ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

藏东红层地区断裂对泥石流物源的控制作用以西藏贡觉县哇曲中游流域为例

高波, 张佳佳, 陈龙, 田尤, 刘建康

高波,张佳佳,陈龙,等. 藏东红层地区断裂对泥石流物源的控制作用−以西藏贡觉县哇曲中游流域为例[J]. 中国地质灾害与防治学报,2023,34(5): 20-31. DOI: 10.16031/j.cnki.issn.1003-8035.202303029
引用本文: 高波,张佳佳,陈龙,等. 藏东红层地区断裂对泥石流物源的控制作用−以西藏贡觉县哇曲中游流域为例[J]. 中国地质灾害与防治学报,2023,34(5): 20-31. DOI: 10.16031/j.cnki.issn.1003-8035.202303029
GAO Bo,ZHANG Jiajia,CHEN Long,et al. Analysis of the control effect of faults on material sources of debris flows in the red bed region of eastern Tibet: A case study of Waqu middle reaches in Gongjue County, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 20-31. DOI: 10.16031/j.cnki.issn.1003-8035.202303029
Citation: GAO Bo,ZHANG Jiajia,CHEN Long,et al. Analysis of the control effect of faults on material sources of debris flows in the red bed region of eastern Tibet: A case study of Waqu middle reaches in Gongjue County, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5): 20-31. DOI: 10.16031/j.cnki.issn.1003-8035.202303029

藏东红层地区断裂对泥石流物源的控制作用——以西藏贡觉县哇曲中游流域为例

基金项目: 中国地质调查局地质调查项目(DD20190644;DD20230644);第二次青藏高原综合科学考察研究项目(2019QZKK0902);国家自然科学基金项目(41807300)
详细信息
    作者简介:

    高 波(1990-),男,陕西咸阳人,地质工程专业,硕士,工程师,主要从事地质灾害调查和科研工作。E-mail:gaobo@mail.cgs.gov.cn

  • 中图分类号: P642.23;P694

Analysis of the control effect of faults on material sources of debris flows in the red bed region of eastern Tibet: A case study of Waqu middle reaches in Gongjue County, Tibet

  • 摘要: 哇曲为金沙江二级支流,位于藏东昌都红层地区贡觉县,流域中游为高山峡谷区,是县域内典型的降雨型泥石流集中发育区。该区泥石流在发育密度、规模、活动性等特征上均高于全县平均水平,且泥石流的发育表现出了与断裂的强烈相关性。基于现场调查,结合无人机航空摄影对哇曲流域泥石流发育特征和主要影响因素进行了探讨分析,得到以下结论:(1)哇曲中游集中发育19条小—中型降雨型泥石流,发育密度0.84条/km,远高于全县0.009条/km2的平均水平;左岸泥石流在发育密度、流域面积、主沟长度、堆积体积等特征上均高于(大于)右岸,左右岸泥石流呈明显差异分布。(2)哇曲中游右岸泥石流物源以风化碎屑类物源为主,呈全沟域分布;左岸泥石流以崩滑物源和风化碎屑为主,集中分区在沟谷中上游,总量较右岸大,其中断层破碎带内物源量占比大,成为左岸泥石流的主要物源。(3)断裂是影响哇曲中游泥石流集中发育且呈现差异分布的最主要因素,主要体现在对物源条件的控制上。(4)断裂以改变岩体结构、控制地层分布、改变微地貌和地下水条件等方式控制泥石流物源条件,导致两岸泥石流物源形成速率和物源量明显不同,成为泥石流差异分布的根本原因。
    Abstract: Waqu, a second-order tributary of the Jinsha River, is located in Gongjue County within the red bed region of Changdu, eastern Tibet. The middle reaches of the basin form a high-mountain canyon zone, serving as a distinctive locus of concentrated rainfall-induced debris flow development area in the county. The density, scale, and activity of debris flow in this area surpass the county’s average level, and the debris flows show a strong correlation with fault structures. Based on field investigation and UAV aerial photography, this paper discusses and scrutinizes the developmental characteristics and principal influencing factors of debris flow within Waqu basin. The findings are as follows: (1) 19 small to medium-scale rainfall-induced debris flows are intensively developed in the middle reaches of the Waqu River, with a development density of 0.84 flows/km, significantly higher than the country-wide average of 0.009 flows/km2. Debris flow on the left bank are characterized by higher development density, drainage area, main channel length, and deposition volume compared to those on the right bank, showing distinct differences in distribution. (2) Debris flow sources on the right bank of the middle reaches are primarily composed of weathered detrital material, distributed throughout the entire watershed. On the left bank, debris flows are dominated by rockslide debris and weathered detrital material, primarily concentrated in the upper and middle reaches of the valley, with a larger overall volume compared to the right bank. The proportion of debris flow sources within the fractured zone of the fault is significant, making it a primary source for debris flows on the left bank. (3) Fault structures are the most significant factor influencing the concentrated development and distinct distribution of debris flows in the middle reaches of the Waqu river, primarily in controlling source conditions. (4) Faults control debris flow source conditions by altering rock mass structure, controlling stratum distribution, modifying microtopography, and changing groundwater conditions, leading to significant differences in source formation rates and volumes between the two banks, which is the fundamental cause of the differential distribution of debris flows.
  • 随着我国经济发展战略向西部倾斜,西部地区交通基础建设工程数量正逐年递增,工程建设虽然给西部地区提供了新的发展机遇,但也因此产生了大量的土质路堑边坡,在降雨作用下路堑边坡频发滑塌灾害,严重影响公路的生态建设及安全运营。

    降雨条件下,路堑边坡塌滑灾害已成为制约山区公路建设的重要问题之一。目前,相关学者[1]认为一般情况下降雨诱发的为浅层斜坡破坏;李同录等[2]认为边坡浅层滑移是降雨坡面直接入渗引起,且浅层滑移的厚度相当于湿润锋的深度,一般不超过2 m;石诚鋆等[3]通过数值模拟分析了降雨条件下坡比、坡高、雨强、降雨历时以及土体渗透系数等因素对边坡稳定性的影响;蔡荣坤等[4]依托实际工程案例,重点分析降雨强度、降雨历时及边坡坡率对边坡潜在滑动模式的影响;孙萍萍等[5]基于Hydrus中的Slope Cube模块,通过数值模拟手段分析了不同坡型的黄土边坡在降雨条件下的浅层破坏过程以及破坏机制;胡华等[6]通过模拟室内降雨滑坡试验,比较了不同坡度和降雨强度条件下的斜坡滑塌破坏机理;杜忠原等[7]和李宁等[8]分别通过数值模拟研究了降雨条件下锚杆和抗滑桩支护作用对边坡稳定性的影响,并分析了不同支护条件下边坡浅层的破坏形态。但关于降雨条件下路堑边坡浅层塌滑机制及其影响因素的主次关系研究不够深入。

    本文依托甘肃省双达高速公路K28段路堑边坡,首先通过FLAC3D有限元软件平台的二次开发技术编写FISH语言,实现饱和度、重度和土体抗剪强度之间的动态关联,然后基于强度折减法分析不同变量下(降雨强度、降雨历时和坡比)路堑边坡的安全系数和破坏形式,并根据灰色关联理论分析各变量对边坡稳定性影响程度的主次关系,最后分别通过室内降雨试验和现场生态防护试验总结出路堑边坡浅层塌滑机制,提出浅层塌滑的生态防治措施,研究成果对降雨条件下路堑边坡浅层塌滑灾害防治具有参考价值。

    灰色关联分析法是通过比较自变量和因变量数据序列曲线的几何形状相似度,并据此判断两者之间的关联性[9],其具体步骤如下:

    (1)原始数据无量纲和归一化

    将边坡安全系数的影响因素作为自变量参考矩阵X,将边坡的安全系数作为因变量参考矩阵Y,矩阵 X和矩阵 Y相似,其中矩阵X为:

    $$ {{{\boldsymbol{X}}}} = \left[ {\begin{array}{*{20}{c}} {{{{X}}_1}} \\ {{{{X}}_2}} \\ \vdots \\ {{{{X}}_m}} \end{array}} \right] = {\left[ {\begin{array}{*{20}{c}} {{{{x}}_{11}}}&{{{{x}}_{12}}}& \cdots &{{{{x}}_{1n}}} \\ {{x_{21}}}&{{x_{22}}}& \cdots &{{{{x}}_{2n}}} \\ \vdots & \vdots & \ddots & \vdots \\ {{{{x}}_{m1}}}&{{{{x}}_{m2}}}& \cdots &{{{{x}}_{mn}}} \end{array}} \right]^{{{m}} \times {{n}}}} $$ (1)

    通过无量纲和归一化参考矩阵X可得:

    $$ {{{\boldsymbol{X}}'}} = \left[ {\begin{array}{*{20}{c}} {{X'_1}} \\ {{X'_2}} \\ \vdots \\ {{X'_m}} \end{array}} \right] = {\left[ {\begin{array}{*{20}{c}} {\frac{{{{n}}{{{x}}_{11}}}}{{\displaystyle\sum\limits_{{{j}} = 1}^{{n}} {{{{x}}_{1j}}} }}}&{\frac{{{{n}}{{{x}}_{12}}}}{{\displaystyle\sum\limits_{{{j}} = 1}^{{n}} {{{{x}}_{1j}}} }}}& \cdots &{\frac{{{{n}}{{{x}}_{1n}}}}{{\displaystyle\sum\limits_{{{j}} = 1}^{{n}} {{{{x}}_{1j}}} }}} \\ {\frac{{{{n}}{{{x}}_{21}}}}{{\displaystyle\sum\limits_{{{j}} = 1}^{{n}} {{{{x}}_{2j}}} }}}&{\frac{{{{n}}{{{x}}_{22}}}}{{\displaystyle\sum\limits_{{{j}} = 1}^{{n}} {{{{x}}_{2j}}} }}}& \cdots &{\frac{{{{n}}{{{x}}_{2n}}}}{{\displaystyle\sum\limits_{{{j}} = 1}^{{n}} {{{{x}}_{2j}}} }}} \\ \vdots & \vdots & \ddots & \vdots \\ {\frac{{{{n}}{{{x}}_{m1}}}}{{\displaystyle\sum\limits_{{{j}} = 1}^{{n}} {{{{x}}_{mj}}} }}}&{\frac{{{{n}}{{{x}}_{m2}}}}{{\displaystyle\sum\limits_{{{j}} = 1}^{{n}} {{{{x}}_{mj}}} }}}& \cdots &{\frac{{{{n}}{{{x}}_{mn}}}}{{\displaystyle\sum\limits_{{{j}} = 1}^{{n}} {{{{x}}_{mj}}} }}} \end{array}} \right]^{{{m}} \times {{n}}}} $$ (2)

    同理,可计算出无量纲和归一化后因变量参考矩阵$ {{{\boldsymbol{Y}}'}} $

    (2)关联系数计算

    对归一化后的自变量参考矩阵${{\boldsymbol{X}}'_{{{mn}}}}$和因变量参考矩阵${{\boldsymbol{Y}}'_{{{mn}}}}$进行差异性分析,其差异性矩阵为:

    $$ {\Delta }_{{mn}}={\left[\left|X '_{1}-Y '_{1}\right|{,}\left|X '_{2}-Y '_{2}\right|{,}\cdots {,}\left|X '_{{m}}-Y '_{{m}}\right|\right]}^{{{T}}} $$ (3)

    由式(3)可得到差异性矩阵元素的最大值和最小值分别为:

    $$ {{M}} = {\text{max}}({\Delta _{{{mn}}}}) $$ (4)
    $$ {{m}} = {\text{min}}({\Delta _{{{mn}}}}) $$ (5)

    自变量和因变量对应元素间的关联系数为:

    $$ \xi ({\Delta _{{{mn}}}}) = \frac{{{{m}} + \rho \cdot {{M}}}}{{{\Delta _{{{mn}}}} + \rho \cdot {{M}}}} $$ (6)

    式中:ξ(∆mn) ——关联系数矩阵,这里ξ(∆mn)其实是差 异序列矩阵∆mn的灰色关联系数矩阵;

    Mm——差异序列矩阵元素的最大值和最小值;

    ρ——分辨系数,$ \rho \in [0,1] $,一般取0.5。

    (3)灰色关联度计算

    根据式(6)将各因素的关联系数均值作为该因素评价指标的关联度ri

    $$ {{{r}}_{{m}}} = \frac{1}{{{n}}}\sum\limits_{{\rm{j}} = 1}^{\rm{n}} \xi ({\Delta _{{{mn}}}})$$ (7)

    式中:n——计算对象数量。

    根据式(7)可求出各因素关联度,按照从大到小的顺序进行排列,ri值越大,自变量和因变量间的关联度越高,即自变量对因变量的影响最大。

    双达高速某路堑边坡位于甘肃省临夏县、夏河县与青海省循化县交界处K28+655—K28+800段,坡体高度为6.72 m,坡度为1∶1,采用拱形骨架植草护坡,坡体上部为碎石土,以粉质黏土为主,颜色呈灰褐色,密实程度为稍密或中密,室内测得天然含水率平均值为23.52%,其中碎石含量约为20%,粒径为20~60 mm,层厚3.6 m;中部为全风化闪长岩,构造基本风化破坏,岩芯破碎,多呈泥柱状,含少量碎块状,层厚5.5 m;下部为强风化闪长岩,块状构造,矿物成分以辉石、角闪石等为主,节理裂隙较发育,岩芯破碎,多呈碎块状,少量短柱状,层厚10.3 m,其现场全貌见图1

    图  1  双达高速公路某粉质黏土路堑边坡滑塌现象
    Figure  1.  Site photo of collapsed slope in a silty clay cutting slope along the Shuangcheng to Dalijia expressway

    根据现场情况设置坡体高度为6.72 m,坡比为1∶1,降雨强度为5 mm/h,降雨历时为48 h,地表基质吸力为50 kPa,基质吸力沿深度呈线性分布。降雨过程中,若降雨强度小于或等于坡体最外侧土体入渗率时,入渗率取降雨强度,反之则取土体最大渗透系数。模型侧面及底面固定,侧面设置为不透水边界,模型底部设置为透水边界,选用各向同性渗流模型,土体本构为Mohr-Coulomb模型。设置M1、M2和M3剖面分别监测坡脚、坡中和坡肩部位的孔隙水压力变化,模型尺寸及网格划分如图2所示,相关参数见表1

    图  2  模型尺寸及网格划分
    Figure  2.  Model mesh size and mesh division
    表  1  土体材料参数
    Table  1.  Basic physical parameters of undisturbed soil
    弹性模量
    /MPa
    泊松比密度
    /(g·cm−3
    渗透系数
    /(cm·s−1
    有效黏聚力
    /kPa
    有效内摩擦
    角/(°)
    12.000.31.884.5×10-526.728.5
    下载: 导出CSV 
    | 显示表格

    通过压力膜仪获取不同含水率对应的基质吸力(图3试验数据),然后结合Van-Genuchten数学模型[10]得到体积含水率和基质吸力之间的关系,拟合出相应的土水特征曲线(图3拟合曲线),并计算出相应的VG模型参数(表2),其中θs为饱和体积含水率, θr为残余体积含水率,αn为拟合参数 ,R2为拟合度。

    图  3  土-水特征曲线
    Figure  3.  Soil-water characteristic curve
    表  2  VG模型参数
    Table  2.  Summary table of VG model parameters
    参数θsθrαnR2
    取值0.45920.08370.07201.26610.9655
    下载: 导出CSV 
    | 显示表格

    现采用剪切速率为0.8 mm/min的电动四联式等应变控制直剪仪(南京土壤仪器有限公司生产)进行不同含水率试样的直剪试验,取土深度约为1.5m,其土体抗剪强度参数随含水率的变化关系如图4所示。

    图  4  不同含水率下土体抗剪强度参数
    Figure  4.  Shear strength parameter of soil at different water content

    图4可知土体黏聚力在含水率15%~18%范围内发生突变,因此可采用分段式函数拟合黏聚力和含水率的关系。室内试验测得土体比重Gs=2.71,孔隙比e=0.82,根据饱和度Sr和含水率w之间的关系可得:

    $$ \left\{ \begin{gathered} {{{c}}_{{1}}}{{ = }} - 10.7{{{S}} _{{{\rm{r}}}}}{{ + }}26.703,\;\;{{{S}} _{{{\rm{r}}}}} < 45.70\% \\ {{{c}}_{{2}}}{{ = }} - 42.5{{{S}} _{{{\rm{r}}}}}{{ + }}44.236,\;\;{{{S}} _{{{\rm{r}}}}} \geqslant 45.70\% \\ \end{gathered} \right. $$ (8)
    $$ \varphi {\text{ = }} - 5.6{{{S}}_{\text{r}}}{\text{ + }}28.541 $$ (9)

    式中:Sr——饱和度/%;

    c1c2——不同饱和度(含水率)条件下试样的总黏 聚力/kPa,c1为饱和度小于45.70%时试 样的总黏聚力,c2为饱和度大于或等于 45.70%时试样的总黏聚力;

    φ——总内摩擦角/(°)。

    Fredlund等[11]在1978年建立了非饱和土的双变量抗剪强度公式,其表达式为:

    $$ {\tau _{{{\rm{f}}}}} = {{c'}} + \left( {\sigma - {{{u}}_{{{\rm{a}}}}}} \right)\tan \varphi ' + \left( {{{{u}}_{{{\rm{a}}}}} - {{{u}}_{{{\rm{w}}}}}} \right)\tan {\varphi ^{{{\rm{b}}}}} $$ (10)

    式中:τf——非饱和土抗剪强度/kPa;

    $ {{c'}} $$ \varphi ' $——土体有效抗剪强度参数,单位分别为kPa 和°;

    $\sigma - {{{u}}_{\rm{a}}}$——净法向应力/kPa;

    ${{{u}}_{\rm{a}}}$——孔隙气压力/kPa;

    ${{{u}}_{\rm{w}}}$——孔隙水压力/kPa;

    ${{{u}}_{\rm{a}}} - {{{u}}_{\rm{w}}}$——基质吸力/kPa;

    φb——受基质吸力影响的内摩擦角/(°)。

    为将有效黏聚力和吸附强度叠加起来,可采用总黏聚力表示基质吸力影响下土体抗剪强度变化[12],其表达式为:

    $$ {{c}} = {{c'}} + \left( {{{{u}}_{\rm{a}}} - {{{u}}_{\rm{w}}}} \right)\tan {\varphi ^{{{\rm{b}}}}} $$ (11)

    式中:c——总黏聚力/kPa。

    将式(11)代入式(10)可得修正后的Fredlund非饱和土抗剪强度公式为:

    $$ {\tau _{{{\rm{f}}}}} = {{c}} + \left( {\sigma - {{{u}}_{\rm{a}}}} \right)\tan \varphi $$ (12)

    将式(8)—(9)代入式(12)可建立以饱和度为变量的分段式抗剪强度公式和湿重度公式:

    $$ \left\{ \begin{gathered} {\tau _{{{{\rm{f}}}}1}} = {{{c}}_1} + (\sigma - {{{u}}_{\rm{a}}})\tan \varphi \\ {\tau _{{{{\rm{f}}}}2}} = {{{c}}_2} + (\sigma - {{{u}}_{\rm{a}}})\tan \varphi \\ {\gamma _{{{\rm{w}}}}} = {\gamma _{{{\rm{d}}}}}(1 + 0.303{{{S}} _{{{\rm{r}}}}}) \\ \end{gathered} \right. $$ (13)

    式中:rw——土体湿重度/(kN·m−3);

    rd——土体干重度/(kN·m−3);

    Sr——饱和度/%;

    τf1τf2——分段抗剪强度/kPa;

    $(\sigma - {{{u}}_{\rm{a}}}) $——净法向应力/kPa;

    ua——孔隙气压力/kPa。

    通过FLAC3D软件分别提取不同时刻下M1、M2和M3监测断面的孔隙水压力随深度的变化曲线(图5)。

    图  5  降雨过程中孔隙水压力随深度分布变化曲线
    Figure  5.  Variation curve of pore water pressure distribution with depth during rainfall process

    图5可知降雨过程中,M3监测断面(坡肩)土体的孔隙水压力最先开始变化,M1监测断面(坡脚)土体的孔隙水压力最后开始变化。降雨48 h时,边坡整体暂态饱和区成“J”型分布,其中M1、M3监测断面孔隙水压力变化深度分别为2.5 m和2 m,而M2(坡中)监测断面孔隙水压力变化深度和孔隙水压力开始变化时间均处于两者之间,综上所述可知坡脚部位的暂态饱和区深度高于坡肩。

    现基于强度折减法,通过FLAC3D数值软件可得到路堑边坡在降雨前后的最大剪应变增量云图(图6)。

    图  6  降雨前后路堑边坡最大剪应变增量图
    Figure  6.  Maximum shear strain increment of slope before and after rainfall

    图6可以看出降雨过程中,路堑边坡的破坏模式由深层整体滑动向浅层局部滑动演化,降雨结束后,路堑边坡的安全系数(Fs)降低了82.32%,这是由于降雨入渗作用导致坡表土体内部孔隙水压力增加,有效应力降低,而且路堑边坡浅层土体由于含水率增加而导致自重增加,两者作用下最终导致坡体中上部浅层土体发生浅层塌滑,这也与现场浅层塌滑情况相吻合。

    降雨过程中,影响边坡稳定性的外界因素很多,其中降雨强度、坡比和降雨历时是最主要的外界影响因素[413]。现在原数值模拟基础上,通过FLAC3D软件分别计算不同坡比、降雨强度和降雨历时条件下边坡的安全系数(表3)。

    表  3  边坡降雨前后安全系数
    Table  3.  Safety factor of slope before and after rainfall
    坡比降雨
    强度/
    (mm·h−1
    降雨
    历时/h
    初始安全
    系数
    降雨结束时
    安全系数
    1∶0.55242.682.490
    1∶0.755242.922.750
    1∶15243.283.120
    1∶1.255243.303.180
    1∶12.5243.283.230
    1∶15243.283.120
    1∶17.5243.281.250
    1∶110243.281.110
    1∶15123.283.210
    1∶15243.283.120
    1∶15323.281.575
    1∶15483.280.580
    下载: 导出CSV 
    | 显示表格

    降雨条件下,将边坡稳定性的评价标准可看成外界主要因素的影响函数,假定X1为坡比,X2为降雨强度,X3为降雨历时,降雨前后边坡安全系数变化幅度为Y,边坡安全系数的函数表达式为:

    $$ {{{F}}_{{{\rm{s}}}}}{{ = f}}({{{X}}_1}{{,}}{{{X}}_2}{{,}}{{{X}}_3}) $$ (14)

    现采用Matlab软件进行灰色关联度分析,根据表3可知外界主要影响因素构成的矩阵为:

    $$ {\boldsymbol{X}}{\text{ = }}\left[ \begin{gathered} {X_1} \\ {X_2} \\ {X_3} \\ \end{gathered} \right] = \left[ {\begin{array}{*{20}{c}} 2 &1.33 &1 &0.8 \\ 2.5 &5 &7.5 &10 \\ 12 &24 &32 &48 \end{array}} \right] $$ (15)

    降雨过程中边坡安全系数降低幅值矩阵为:

    $$ {{{\boldsymbol{Y}} = }}\left[ \begin{gathered} {Y_1} \\ {Y_2} \\ {Y_3} \\ \end{gathered} \right] = \left[ {\begin{array}{*{20}{c}} 0.19 &0.17 &0.16 &0.12 \\ 0.05 &0.16 &2.03 &2.17 \\ 0.07 &0.16 &1.705 &2.7 \end{array}} \right] $$ (16)

    分别对因变量矩阵数据和自变量矩阵数据进行均值无量纲和归一化可得:

    $$ {\boldsymbol{X}}'{\text{ = }}\left[ \begin{gathered} {X'_1} \\ {X'_2} \\ {X'_3} \\ \end{gathered} \right] = \left[ {\begin{array}{*{20}{c}} 1.559 &1.037 &0.780 &0.624 \\ 0.4 &0.8 &1.2 &1.6\\ 0.4 &0.8 &1.2 &1.6 \end{array}} \right] $$ (17)
    $$ {{{\boldsymbol{Y}}' = }}\left[ \begin{gathered} {Y'_1} \\ {Y'_2} \\ {Y'_3} \\ \end{gathered} \right] = \left[ {\begin{array}{*{20}{c}} 1.187 &1.063 &1.000 &0.750 \\ 0.045 &0.145 &1.841 &1.968 \\ 0.060 &0.138 &1.471 &2.330 \end{array}} \right] $$ (18)

    由式(17)—(18)可得差异序列矩阵$\Delta_{{mn}} $为:

    $$ \Delta_{{mn}}{{ = }}\left[ {\begin{array}{*{20}{c}} 0.372 &0.025 &0.220 &0.126\\ 0.335 &0.655 &0.641 &0.368\\ 0.340 &0.662 &0.271 &0.730 \end{array}} \right] $$ (19)

    根据式(19)可知m=0.022,M=0.663,根据式(6)可得到灰色关联系数矩阵为:

    $$ {\boldsymbol{\xi }}{\text{ = }}\left[ {\begin{array}{*{20}{c}} 0.530 &1 &0.667 &0.795\\ 0.543 &0.383 &0.388 &0.533 \\ 0.554 &0.380 &0.614 &0.357 \end{array}} \right] $$ (20)

    将式(20)代入式(7)可得到坡比、降雨强度和降雨历时三者与降雨过程中边坡安全系数降低幅度之间的关联度为:

    $$ {{{\boldsymbol{r}}}}_{\rm{m}} = {\left[ {\begin{array}{*{20}{c}} {0.748}&{0.462}&{0.476} \end{array}} \right]^{{T}}} $$ (21)

    由式(21)可知r1=0.748,r2=0.462,r3=0.476,因此r1>r3>r2,而又由于X1为坡比,X2为降雨强度,X3为降雨历时,故基于灰色关联理论可知坡比对降雨条件下的边坡安全系数影响最大,其余依次为降雨历时和降雨量。

    由于坡比是影响降雨条件下路堑边坡安全系数的最大敏感因子,因此在原数值模拟参数(降雨历时为48 h,降雨强度为5 mm/h,坡比为1∶1)基础上,通过FLAC3D软件分别提取降雨48 h后不同坡比的剪应变增量云图(图7)。

    图  7  不同坡比条件下边坡最大剪应变增量图
    Figure  7.  Maximum shear strain increment of slope under different slope ratios

    对比图67可知随着降雨历时的增加,路堑边坡潜在深层滑动面不断向浅层移动,且随着坡比的减小,浅层塌滑区区域逐渐由坡肩部位向坡脚部位移动。分析认为降雨过程中,坡面浅层孔隙水压力升高导致有效应力降低(图5),当路堑边坡的坡比较大时,坡肩冲蚀沟发育程度高,且降雨导致坡体浅层土体的抗剪强度降低,因此受重力因素影响,坡肩部位土体易向临空面发生浅层滑塌;当路堑边坡的坡比较小时,由于受上部土体重力以及坡体内部推力作用,浅层滑塌区域主要集中于坡脚部位;当路堑边坡的坡比值处于两者范围内,浅层滑塌最先开始于坡肩部位,然后逐渐向下延伸至坡面中部,最终形成坡体中上部区域浅层滑塌现象。

    试验采用DIK-6000降雨器(图8)进行降雨模拟,仪器有效降雨面积S=1.0404 m2,降雨针管距地面高度为2 m,降雨强度范围为10~80 mm/h[14]

    图  8  模拟降雨器装置
    Figure  8.  Schematic view of rainfall simulation device

    试验主体部分为长方形模型,见图8(a),模型尺寸为长×宽×高=1.25 m×0.6 m×0.3 m,模型主体采用混凝土制成,土体与混凝土接触面设置隔水塑料板。在数值模拟基础上,将模型主体底部分别放在1∶1.5和1∶1.75坡比底座上,并结合现场防护条件(图1)设置无防护和拱骨架防护2种方案,其中拱骨架的拱圈半径设置为25 cm。坡体整体密度控制在1.89 g/cm3,试验降雨历时为1 h,试验降雨强度设为2 mm/min。

    室内降雨过程,由于水流回溯不断侵蚀粉质黏土坡面,而短时间雨水入渗量较少,因此表层土颗粒容易悬浮于水膜之中并被水流裹挟,在边坡表面留下鳞片状沟纹(图9),随着降雨历时的增加,坡面径流不断汇集,而溅击和片蚀而形成的坡面凹陷对水流具有引导作用,在侵蚀后期,径流将坡面表层土体进行软化,坡面凹陷更加明显。当水流冲蚀坡面时,水流回溯不断侵蚀沟槽下方,沟槽上方由于下方土体的流失,沟底土体不能承受上部土体的重力而发生浅层坍塌现象。对比无防护条件下的路堑边坡,拱骨架防护作用会改变径流的方向,减小坡面径流量,对坡面冲蚀具有一定减弱效果,因此拱骨架防护作用下坡脚部位土体强的度劣化程度较低,但在拱骨架的尖角,见图9(b1)和拱顶,见图9(b2)部位会出现土体溜滑现象。

    图  9  降雨60 min时坡面(据文献[14]修改)
    Figure  9.  Slope surface during 60 minutes of rainfall (modified after Ref. [14])

    为进一步分析不同坡比下拱骨架防护作用对边坡浅层土体冲蚀的影响,可引入累计冲蚀降低率[15],其表达式为:

    $$ {\delta _t} = \frac{{{S _{{{tx}}}} - {S _{{{ty}}}}}}{{{S _{{{{tx}}}}}}} \times 100\% $$ (22)

    式中:δt——t时刻累计冲蚀量降低率/%;

    Stx——t时刻无防护条件下累计冲蚀量/kg;

    Sty——t时刻拱骨架防护下累计冲蚀量/kg。

    由式(22)可得到60 min时不同坡比下累计冲蚀量降低率变化如图10所示。由图10可知拱骨架防护对边坡冲蚀量具有一定抑制作用,在不同坡比条件下,浅层土体累计冲蚀率随时间增长均呈现出先降低后增加的趋势,且坡度越陡,边坡整体累计冲蚀降低率越大。分析认为拱骨架能提高坡体浅层土体的抗冲刷能力,在15 min降雨条件内,坡体浅层土体累计冲蚀量虽不断增加,但在拱骨架防护作用下,坡体浅层土体累计冲蚀量降低率在不断降低,这说明拱骨架在短时间内对抑制坡体浅层土体流失具有一定效果;在15~20 min范围内,坡体浅层土体处于饱和状态而发生软化现象;在20 min后,降雨导致路堑边坡浅层土体强度劣化程度增加,因此雨水更易裹挟土颗粒沿坡面流下,此时拱骨架的防护效果减弱,土体累计冲蚀量降低率不断增加。

    图  10  累计冲蚀量降低率随时间变化关系
    Figure  10.  Relationship between cumulative erosion reduction rate with time

    针对路堑边坡局部浅层塌滑以及拱骨架防护作用下小范围溜滑问题,生态材料防护是一种常见的治理措施[16]。为此,课题组在双达高速现场开展了小范围内生态防护材料试验,选取了4种国内外常见的生态防护材料进行对比分析,在人工搅拌后采用坡面播散或涂抹方法施工,不同材料类型及防护效果对比见表4[17],不同时刻路堑边坡浅层塌滑生态防治效果图见图11

    表  4  不同防护材料及防护效果对比
    Table  4.  Comparison of different protective materials and their effectiveness
    防护材料名称主要成分质量配合比草种添加量
    /(g∙m−2
    坡面防护层
    厚度/mm
    路堑边坡浅层塌滑防治效果
    HP-FGM
    (灵活增长介质)
    卷曲纤维、木质纤维、
    湿润剂和微孔颗粒
    16∶1∶2∶120≥30坡面透气性和透水性最优,初期植被覆盖率最高,
    短期内生态防治效果较优,长期应用表现一般
    素土素土20≥30短期植被覆盖率一般,坡面透气性和透水性一般,
    生态防治效果一般,长期应用表现一般
    EFM
    (工程纤维基质)
    卷曲与木质纤维
    和湿润剂
    8.1∶120≥30坡面透气性和透水性良好,初期植被覆盖率较高,
    短期内生态防治效果良好,长期应用表现一般
    聚丙烯纤维土聚丙烯纤维
    和素土
    0.003∶120≥30坡面透气性和透水性最差,短期植被覆盖率最低,
    短期生态防治效果较差,长期应用表现优良
    下载: 导出CSV 
    | 显示表格
    图  11  坡面防护效果对比
    Figure  11.  Comparison of slope surface protection effects

    对比图11(a)—(e)可知HP-FGM与EFM防护下,短期内路堑边坡植被覆盖率高,而聚丙烯纤维土防护条件下,短期内植被覆盖率低。分析认为HP-FGM与EFM不需要控制压实度,具有较好的透气性和透水性,而边坡所在地降雨又比较充沛,有利于植物的前期快速生长,但聚丙烯纤维土中掺入加筋纤维,需要适当控制压实度,导致防护材料的抗剪强度增加和渗透性较低,故有利于植物的缓慢增长[18]。2019年7月9日,HP-FGM与EFM防护路堑边坡过程中,植被因失水出现一定程度枯萎,而在聚丙烯纤维土防护条件下,路堑边坡植被受影响较小[1920]。2019年11月20日,坡体植被都处于枯萎状态,但对比发现HP-FGM和聚丙烯纤维土防护边坡坡面枯草长度和茂密程度相对较高,且聚丙烯纤维土防护边坡坡面枯草根部甚至保持青色,故聚丙烯纤维土边坡防护材料中植被生长速率虽然比HP-FGM和EFM慢一点,但聚丙烯纤维土边坡防护材料的长期应用表现最为理想。

    (1)土体黏聚力和内摩擦角均随含水率的增加而降低,其强度突变位置处于含水率为12%~18%对应的范围内,基于非饱和土抗剪强度理论可建立以饱和度为变量的分段式抗剪强度公式。

    (2)基于灰色关联理论可知坡比、降雨历时和降雨量三者对路堑边坡浅层塌滑的影响程度中,坡比的影响程度最大,降雨历时次之,降雨强度最小。

    (3)降雨过程中,路堑边坡潜在深层滑移面逐渐向坡体浅层转移,且浅层塌滑区域受路堑边坡坡比影响,当路堑边坡坡比高于1∶0.75时,边坡浅层塌滑区域靠近坡肩,当路堑边坡坡比低于1∶1.25时,边坡浅层塌滑区域靠近坡脚。

    (4)室内降雨试验结果表明拱骨架防护作用会改变径流的方向,减小坡面径流量,对坡面冲蚀具有一定减弱效果,且在此基础上降低路堑边坡坡比对坡面冲蚀能起到进一步减弱效果。

    (5)设计适宜的路堑边坡坡比能改变降雨引发的浅层塌滑区域,同时配合拱骨架和聚丙烯纤维加筋土防护作用能较好起到控制路堑边坡浅层塌滑类问题。

  • 图  1   西藏昌都市构造背景和区域位置简图(据文献[29]修改)

    Figure  1.   Schematic of the study area’s tectonic background and regional location (adapted from Ref.[29])

    图  2   哇曲中游泥石流分布图

    Figure  2.   Distribution map of debris flows in the middle reaches of Waqu River

    图  3   研究区泥石流地形特征

    Figure  3.   Topographic characteristics of debris flow in the study area

    图  4   左右岸泥石流堆积物差异特征

    注:a 为左右岸泥石流堆积范围(镜向75°);b 为左岸泥石流堆积物(镜向40°);c为右岸泥石流堆积物(镜向45°)。

    Figure  4.   Differential characteristics of debris flow deposits on the left and right banks

    图  5   研究区泥石流最大堆积粒径图

    Figure  5.   Maximum deposit particle size of debris flow in the study area

    图  6   研究区泥石流累计堆积体积

    Figure  6.   Cumulative deposit volume of debris flows in the study area

    图  7   物源量计算示意图

    Figure  7.   Schematic representation of source material calculation

    图  8   泥石流物源特征

    Figure  8.   Characteristics of debris flow source material

    图  9   研究区地质背景剖面图(剖面位置见图2中的A-A’)

    Figure  9.   Geological background profile of the study area (Profile Location indicated by A-A’ in Figure 2)

    图  10   研究区岩体结构特征

    Figure  10.   Characteristics of rock mass structure in the study area

    图  11   灰岩崩落

    注:(a) 为灰岩突出地表崩落,镜向350°;(b) 为构造内灰岩,镜向233°。

    Figure  11.   Schematic view of limestone collapse

    图  12   哇曲左岸断层地貌特征

    Figure  12.   Geomorphic features of fault on the left bank of Waqu river

    图  13   岩体渗水特征(镜向150°)

    Figure  13.   Seepage characteristics of rock mass (Mirror Direction 150°)

    表  1   哇曲中游泥石流特征参数

    Table  1   Characteristic parameters of debris flows in the middle reaches of Waqu River

    编号岸别流域
    面积/km2
    主沟
    长度/km
    流域
    高差/m
    主沟
    纵比降/‰
    累计堆积
    体积/m3
    01左岸2.061.777601918 492
    02左岸0.781.496882476 461
    03左岸2.512.1071619348 550
    04左岸0.791.2862830938 922
    05左岸1.511.9659721286 558
    06左岸0.711.545792973 454
    07左岸1.851.9365322523 717
    08左岸0.541.526753557 778
    09左岸0.541.485932936 186
    10左岸8.503.5172215321 259
    11左岸2.563.1061814210 791
    12左岸0.571.0660022831 265
    13右岸1.011.195962262 430
    14右岸0.651.0153829010 742
    15右岸0.701.255802694 772
    16右岸1.341.3558925810 823
    17右岸1.791.816611691 722
    18右岸1.802.9368013539 312
    19右岸1.192.035031399 687
    下载: 导出CSV

    表  2   泥石流物源储量

    Table  2   Debris flow source material reserves

    编号岸别物源体积/m3破碎带内物源占比/%
    01左岸171 41370
    02左岸116 96983
    03左岸227 47373
    04左岸91 71679
    05左岸130 08471
    06左岸92 65181
    07左岸140 96967
    08左岸34 63365
    09左岸36 11162
    10左岸440 09552
    11左岸64 100
    12左岸17 040
    13右岸61 230
    14右岸38 395
    15右岸41 390
    16右岸79 340
    17右岸89 430
    18右岸86 785
    19右岸59 100
    下载: 导出CSV

    表  3   流域内断层特征参数

    Table  3   Characteristic parameters of faults within the watershed

    断层编号性质走向/(°)破碎带宽度/m活动性
    JF1逆冲320200更新世
    JF2逆冲335180更新世
    JF3正断层330更新世
    下载: 导出CSV
  • [1] 余斌,唐川. 泥石流动力特性与活动规律研究[M]. 北京:科学出版社,2016. [YU Bin,TANG Chuan. Dynamic characteristics and activity law of debris flow[M]. Beijing:Science Press,2016. (in Chinese)

    YU Bin, TANG Chuan. Dynamic characteristics and activity law of debris flow[M]. Beijing: Science Press, 2016. (in Chinese)

    [2] 陈宁生,田树峰,张勇,等. 泥石流灾害的物源控制与高性能减灾[J]. 地学前缘,2021,28(4):337 − 348. [CHEN Ningsheng,TIAN Shufeng,ZHANG Yong,et al. Soil mass domination in debris-flow disasters and strategy for hazard mitigation[J]. Earth Science Frontiers,2021,28(4):337 − 348. (in Chinese with English abstract)

    CHEN Ningsheng, TIAN Shufeng, ZHANG Yong, et al. Soil mass domination in debris-flow disasters and strategy for hazard mitigation[J]. Earth Science Frontiers, 2021, 284): 337348. (in Chinese with English abstract)

    [3] 唐永仪. 新构造运动在陇南滑坡泥石流形成中的作用[J]. 兰州大学学报,1992,28(4):152 − 160. [TANG Yongyi. The effect of neotectonic movement on formations of landslide and debris flow in southern Gansu[J]. Journal of Lanzhou University (Natural Science Edition),1992,28(4):152 − 160. (in Chinese with English abstract)

    TANG Yongyi. The effect of neotectonic movement on formations of landslide and debris flow in southern Gansu[J]. Journal of Lanzhou University (Natural Science Edition), 1992, 284): 152160. (in Chinese with English abstract)

    [4] 黄润秋,李为乐. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报,2009,17(1):19 − 28. [HUANG Runqiu,LI Weile. Fault effect analysis of geo-hazard triggered by Wenchuan earthquake[J]. Journal of Engineering Geology,2009,17(1):19 − 28. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.01.003

    HUANG Runqiu, LI Weile. Fault effect analysis of geo-hazard triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 171): 1928. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.01.003

    [5] 黄润秋,李为乐. “5·12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,2008,27(12):2585 − 2592. [HUANG Runqiu,LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May,2008[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(12):2585 − 2592. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2008.12.028

    HUANG Runqiu, LI Weile. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 2712): 25852592. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2008.12.028

    [6]

    LIU Hongjiang,LAN Hengxing,LIU Yi,et al. Characteristics of spatial distribution of debris flow and the effect of their sediment yield in main downstream of Jinsha River,China[J]. Environmental Earth Sciences,2011,64(6):1653 − 1666. DOI: 10.1007/s12665-009-0409-6

    [7] 张永双,郭长宝,姚鑫,等. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报,2016,37(3):277 − 286. [ZHANG Yongshuang,GUO Changbao,YAO Xin,et al. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica,2016,37(3):277 − 286. (in Chinese with English abstract)

    ZHANG Yongshuang, GUO Changbao, YAO Xin, et al. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 2016, 373): 277286. (in Chinese with English abstract)

    [8] 石建军,李保珠,李鹏,等. 元谋大断裂对东山地区泥石流发育的控制作用[J]. 水土保持通报,2017,37(4):58 − 62. [SHI Jianjun,LI Baozhu,LI Peng,et al. Controlling effect of Yuanmou major fracture on debris flow development in Dongshan area[J]. Bulletin of Soil and Water Conservation,2017,37(4):58 − 62. (in Chinese with English abstract)

    SHI Jianjun, LI Baozhu, LI Peng, et al. Controlling effect of Yuanmou major fracture on debris flow development in Dongshan area[J]. Bulletin of Soil and Water Conservation, 2017, 374): 5862. (in Chinese with English abstract)

    [9] 张永双,任三绍,郭长宝,等. 活动断裂带工程地质研究[J]. 地质学报,2019,93(4):763 − 775. [ZHANG Yongshuang,REN Sanshao,GUO Changbao,et al. Research on engineering geology related with active fault zone[J]. Acta Geologica Sinica,2019,93(4):763 − 775. (in Chinese with English abstract)

    ZHANG Yongshuang, REN Sanshao, GUO Changbao, et al. Research on engineering geology related with active fault zone[J]. Acta Geologica Sinica, 2019, 934): 763775. (in Chinese with English abstract)

    [10]

    ZOU Yu,QI Shengwen,GUO Songfeng,et al. Factors controlling the spatial distribution of coseismic landslides triggered by the Mw 6.1 Ludian earthquake in China[J]. Engineering Geology,2022,296:106477. DOI: 10.1016/j.enggeo.2021.106477

    [11] 郭剑,李天涛,孙金坤. 安县高川河流域泥石流物源特征及其活动量预测[J]. 水电能源科学,2015,33(7):151 − 155. [GUO Jian,LI Tiantao,SUN Jinkun. Characteristics of debris flow provenance and activity prediction of Gaochuan River Basin in Anxian County[J]. Water Resources and Power,2015,33(7):151 − 155. (in Chinese with English abstract)

    GUO Jian, LI Tiantao, SUN Jinkun. Characteristics of debris flow provenance and activity prediction of Gaochuan River Basin in Anxian County[J]. Water Resources and Power, 2015, 337): 151155. (in Chinese with English abstract)

    [12]

    Ma Chao. The rainstorm conditions triggering debris flows in the mountain regions surrounding Beijing: [C]. Katlenburg-Lindau, The EGU General Assembly 2017, 2017.

    [13] 付智勇,龙晶晶,常鸣. 汶川地震前后四川都江堰龙池镇地区泥石流物源分布特征及其演化规律[J]. 中国地质灾害与防治学报,2019,30(6):10 − 19. [FU Zhiyong,LONG Jingjing,CHANG Ming. Distribution characteristics and evolution rules of sediment supply for debris flow occurrence around Longchi Town of Dujiangyan City,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):10 − 19. (in Chinese with English abstract)

    FU Zhiyong, LONG Jingjing, CHANG Ming. Distribution characteristics and evolution rules of sediment supply for debris flow occurrence around Longchi Town of Dujiangyan City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 306): 1019. (in Chinese with English abstract)

    [14] 王振涛,吴和秋,张明,等. 新疆乌恰县泥石流分布规律与主控因素研究[J]. 人民长江,2020,51(8):44 − 49. [WANG Zhentao,WU Heqiu,ZHANG Ming,et al. Distribution and main controlling factors of debris flows in Wuqia County,Xinjiang Autonomous Region[J]. Yangtze River,2020,51(8):44 − 49. (in Chinese with English abstract)

    WANG Zhentao, WU Heqiu, ZHANG Ming, et al. Distribution and main controlling factors of debris flows in Wuqia County, Xinjiang Autonomous Region[J]. Yangtze River, 2020, 518): 4449. (in Chinese with English abstract)

    [15] 秦宇龙,吴建亮,詹涵钰,等. 川西甘孜地区活动断裂与地质灾害分布相关性探讨[J]. 地质力学学报,2021,27(3):463 − 474. [QIN Yulong,WU Jianliang,ZHAN Hanyu,et al. Discussion on the correlation between active faults and geological disasters in Ganzi area of western Sichuan[J]. Journal of Geomechanics,2021,27(3):463 − 474. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2021.27.03.042

    QIN Yulong, WU Jianliang, ZHAN Hanyu, et al. Discussion on the correlation between active faults and geological disasters in Ganzi area of western Sichuan[J]. Journal of Geomechanics, 2021, 273): 463474. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2021.27.03.042

    [16] 李光辉,铁永波,白永建,等. 则木河断裂带(普格段)地质灾害发育规律及易发性评价[J]. 中国地质灾害与防治学报,2022,33(3):123 − 133. [LI Guanghui,TIE Yongbo,BAI Yongjian,et al. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):123 − 133. (in Chinese with English abstract)

    LI Guanghui, TIE Yongbo, BAI Yongjian, et al. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control, 2022, 333): 123133. (in Chinese with English abstract)

    [17] 顾文韬,裴向军,裴钻,等. 极震区震后泥石流物源特征研究[J]. 自然灾害学报,2015,24(2):107 − 114. [GU Wentao,PEI Xiangjun,PEI Zuan,et al. Research on post-seismic provenance features of debris flows in meizoseismal area[J]. Journal of Natural Disasters,2015,24(2):107 − 114. (in Chinese with English abstract)

    GU Wentao, PEI Xiangjun, PEI Zuan, et al. Research on post-seismic provenance features of debris flows in meizoseismal area[J]. Journal of Natural Disasters, 2015, 242): 107114. (in Chinese with English abstract)

    [18] 常鸣,唐川,李为乐,等. 汶川地震区绵远河流域泥石流形成区的崩塌滑坡特征[J]. 山地学报,2012,30(5):561 − 569. [CHANG Ming,TANG Chuan,LI Weile,et al. The characteristic of collapse and landslide by Wenchuan earthquake in debris flow for mative region along the Mianyuan River Basin,China[J]. Journal of Mountain Science,2012,30(5):561 − 569. (in Chinese with English abstract)

    CHANG Ming, TANG Chuan, LI Weile, et al. The characteristic of collapse and landslide by Wenchuan earthquake in debris flow for mative region along the Mianyuan River Basin, China[J]. Journal of Mountain Science, 2012, 305): 561569. (in Chinese with English abstract)

    [19] 刘美,陈宁生,赵春瑶. 断裂构造对金沙江巧家至蒙姑段泥石流发育影响研究[J]. 自然灾害学报,2018,27(3):136 − 143. [LIU Mei,CHEN Ningsheng,ZHAO Chunyao. Influence of fault structure on debris flow in Qiaojia and Menggu section of the Jinsha River[J]. Journal of Natural Disasters,2018,27(3):136 − 143. (in Chinese with English abstract)

    LIU Mei, CHEN Ningsheng, ZHAO Chunyao. Influence of fault structure on debris flow in Qiaojia and Menggu section of the Jinsha River[J]. Journal of Natural Disasters, 2018, 273): 136143. (in Chinese with English abstract)

    [20] 苏琦,梁明剑,袁道阳,等. 白龙江流域构造地貌特征及其对滑坡泥石流灾害的控制作用[J]. 地球科学,2016,41(10):1758 − 1770. [SU Qi,LIANG Mingjian,YUAN Daoyang,et al. Geomorphic features of the Bailongjiang River drainage basin and its relationship with geological disaster[J]. Earth Science,2016,41(10):1758 − 1770. (in Chinese with English abstract)

    SU Qi, LIANG Mingjian, YUAN Daoyang, et al. Geomorphic features of the Bailongjiang River drainage basin and its relationship with geological disaster[J]. Earth Science, 2016, 4110): 17581770. (in Chinese with English abstract)

    [21] 高延超,陈宁生,葛华,等. 康定市子耳沟泥石流的物源特征与危险区划[J]. 水土保持研究,2018,25(6):403 − 407. [GAO Yanchao,CHEN Ningsheng,GE Hua,et al. Source characteristic and risk zoning of debris flow in Zier watershed of Kangding City[J]. Research of Soil and Water Conservation,2018,25(6):403 − 407. (in Chinese with English abstract)

    GAO Yanchao, CHEN Ningsheng, GE Hua, et al. Source characteristic and risk zoning of debris flow in Zier watershed of Kangding City[J]. Research of Soil and Water Conservation, 2018, 256): 403407. (in Chinese with English abstract)

    [22] 孙聿卿. 川藏公路北线泥石流风险评价[D]. 绵阳:西南科技大学,2021. [SUN Yuqing. Risk assessment of debris flow in the northern line of Sichuan-Tibet highway[D]. Mianyang:Southwest University of Science and Technology,2021. (in Chinese with English abstract)

    SUN Yuqing. Risk assessment of debris flow in the northern line of Sichuan-Tibet highway[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese with English abstract)

    [23]

    ZHOU Hongfu,LIU Bin,YE Fei,et al. Landslide distribution and sliding mode control along the Anninghe fault zone at the eastern edge of the Tibetan Plateau[J]. Journal of Mountain Science,2021,18(8):2094 − 2107. DOI: 10.1007/s11629-020-6573-6

    [24] 杨强,王高峰,李金柱,等. 白龙江中上游泥石流形成条件与成灾模式探讨[J]. 中国地质灾害与防治学报,2022,33(6):70 − 79. [YANG Qiang,WANG Gaofeng,LI Jinzhu,et al. Discussion on formation conditions and disaster mode of debris flow in the middle and upper reaches of Bailong River[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):70 − 79. (in Chinese with English abstract)

    YANG Qiang, WANG Gaofeng, LI Jinzhu, et al. Discussion on formation conditions and disaster mode of debris flow in the middle and upper reaches of Bailong River[J]. The Chinese Journal of Geological Hazard and Control, 2022, 336): 7079. (in Chinese with English abstract)

    [25] 曹建文,龙昱,陈凌康,等. 贡觉县克西林沟泥石流特征及成因分析[J]. 安徽农业科学,2007,35(25):8065 − 8067. [CAO Jianwen,LONG Yu,CHEN Lingkang,et al. Study on characteristics and causes of debris flow in Kelinxi gully of Gongjue County[J]. Journal of Anhui Agricultural Sciences,2007,35(25):8065 − 8067. (in Chinese with English abstract)

    CAO Jianwen, LONG Yu, CHEN Lingkang, et al. Study on characteristics and causes of debris flow in Kelinxi gully of Gongjue County[J]. Journal of Anhui Agricultural Sciences, 2007, 3525): 80658067. (in Chinese with English abstract)

    [26]

    ZHANG Yongshuang,CHENG Yuliang,YIN Yueping,et al. High-position debris flow:A long-term active geohazard after the Wenchuan earthquake[J]. Engineering Geology,2014,180:45 − 54. DOI: 10.1016/j.enggeo.2014.05.014

    [27] 李孝攀,李远富,周先虎,等. 川藏铁路康定至昌都段地质灾害区域危险性评价[J]. 铁道标准设计,2017,61(6):58 − 62. [LI Xiaopan,LI Yuanfu,ZHOU Xianhu,et al. Evaluation of regional geological hazards risks on Kangding to Changdu section of Sichuan-Tibet railway[J]. Railway Standard Design,2017,61(6):58 − 62. (in Chinese with English abstract)

    LI Xiaopan, LI Yuanfu, ZHOU Xianhu, et al. Evaluation of regional geological hazards risks on Kangding to Changdu section of Sichuan-Tibet railway[J]. Railway Standard Design, 2017, 616): 5862. (in Chinese with English abstract)

    [28] 孙梦宇. 断裂带构造损伤岩体对泥石流物源形成影响研究——以安宁河断裂带为例[D]. 成都:成都理工大学,2020. [SUN Mengyu. Study on the influence of structural damage rock mass in fault zone on the formation of debris flow provenance: A case study of Anninghe fault zone[D]. Chengdu:Chengdu University of Technology,2020. (in Chinese with English abstract)

    SUN Mengyu. Study on the influence of structural damage rock mass in fault zone on the formation of debris flow provenance: A case study of Anninghe fault zone[D]. Chengdu: Chengdu University of Technology, 2020. (in Chinese with English abstract)

    [29] 尹福光,潘桂棠,孙志明. 西南三江构造体系及演化、成因[J]. 沉积与特提斯地质,2021,41(2):265 − 282. [YIN Fuguang,PAN Guitang,SUN Zhiming. Genesis and evolution of the structural systems during the Cenozoic in the Sanjiang orogenic belt,southwest China[J]. Sedimentary Geology and Tethyan Geology,2021,41(2):265 − 282. (in Chinese with English abstract)

    YIN Fuguang, PAN Guitang, SUN Zhiming. Genesis and evolution of the structural systems during the Cenozoic in the Sanjiang orogenic belt, southwest China[J]. Sedimentary Geology and Tethyan Geology, 2021, 412): 265282. (in Chinese with English abstract)

    [30] 乔建平,黄栋,杨宗佶,等. 汶川地震极震区泥石流物源动储量统计方法讨论[J]. 中国地质灾害与防治学报,2012,23(2):1 − 6. [QIAO Jianping,HUANG Dong,YANG Zongji,et al. Statistical method on dynamic reserve of debris flow’s source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control,2012,23(2):1 − 6. (in Chinese with English abstract)

    QIAO Jianping, HUANG Dong, YANG Zongji, et al. Statistical method on dynamic reserve of debris flow’s source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control, 2012, 232): 16. (in Chinese with English abstract)

    [31] 张佳佳,刘建康,高波,等. 藏东南嘎龙曲冰川泥石流的物源特征及其对扎墨公路的影响[J]. 地质力学学报,2018,24(1):106 − 115. [ZHANG Jiajia,LIU Jiankang,GAO Bo,et al. Characteristics of material sources of galongqu glacial debris flow and the influence to Zhamo road[J]. Journal of Geomechanics,2018,24(1):106 − 115. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2018.24.01.012

    ZHANG Jiajia, LIU Jiankang, GAO Bo, et al. Characteristics of material sources of galongqu glacial debris flow and the influence to Zhamo road[J]. Journal of Geomechanics, 2018, 241): 106115. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2018.24.01.012

    [32] 吴富峣,蒋良文,张广泽,等. 川藏铁路金沙江断裂带北段第四纪活动特征探讨[J]. 高速铁路技术,2019,10(4):23 − 28. [WU Fuyao,JIANG Liangwen,ZHANG Guangze,et al. Discussion on quaternary activity characteristics of northern section of Jinshajiang fault zone along Sichuan-Tibet railway[J]. High Speed Railway Technology,2019,10(4):23 − 28. (in Chinese with English abstract)

    WU Fuyao, JIANG Liangwen, ZHANG Guangze, et al. Discussion on quaternary activity characteristics of northern section of Jinshajiang fault zone along Sichuan-Tibet railway[J]. High Speed Railway Technology, 2019, 104): 2328. (in Chinese with English abstract)

    [33] 高孝巧,张达. 逆断层控制构造裂缝发育的力学机制模拟[J]. 地质力学学报,2015,21(1):47 − 55. [GAO Xiaoqiao,ZHANG Da. Numerical simulation of structural fractures controlled by reverse fault[J]. Journal of Geomechanics,2015,21(1):47 − 55. (in Chinese with English abstract)

    GAO Xiaoqiao, ZHANG Da. Numerical simulation of structural fractures controlled by reverse fault[J]. Journal of Geomechanics, 2015, 211): 4755. (in Chinese with English abstract)

    [34] 翁剑桥,曾联波,吕文雅,等. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报,2020,26(1):39 − 47. [WENG Jianqiao,ZENG Lianbo,LYU Wenya,et al. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics,2020,26(1):39 − 47. (in Chinese with English abstract)

    WENG Jianqiao, ZENG Lianbo, LYU Wenya, et al. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 2020, 261): 3947. (in Chinese with English abstract)

    [35] 余斌,褚胜名,朱渊,等. 风化作用对沟谷型泥石流发育环境的影响研究[J]. 水土保持通报,2013,33(6):51 − 56. [YU Bin,CHU Shengming,ZHU Yuan,et al. Impacts of weathering on formation of gullied debris flow[J]. Bulletin of Soil and Water Conservation,2013,33(6):51 − 56. (in Chinese with English abstract)

    YU Bin, CHU Shengming, ZHU Yuan, et al. Impacts of weathering on formation of gullied debris flow[J]. Bulletin of Soil and Water Conservation, 2013, 336): 5156. (in Chinese with English abstract)

图(13)  /  表(3)
计量
  • 文章访问数:  4265
  • HTML全文浏览量:  2471
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-12
  • 修回日期:  2023-04-23
  • 录用日期:  2023-08-22
  • 网络出版日期:  2023-08-29
  • 刊出日期:  2023-10-30

目录

/

返回文章
返回