期渗漏,地表水不断渗入到滑坡堆积体中,并在老滑带上方聚集,促进了古滑坡的复活。吴瑞安等[14]以青藏高原东缘松潘县上窑沟古滑坡为研究对象,分析认为由于滑坡前缘沟道筑坝导致坡脚浸水软化,加上降雨引起坡体内渗透压力增强,导致上窑沟古滑坡前部产生局部复活变形。李军霞[15]对西藏隆子县的当木来古滑坡进行现场调查发现,当木村修建于滑坡体之上的大量民房、蓄水池等工民建筑,对滑坡中后缘起到了加载作用,加剧了滑坡的复活。詹美强等[16]对藏东地区的德弄弄巴古滑坡进行室内试验和数值模拟分析,认为堆积体前缘的坡脚开挖是古滑坡出现强烈复活变形的主要因素,同时降雨也对古滑坡复活起到极大促进作用。文献调研表明,已有关于古滑坡复活失稳机制的研究主要侧重于考虑降雨、工程开挖等作用的影响,而对于因地表水入渗与堆载联合作用下的古滑坡复活特征与机制研究较少。
本文以西藏山南鲁麦古滑坡为例,采用遥感解译、无人机测绘、现场调查与数值模拟等方法,在查明滑坡空间结构和变形破坏特征的基础上,分析了古滑坡复活的影响因素,并揭示其复活变形机制。研究成果对有效评估和防范古滑坡复活、保障当地居民生命财产安全具有一定参考价值。
1. 滑坡区地质环境条件
鲁麦古滑坡位于西藏山南市措美县乃西乡鲁麦村,属高原湖盆区内的高山峡谷地带,河谷两岸斜坡高陡。研究区属高原温带半干旱季风气候,降雨年内分配不均、蒸发量大。据当地气象站2010年以来的气象数据显示,年最大降雨量243 mm、年最小降雨量51 mm,其中日最大降雨量可达32 mm。当许雄曲由东向西从古滑坡前缘流过,常年侵蚀坡脚。
从构造上来看,鲁麦古滑坡位于喜马拉雅板片拉轨岗日陆隆壳片北段,滑坡周边发育三组区域性断裂,主要为北东侧约6 km的正断层、西侧4 km处的平移断层、南东侧1 km处的性质不明断层[17 − 18]。滑坡区地层岩性简单,主要为第四系全新统松散堆积体($ \mathrm{Qh}_{ }^{\mathrm{^{^{^{ }}}}del} $)和下白垩统拉康组(K1l)粉砂岩、泥岩和板岩(图1)。
滑坡地处当雄—羊八井—尼木地震活动带,地震动反应谱特征周期为0.45 s,地震动峰值加速度0.15 g,为地震基本烈度Ⅶ度区。据不完全统计,在1921—1976年这55年间,措美县境内共发生Ms4.7级以上地震25次,其中Ms6级以上地震8次,最大震级Ms8.0[19 − 20]。强烈的地震活动影响着区内坡体结构完整性,一定程度上降低了岩土体力学强度,为滑坡形成与演化提供了有利条件。
2. 滑坡基本发育特征
鲁麦古滑坡圈椅状地貌明显,左侧及后缘以山脊为界,右侧大体以冲沟为界。滑坡后缘高程约
4154 m,前缘河面高程约3620 m,剪出口高程为3760 ~3830 m,与坡脚的当许雄曲最大高差超过200 m。滑坡整体坡度10°~30°,主滑方向为24°。滑坡纵长1050 m,平均宽800 m,面积约8.4×104 m2,滑体厚3~18 m,推测古滑坡体积2.5×106 ~15.1×106 m3(图2)。根据现场调查和钻探揭露情况,滑体主要成分以粉质黏土夹碎石,灰黄色,碎石成分以粉砂岩、泥岩、板岩为主,粒径一般为5~13 cm,含量占10%~50%。滑坡基岩主要为变质粉砂岩和泥灰岩,呈薄层状,饱和单轴抗压强度为15~30 MPa,属较软岩。岩层产状20°∠20°,总体呈北西向南东向展布,为顺向坡。滑坡北部岸坡见有砂岩与泥岩互层基岩出露。钻探资料分析和滑坡现场调查表明,古滑坡的堆积体与基岩分界明显,最深层的滑动面位于基覆界面接触部位(图3)。
结合古滑坡微地貌特征,将其划分为两个主要部分:滑源区(I)和堆积区(II)(图2)。滑源区主要分布高程为
3970 ~4154 m,地形坡度为20°~35°,地层岩性主要为少量粉质黏土夹碎石和砂岩。该区局部发育陡坎(D2、D4)与地表裂缝,裂缝走向65°~150°,宽0.05~3 m不等,其中最长的裂缝L3长达300 m,深约1 m。在古滑坡后部发现大量散落红色砂岩块石,块石块径0.1~10 m不等。堆积区主要分布高程为3970 ~3830 m,该区纵长580 m,平均横宽360 m,发育两级平台。地表以局部变形破坏为主,多呈现次级浅层滑动、坡面侵蚀、陡坎和裂缝等。基于地表复活变形特征,将堆积区细分为两个亚区(II1、II2)。变形区II1:该区位于堆积区左侧,平面形态呈长舌形,分布大面积耕地,大量排水渠等灌溉设施穿行而过。后部发育多条拉张裂缝(图2),裂缝L1最宽达2 m,深度达4 m,见图4(a),后缘左侧发育陡坎D1,其长度达50 m,陡坎下方散见大量砂岩碎石,直径0.1~2.3 m不等,与滑源区的碎石岩性一致,判断其来源于后部岩体崩落,见图4(b)。后缘西侧发育多处局部滑塌,最高约1.2 m。该区前部岩土体结构松散,见图4(c),坡体上碎石堆积体受地表水冲刷,形成多条冲沟,部分沟道两侧陡坎形成小型滑塌。
变形区II2:该区位于堆积区右侧,平面形态呈长舌形,区内建有大量道路、住宅等。前部发育大量裂缝,部分裂缝不断发育并逐渐贯通形成网络状,裂缝最长约35 m,宽度10~30 cm,最深可达110 cm,走向为200°~220°,见图4(d)(e)。部分张拉裂缝持续发育并下挫,形成高度为2~5 m的陡坎。由于滑坡的复活变形,滑体上的国道G219路面与水渠出现不同程度的开裂,见图4(f)。
3. 古滑坡历史变形特征分析
为分析鲁麦古滑坡复活变形发展演化过程,对比分析了不同时期的高清遥感影像,其中主要包括2017年2月获取的精度为1 m的美国商业卫星遥感影像、2017年11月和2021年2月获取的精度为1 m的北京三号卫星遥感影像、2023年9月使用搭载CMOS影像传感器的大疆精灵4四旋翼无人机获取的精度为0.5 m影像数据。
由遥感影像对比分析(图5)可知,位于人工堆载右侧的两条裂缝L8和L9从2019年开始逐渐扩展,至2021年2月时已贯通成形成一处明显陡坎,至2023年陡坎高差已达5 m;2019年发育于堆载区中部的裂缝L10长度约20 m,至2021年裂缝L10长度已增加至35 m,且堆载区中部不断出现新裂缝并贯通,至2023年地裂缝L10已贯通形成了裂缝网络;2021年堆载区后缘出现一条长约30 m的裂缝L11,至2023年,长度增加至60 m,且L11前部出现一条与其长度相近且平行的裂缝。堆载区左侧发育一冲沟,受地表水冲刷影响,面积不断扩大且深度不断加深。
4. 古滑坡复活变形影响因素分析
4.1 地表水入渗对滑坡稳定性的影响
鲁麦古滑坡堆积体主要为粉质黏土夹碎石,透水性较好,利于地下水入渗,而下伏基岩为泥岩和砂岩,透水性差,整体呈现出上部透水、下部隔水的二元结构,为滑坡体富水提供了有利条件。前缘堆积区上分布大面积的村庄、农田与灌溉排水设施,现今排水渠已多处损坏。在农田灌溉与生活废水排放的过程中,大量水体从排水渠中渗漏,使岩土体浸润甚至饱水,抗剪强度降低。同时,短期集中降雨形成的面流顺坡而下,形成面蚀或渗入裂缝中,增加容重和软化岩土体,同时带走坡体表面的松散物质并形成冲沟,严重破坏了坡体形态[21 − 24]。自2021年坡体上新建一排水渠后,鲁麦村农田灌溉用水和居民生活用水均通过该水渠进行疏排,降雨也经由该水渠集汇入冲沟处集中排泄,导致滑坡前缘冲沟范围逐渐扩大,滑坡前缘失稳边界不断后移,滑坡稳定性降低。
4.2 工程堆载对滑坡稳定性的影响
近年来,鲁麦古滑坡上不断新建公路,居民建房增加,开挖产生的工程渣土在滑坡堆积区前缘不断堆填。遥感影像分析(图5)与现场调查表明,鲁麦古滑坡前缘存在明显的工程渣土堆载区,堆载区主要由松散碎石土组成,与下面的粉质黏土夹碎石存在明显差异。从2017开始堆载区范围不断扩大,2017—2019年变化最为明显,堆载区面积增加约
1600 m2,2019—2021年和2021—2023年堆载区面积分别增加了约300 m2和100 m2,至今仍有新的工程渣土持续堆填于此。对比由无人机测绘与遥感数据获取的鲁麦古滑坡(A-A’)剖面处的高程信息发现,2023年堆载体高程较2019年增加了约25 m。随着前缘堆积区高度增加、坡度变陡、荷载增大,滑坡前缘堆积区稳定性下降,多次发生渐进后退式复活失稳,并牵引后部岩土体进一步发生变形[25 − 28]。5. 古滑坡复活失稳机制分析
鲁麦古滑坡复活变形区目前主要集中在堆积区,其复活变形受地表水入渗与人类工程活动的影响显著。因此,本文重点分析仅考虑地表水入渗和考虑地表水入渗与前缘堆载联合作用两种工况对古滑坡复活变形的影响机制。
5.1 模型概化及参数选取
基于滑坡区历史DEM数据与无人机测绘所得的精细高程数据,选取鲁麦古滑坡A—A’工程地质剖面为代表(图3),建立数值计算模型,模型水平长
1800 m,高550 m。采用犀牛(Rhion)软件对地质模型进行建模和网格划分,网格类型全部采用六面体单元,建模时对不同地层选用不同的单元体边长,在保障计算精度的同时减少计算冗余,共划分单元21730 个,节点7006 个,网格模型如图6所示。其中模型各侧立面采用法向约束,底面采用三向约束。根据滑坡岩土体特征,滑体材料选取弹塑性本构模型,强度准则为Mohr-Coulomb准则,同时采用强度折减法求取滑坡的稳定性系数。结合考虑岩土体室内物理力学试验结果,对地表水入渗工况下的滑体内摩擦角与内聚力按天然工况下岩土体参数的80%进行折减[29 − 31]。在堆载工况下,通过在原始滑坡模型前缘增加堆载体单元来实现堆载效果,堆载体的相关物理参数与粉质黏土夹碎石一致。体积模量(K)和剪切模量(G)分别由式(1)(2)计算取得,模拟计算时采用的岩体力学参数见表1。
岩性 体积模量
/MPa剪切模量
/MPa天然工况 地表水入渗工况 内聚力
/kPa内摩擦角
/(°)内聚力
/kPa内摩擦角
/(°)泥岩 5.4 3.8 50.0 32.0 40.0 25.6 粉质黏土
夹碎石4.2 2.1 12.0 15.0 9.6 12 $$ K = \frac{E}{{3(1 - 2v)}} $$ (1) $$ G = \frac{E}{{2(1 + v)}} $$ (2) 式中:K——体积模量/MPa;
E——弹性模量/MPa;
v——泊松比;
G——剪切模量/MPa。
5.2 模拟结果分析
(1)不同工况滑坡水平位移对比
对比不同工况下的水平位移模拟结果(图7)可知,不同工况下滑坡水平位移均出现在滑体前缘,主要原因为前缘地表坡度大,应力集中,易产生较大位移。在地表水入渗工况下,滑坡的最大水平位移由天然工况下的0.30 m增加到0.48 m,增幅约60%,变形区范围也在不断扩大,滑坡体水平位移主要集中在滑坡体前缘,见图7(b)。在地表渗水入渗工况下施加堆载后,与仅有地表水入渗下的古滑坡位移量相比,最大位移由0.48 m增加大到1.01 m,增幅达110%,最大位移集中分布在堆载区前缘,见图7(c)。滑坡前缘出现的地表裂缝等多种局部变形也与数值模拟结果一致。
(2)不同工况滑坡剪应变增量对比
对比地表水入渗工况与天然工况下的滑坡剪应变增量云图可知,见图8(b),天然工况下最大剪应变增量集中分布在滑坡堆积体前缘,且以浅表层为主。在地表水入渗工况下,最大剪应变增量由天然工况下的2.20增大到地表水入渗工况下的2.50,且最大剪应变增量集中区向堆积体内部和后部扩张,滑坡易发生浅表层滑动,牵引滑坡后部产生整体滑动。同时由施加堆载后的滑坡剪应变增量云图可知,见图8(c),滑坡最大剪应变增量值相较于古滑坡初始状态,其分布范围相差较大,最大剪应变增量分布区由堆积体前缘转移至堆载区,堆载后的最大剪应变增量增大至3.00,滑坡易发生高位剪出。
(3)不同工况稳定性对比
由模拟结果分析可知,天然工况下,滑坡稳定系数为1.13,见图8(a),处于基本稳定状态,在地表水入渗工况下滑坡稳定系数为1.043,见图8(b),降幅为6.3%,处于欠稳定状态。在滑坡体前缘堆载后,稳定系数减小至0.997,见图8(c),降幅达10.4%,滑坡体前缘出现局部变形。地表水入渗是古滑坡产生复活变形的重要因素,同时前缘工程渣土堆载加剧了古滑坡复活失稳。
6. 结论
(1)鲁麦古滑坡圈椅状地貌明显,其前缘剪出口与当许雄曲最大高差超过200 m,体积为2.5×106 ~15.1×106 m3,最深层的滑带位于堆积体与基岩接触面。
(2)鲁麦古滑坡地表复活变形特征明显,滑坡体前缘、中部均发育有大量横向裂缝。滑坡目前整体蠕滑变形,前缘浅表层岩土体处于加速变形中,并存在进一步失稳并堵塞当许雄曲的可能。
(3)鲁麦古滑坡复活变形受地表水入渗和前缘堆载影响明显。在地表水入渗条件下,前缘堆积体可能产生大范围浅层滑动,进而影响后部岩土体的稳定性;前缘堆载增加后,前缘堆积体可能发生高位剪出。地表水入渗和前缘堆载联合作用是古滑坡前部复活变形的重要诱发因素。
(4)鉴于鲁麦古滑坡目前的复活变形特征,建议密切加强综合监测,并及时做好滑坡体上的水渠修复,增加有效排水工程措施以减少地表水入渗,并严格控制滑坡前缘的进一步堆载。
致谢:安徽省地质矿产勘查局311地质队高级工程师胡培进、刘晓燕参与了野外调查工作,在此一并表示感谢!
-
表 1 鲁麦古滑坡数值模拟参数取值
Table 1 Numerical simulation parameter values for the Lumai ancient landslide
岩性 体积模量
/MPa剪切模量
/MPa天然工况 地表水入渗工况 内聚力
/kPa内摩擦角
/(°)内聚力
/kPa内摩擦角
/(°)泥岩 5.4 3.8 50.0 32.0 40.0 25.6 粉质黏土
夹碎石4.2 2.1 12.0 15.0 9.6 12 -
[1] 彭建兵,马润勇,卢全中,等. 青藏高原隆升的地质灾害效应[J]. 地球科学进展,2004,19(3):457 − 466. [PENG Jianbing,MA Runyong,LU Quanzhong,et al. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advances in Earth Science,2004,19(3):457 − 466. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1001-8166.2004.03.018 PENG Jianbing, MA Runyong, LU Quanzhong, et al. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2004, 19(3): 457 − 466. (in Chinese with English abstract) DOI: 10.3321/j.issn:1001-8166.2004.03.018
[2] 张永双,刘筱怡,吴瑞安,等. 青藏高原东缘深切河谷区古滑坡:判识、特征、时代与演化[J]. 地学前缘,2021,28(2):94 − 105. [ZHANG Yongshuang,LIU Xiaoyi,WU Ruian,et al. Cognization,characteristics,age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau,China[J]. Earth Science Frontiers,2021,28(2):94 − 105. (in Chinese with English abstract)] ZHANG Yongshuang, LIU Xiaoyi, WU Ruian, et al. Cognization, characteristics, age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau, China[J]. Earth Science Frontiers, 2021, 28(2): 94 − 105. (in Chinese with English abstract)
[3] 张永双,吴瑞安,郭长宝,等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展,2018,33(7):728 − 740. [ZHANG Yongshuang,WU Ruian,GUO Changbao,et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science,2018,33(7):728 − 740. (in Chinese with English abstract)] DOI: 10.11867/j.issn.1001-8166.2018.07.0728 ZHANG Yongshuang, WU Ruian, GUO Changbao, et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 2018, 33(7): 728 − 740. (in Chinese with English abstract) DOI: 10.11867/j.issn.1001-8166.2018.07.0728
[4] 王占巍,赵发睿,谢文苹,等. 青海省高家湾滑坡的形成条件分析及稳定性评价[J]. 水土保持通报,2020,40(3):81 − 87. [WANG Zhanwei,ZHAO Farui,XIE Wenping,et al. Formation condition analysis and stability evaluation of Gaojiawan landslide in Qinghai Province[J]. Bulletin of Soil and Water Conservation,2020,40(3):81 − 87. (in Chinese with English abstract)] WANG Zhanwei, ZHAO Farui, XIE Wenping, et al. Formation condition analysis and stability evaluation of Gaojiawan landslide in Qinghai Province[J]. Bulletin of Soil and Water Conservation, 2020, 40(3): 81 − 87. (in Chinese with English abstract)
[5] 刘涛,张明,王立朝,等. 江顶崖古滑坡形成演化机理与堆积体稳定性评价[J]. 地质科技通报,2024,43(3):272 − 284. [LIU Tao,ZHANG Ming,WANG Lichao,et al. Formation and evolution mechanism of Jiangdingya ancient landslide and stability evaluation of accumulation body [J]. Bulletin of Geological Science and Technology,2024,43(3):272 − 284. (in Chinese with English abstract)] LIU Tao, ZHANG Ming, WANG Lichao, et al. Formation and evolution mechanism of Jiangdingya ancient landslide and stability evaluation of accumulation body [J]. Bulletin of Geological Science and Technology, 2024, 43(3): 272 − 284. (in Chinese with English abstract)
[6] 郭长宝,张永双,刘定涛,等. 基于离心机模型试验的甘肃江顶崖古滑坡复活机理研究[J]. 工程地质学报,2022,30(1):164 − 176. [GUO Changbao,ZHANG Yongshuang,LIU Dingtao,et al. Centrifuge model test of reactivation mechanism of Jiangdingya ancient landslide in Gansu Province[J]. Journal of Engineering Geology,2022,30(1):164 − 176. (in Chinese with English abstract)] GUO Changbao, ZHANG Yongshuang, LIU Dingtao, et al. Centrifuge model test of reactivation mechanism of Jiangdingya ancient landslide in Gansu Province[J]. Journal of Engineering Geology, 2022, 30(1): 164 − 176. (in Chinese with English abstract)
[7] VASSILEVA M,MOTAGH M,ROESSNER S,et al. Reactivation of an old landslide in north–central Iran following reservoir impoundment:Results from multisensor satellite time-series analysis[J]. Engineering Geology,2023,327:107337. DOI: 10.1016/j.enggeo.2023.107337
[8] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433 − 454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433 − 454. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2007.03.001 HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433 − 454. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2007.03.001
[9] IVERSON R M,GEORGE D L,ALLSTADT K,et al. Landslide mobility and hazards:Implications of the 2014 Oso disaster[J]. Earth and Planetary Science Letters,2015,412:197 − 208. DOI: 10.1016/j.jpgl.2014.12.020
[10] 张永双,郭长宝,周能娟. 金沙江支流冲江河巨型滑坡及其局部复活机理研究[J]. 岩土工程学报,2013,35(3):445 − 453. [ZHANG Yongshuang,GUO Changbao,ZHOU Nengjuan. Characteristics of Chongjianghe landslide at a branch of Jinsha River and its local reactivation mechanism[J]. Chinese Journal of Geotechnical Engineering,2013,35(3):445 − 453. (in Chinese with English abstract)] ZHANG Yongshuang, GUO Changbao, ZHOU Nengjuan. Characteristics of Chongjianghe landslide at a branch of Jinsha River and its local reactivation mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 445 − 453. (in Chinese with English abstract)
[11] ZHANG Chenyang,YIN Yueping,DAI Zhenwei,et al. Reactivation mechanism of a large-scale ancient landslide[J]. Landslides,2021,18(1):397 − 407. DOI: 10.1007/s10346-020-01538-9
[12] ZHANG Yongshuang,REN Sanshao,LIU Xiaoyi,et al. Reactivation mechanism of old landslide triggered by coupling of fault creep and water infiltration:A case study from the East Tibetan Plateau[J]. Bulletin of Engineering Geology and the Environment,2023,82(8):291. DOI: 10.1007/s10064-023-03290-5
[13] TU Guoxiang,HUANG Da,DENG Hui. Reactivation of a huge ancient landslide by surface water infiltration[J]. Journal of Mountain Science,2019,16(4):806 − 820. DOI: 10.1007/s11629-018-5315-5
[14] 吴瑞安,张永双,郭长宝,等. 川西松潘上窑沟古滑坡复活特征及危险性预测研究[J]. 岩土工程学报,2018,40(9):1659 − 1667. [WU Ruian,ZHANG Yongshuang,GUO Changbao,et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering,2018,40(9):1659 − 1667. (in Chinese with English abstract)] DOI: 10.11779/CJGE201809012 WU Ruian, ZHANG Yongshuang, GUO Changbao, et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659 − 1667. (in Chinese with English abstract) DOI: 10.11779/CJGE201809012
[15] 李军霞. 西藏隆子县滑坡灾害形成机理及非线性预测研究[D]. 长春:吉林大学,2011. [LI Junxia. Study on formation mechanism and nonlinear prediction of landslide disaster in Longzi County,Tibet[D]. Changchun:Jilin University,2011. (in Chinese with English abstract)] LI Junxia. Study on formation mechanism and nonlinear prediction of landslide disaster in Longzi County, Tibet[D]. Changchun: Jilin University, 2011. (in Chinese with English abstract)
[16] 詹美强,葛永刚,贾利蓉,等. 藏东德弄弄巴古滑坡堆积体物理力学特征及稳定性分析[J]. 现代地质,2019,33(5):1118 − 1127. [ZHAN Meiqiang,GE Yonggang,JIA Lirong,et al. Study on physical and mechanical characteristics and stability analysis of ancient landslide deposit in east Tibet[J]. Geoscience,2019,33(5):1118 − 1127. (in Chinese with English abstract)] ZHAN Meiqiang, GE Yonggang, JIA Lirong, et al. Study on physical and mechanical characteristics and stability analysis of ancient landslide deposit in east Tibet[J]. Geoscience, 2019, 33(5): 1118 − 1127. (in Chinese with English abstract)
[17] 边巴仁青,陈黎,周维德. 西藏措美县拉琼金锑矿成矿地质特征及找矿远景分析[J]. 西部资源,2019(6):36 − 37. [BIANBA Renqing,CEHN Li,ZHOU Weide. Analyses of metallogenic geological features and prospecting of gold and antimony ore in Lachung,Tsome County,Tibet[J]. Western Resources,2019(6):36 − 37. (in Chinese)] DOI: 10.3969/j.issn.1672-562X.2019.06.015 BIANBA Renqing, CEHN Li, ZHOU Weide. Analyses of metallogenic geological features and prospecting of gold and antimony ore in Lachung, Tsome County, Tibet[J]. Western Resources, 2019(6): 36 − 37. (in Chinese) DOI: 10.3969/j.issn.1672-562X.2019.06.015
[18] 徐玢. 西藏夏瓦地区中生代地层特征及沉积演化研究[D]. 昆明:云南大学,2019. [XU Fen. Study on mesozoic stratigraphic characteristics and sedimentary evolution in Xiawa area,Tibet[D]. Kunming:Yunnan University,2019. (in Chinese with English abstract)] XU Fen. Study on mesozoic stratigraphic characteristics and sedimentary evolution in Xiawa area, Tibet[D]. Kunming: Yunnan University, 2019. (in Chinese with English abstract)
[19] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 中国地震动参数区划图:GB 18306—2015[S]. 北京:中国标准出版社,2016. [General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Seismic ground motion parameters zonation map of China:GB 18306—2015[S]. Beijing:Standards Press of China,2016. (in Chinese)] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Seismic ground motion parameters zonation map of China: GB 18306—2015[S]. Beijing: Standards Press of China, 2016. (in Chinese)
[20] 姚晓峦. 基于GIS的藏南江孜-隆子地区扎西康式锑矿成矿预测[D]. 北京:中国地质大学(北京),2012. [YAO Xiaoluan. GIS-based metallogenic prediction of Zhaxikang antimony deposit in Gyangze-Longzi area,southern Tibet[D]. Beijing:China University of Geosciences,2012. (in Chinese with English abstract)] YAO Xiaoluan. GIS-based metallogenic prediction of Zhaxikang antimony deposit in Gyangze-Longzi area, southern Tibet[D]. Beijing: China University of Geosciences, 2012. (in Chinese with English abstract)
[21] 王伟,王卫,戴雄辉. 四川美姑拉马阿觉滑坡复活特征与影响因素分析[J]. 中国地质灾害与防治学报,2022,33(4):9 − 17. [WANG Wei,WANG Wei,DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):9 − 17. (in Chinese with English abstract)] WANG Wei, WANG Wei, DAI Xionghui. Analysis of reactivated characteristics and influencing factors of the Lamajue landslide in Meigu County of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 9 − 17. (in Chinese with English abstract)
[22] 陈云生,刘光彬,张一铭,等. 阳鹿高速公路K52新滑坡变形特征与成因机理分析[J]. 中国地质灾害与防治学报,2022,33(1):83 − 91. [CHEN Yunsheng,LIU Guangbin,ZHANG Yiming,et al. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):83 − 91. (in Chinese with English abstract)] CHEN Yunsheng, LIU Guangbin, ZHANG Yiming, et al. Deformation characteristics and genetic mechanism of a new landslide at K52 of Luyang freeway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 83 − 91. (in Chinese with English abstract)
[23] 王斌,李洁涛,王佳俊,等. 强降雨诱发堆积体滑坡模型试验研究[J]. 岩土力学,2023,44(增刊1):234 − 248. [WANG Bin,LI Jietao,WANG Jiajun,et al. Model tests on accumulation landslides induced by extreme rainfall[J]. Rock and Soil Mechanics,2023,44(Sup 1):234 − 248. (in Chinese with English abstract)] WANG Bin, LI Jietao, WANG Jiajun, et al. Model tests on accumulation landslides induced by extreme rainfall[J]. Rock and Soil Mechanics, 2023, 44(Sup 1): 234 − 248. (in Chinese with English abstract)
[24] ROSONE M,ZICCARELLI M,FERRARI A,et al. On the reactivation of a large landslide induced by rainfall in highly fissured clays[J]. Engineering Geology,2018,235:20 − 38. DOI: 10.1016/j.enggeo.2018.01.016
[25] 赵建军,解明礼,余建乐,等. 工程荷载诱发填方边坡变形破坏机制试验研究[J]. 工程地质学报,2019,27(2):426 − 436. [ZHAO Jianjun,XIE Mingli,YU Jianle,et al. Experimental study on deformation and failure mecha-nism of fill embankment slope due to engineering load[J]. Journal of Engineering Geology,2019,27(2):426 − 436. (in Chinese with English abstract)] ZHAO Jianjun, XIE Mingli, YU Jianle, et al. Experimental study on deformation and failure mecha-nism of fill embankment slope due to engineering load[J]. Journal of Engineering Geology, 2019, 27(2): 426 − 436. (in Chinese with English abstract)
[26] 牟海峰. 基于工程堆载作用的山区堆积体斜坡滑坡机制及处治技术[D]. 重庆:重庆交通大学,2023. [MOU Haifeng. Mechanism and treatment technology of landslide in mountainous accumulation slope based on engineering surcharge[D]. Chongqing:Chongqing Jiaotong University,2023. (in Chinese with English abstract)] MOU Haifeng. Mechanism and treatment technology of landslide in mountainous accumulation slope based on engineering surcharge[D]. Chongqing: Chongqing Jiaotong University, 2023. (in Chinese with English abstract)
[27] 贺可强,阳吉宝,王思敬. 堆积层滑坡位移动力学理论及其应用:三峡库区典型堆积层滑坡例析[M]. 北京:科学出版社,2007. [HE Keqiang,YANG Jibao,WANG Sijing. Displacement dynamics theory on debris landslides & its application[M]. Beijing:Science Press,2007. (in Chinese)] HE Keqiang, YANG Jibao, WANG Sijing. Displacement dynamics theory on debris landslides & its application[M]. Beijing: Science Press, 2007. (in Chinese)
[28] WANG Qing,YAO Lei hua,ZHANG Ning. Application study on the stability of Xiufengsi landslide by using limit equilibrium method and finite element method[J]. Advanced Materials Research,2013,671/672/673/674:180 − 185.
[29] LI Xiao,LIAO Qinlin,HE Jianming. In situ tests and a stochastic structural model of rock and soil aggregate in the Three Gorges Reservoir area,China[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(3):494. DOI: 10.1016/j.ijrmms.2003.12.030
[30] 张强,郑艳妮,贾朝军,等. 复杂水库调度及降雨条件下堆积体滑坡离心试验研究[J]. 岩石力学与工程学报,2023,42(10):2427 − 2440. [ZHANG Qiang,ZHENG Yanni,JIA Chaojun,et al. Centrifugal experimental study on accumulation body landslides under complex reservoir operation and rainfall conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(10):2427 − 2440. (in Chinese with English abstract)] ZHANG Qiang, ZHENG Yanni, JIA Chaojun, et al. Centrifugal experimental study on accumulation body landslides under complex reservoir operation and rainfall conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(10): 2427 − 2440. (in Chinese with English abstract)
[31] CHEN Dongqi. Research on the relationship between landslide of farming terraces and the intensity of rainfall and slope angle based on the indoor rainfall slide slope model[J]. International Journal Bioautomation,2016,20(1):135 − 142.