ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析

胡爱国, 周伟

胡爱国,周伟. 地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析[J]. 中国地质灾害与防治学报,2022,33(1): 27-34. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-04
引用本文: 胡爱国,周伟. 地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析[J]. 中国地质灾害与防治学报,2022,33(1): 27-34. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-04
HU Aiguo, ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27-34. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-04
Citation: HU Aiguo, ZHOU Wei. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27-34. DOI: 10.16031/j.cnki.issn.1003-8035.2022.01-04

地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析

基金项目: 中国地质调查局地质调查项目(DD20190637)
详细信息
    作者简介:

    胡爱国(1974-),男,四川蓬安人,硕士研究生,主要从事地质灾害防治工作。E-mail:632987222@qq.com

  • 中图分类号: P642.2

Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall

  • 摘要: 位于西南山地堆积体滑坡常受到地震和强降雨的双重作用,查明此类滑坡变形破坏机理是地质灾害防治和风险防控的基础。文章的研究对象是鲜水河断裂带附近的炉霍县马居滑坡。研究表明,地震作用对位于斜坡地带堆积体滑坡体结构损伤明显,不但使滑坡整体稳定性下降,还促使坡体内裂隙大量发育,利于降雨入渗,进一步恶化滑坡的水文地质条件。强降雨形成的大规模洪水和泥石流下切坡脚沟道,牵引滑坡体整体向下。长历时强降雨入渗影响坡体稳定性,且在降雨结束后较长时间持续影响坡体稳定性。因此,对此类滑坡防治的对策应考虑坡脚防护和抗滑支挡设置。在对防治方案的有效性分析后,表明防护方案在极端条件下仍然能保障安全性,达防治和风险管控的目的。
    Abstract: Accumulation landslides located in the Southwest Mountainous are affected by both earthquake and heavy rainfall, the deformation and failure characteristics of landslides are affected by these two main factors. Finding out the deformation and failure mechanism of this kind of landslide is the basis of geological disaster prevention and risk prevention and control. This paper takes Maju landslide in Luhuo County as the research object. The results show that, the seismic action has obvious damage effect on the structure of accumulation landslide located in slope zone, it not only reduces the overall stability of the landslide, but also promotes the development of a large number of fissures in the slope, which is conducive to the infiltration of rainfall into the slope, and then worsens the hydrogeological conditions of the landslide. Heavy rainfall is easy to form large-scale flood and debris flow, cutting the gully at the foot of the slope, and pulling the landslide to slide downward as a whole. The long-term heavy rainfall infiltration slope also has a great impact on the stability of the landslide, and the landslide is in an unstable state for a long time after rainfall. Therefore, for this kind of landslide prevention scheme, the strategy of paying equal attention to slope toe protection and anti slide retaining should be adopted, the effectiveness analysis of the protection scheme shows that the safety of the protection scheme has a certain guarantee under extreme conditions, achieves the purpose of prevention and control, and further controls the risk.
  • 泥石流是我国西南山区常见的一种地质灾害之一,具有突发性、危害范围广、破坏性大等特点[13]。德钦县是泥石流发育最严重的地区之一,泥石流暴发常会造成县城区公路及民房建筑冲毁,给当地居民带来巨大的经济损失。

    近年来,数值模拟方法在泥石流灾害分析预测研究中应用越来越广泛[4]。王俊豪等[5]运用 FLO2D 软件模拟德钦县直溪河泥石流不同暴雨周期下运动情况,并预测泥石流的致灾范围;宋兵等[6]利用 RAMMS 软件模拟白沙沟泥石流20年一遇泥石流流量,预测不同洪水频率下的运动状况。熊冲冲等[7]利用 RAMMS 软件对锄头沟泥石流进行模拟,得到泥石流运动参数特征;段学良等[8]运用 MASSFLOW 软件模拟杰仲沟极端条件下泥石流灾害的运动过程,并评价其危险性。因此,运用数值模拟分析方法预测泥石流的危险区范围,对泥石流防治工程因害设防具有重要的意义。

    目前,对于一中河泥石流的动力学特征进行数值模拟的研究较少,多为传统的地面调查方法和定性评价。为查清一中河上游源区潜在物源在暴雨+地震极端工况下形成泥石流灾害的影响范围和成灾机制,本文利用无人机贴近摄影高精度DEM作为地形数据,运用RAMMS软件模拟了一中河泥石流的运动过程,预测并评价其危险性及范围,对于今后一中河泥石流防灾减灾工程具有实际意义。

    德钦县位于滇西北地区,地处横断山区纵谷地带,属于典型的高山峡谷地貌。一中河位于德钦县升平镇,为芝曲河左岸一级支沟。沟口分布有德钦县第一中学、县委政府及公租房小区,G214国道和德维公路多次穿越泥石流沟流通区。一中河泥石流属于高原山区沟谷型黏性泥石流,具有规模大、高易发、危害大的特点。2019—2022年汛期曾多次发生泥石流灾害,对G214国道和沟口建筑造成严重影响。

    研究区经历了漫长的地质演变时期,构造行迹复杂,地震活跃,属于典型的高寒、高海拔、高烈度地区。流域内主要分布灰色、深灰色板岩、变质石英砂岩、硅质岩夹流纹岩。区域内活动构造运动发育,主要受第四系活动断裂德钦—中甸大断裂(F3)和鲁村东断裂(F4)影响较大(图1)。受活动断裂及次级断裂影响,岸坡岩体结构破碎,节理裂隙发育,变质作用强烈。在短时集中降雨即暴雨时期,一中河就会暴发大小规模不等的泥石流灾害。

    图  1  研究区位置及断裂分布图
    Figure  1.  Location of the study area and distribution of faults

    一中河流域平面形态为树叶状,呈东西向展布,表现为东高西低。流域面积约3.33 km2,主沟长2.58 km。最高点为4540 m,最低点为3066 m,相对高差1474 m,沟床纵坡189.80‰~765.70‰,沟域整体为冰蚀槽谷地形,沟域内相对高差大,沟谷纵坡大。一中河流域全貌如图2所示。形成区由南、北支沟组成,汇水面积仅0.45 km2,海拔介于43903314 m,高差1076 m,该段沟长1.99 km,平均纵坡为765.70‰。流通区平均纵坡为282.40‰,堆积区平均纵坡为189.80‰(图3)。沟床呈深“V”型,宽1.0~5.0 m,岸坡坡度30°~80°。由于上游源区未设工程,沟床纵坡降大,地表径流条件良好,坡面侵蚀作用强烈,裸坡区松散岩体崩塌剥落发育,为泥石流活动提供了持续的固体物源。

    图  2  一中河流域全貌图
    Figure  2.  Full overview of Yizhong River Basin
    图  3  一中河泥石流沟A—A'纵剖面图
    Figure  3.  Longitudinal profile of A—A' section of Yizhong River debris flow gully

    区内水文地质条件复杂,主要为孔隙水和裂隙水,以面状散流或泉的形式出露于基岩陡坎处。区内主要接受大气降雨补给。一中河属高寒山区季节性河流,年流量变化较大,流量0.1~5 m3/s。根据资料统计,德钦县全年平均降雨量640 mm,降雨主要集中在5—10月。最大日降雨量为74.7 mm,最大5 min降雨达7.1 mm,具有短时集中强降雨的特点。暴雨为泥石流活动提供良好的水动力条件,是一中河泥石流灾害的主要激发因素[9]

    目前,通过采用无人机贴近摄影-InSAR边坡雷达监测-地面绳桥勘测的调查技术,基本查清了一中河流域内地质灾害隐患、泥石流物源分布以及高位崩滑体的地质结构与变形特征。岸坡岩体受到风化、冻融和降雨等外动力地质作用影响,形成了多处高陡危岩带,为泥石流形成提供了丰富的固体物源。一中河泥石流物源主要包括冰碛物、滑坡、危岩崩塌、沟床堆积物、沟岸坍塌和坡面侵蚀物源,沟床堆积物为主要物源。根据此次调查,初步估算一中河泥石流松散固体物源储量约为1.141 2×106 m3,可移储量约25.23×104 m3,一次最大可移动储量约2.34×104 m3。一中河泥石流物源统计见表1

    表  1  一中河泥石流物源统计表
    Table  1.  Statistical table of sources of Yizhong River debris flow
    物源类型 冰碛物 滑坡 危岩崩塌 沟床堆积物 沟岸坍塌 坡面侵蚀 合计
    面积/(104 m2 4.0 4.30 10.94 1.24 0.30 31.20 51.98
    体积/(104 m3 30.0 40.12 27.25 3.70 0.80 12.25 114.12
    可移储量/(104 m3 2.75 9.52 8.98 1.95 0.80 1.23 25.23
    一次最大可移储量/(104 m3 0.14 0.55 0.90 0.39 0.24 0.12 2.34
    下载: 导出CSV 
    | 显示表格

    一中河泥石流具有高海拔高纵坡降特性,属于典型的高原山区暴雨沟谷型黏性泥石流,泥石流运动分区特征明显[10]。根据一中河沟谷的地形、水流条件和物源的分布特征,可分为泥石流的形成区、流通区和堆积区,如图2所示。此外,一中河泥石流运动学特征具有明显的链式规律,一般按高程从高到低可分为:高位启动区、惯性加速区、动力侵蚀区和流通堆积区[11]。其中,高位启动区为跌水坎以上基岩裸坡区,发育多个高位崩滑体,因位置高而具有较大的势能。跌水坎以下至G214国道处为惯性加速区和动力侵蚀区,以侧向侵蚀、铲刮作用为主,多发育岸坡塌滑和坡面侵蚀。G214国道以下至沟口为流通堆积区。

    2022年汛期暴发了5次泥石流,每次持续时间30~50 min。通过调查发灾时的泥石流流体情况,现场测得泥石流容重为2.2 t/m3,龙头高达2.5 m,弯道超高达1.2 m,泥石流一次最大冲出量达20000 m3,堆积物多为卵砾石,无分选,磨圆度差。在G214国道以下的桥洞渡槽易发生堵塞。一中河泥石流暴发特点为历时短、流速快,堵塞严重,弯道超高和龙头较高,具有阵性,沿途揭底拉槽现象明显,铲刮作用强烈,规模不断补给壮大。

    根据一中河泥石流不同物源条件和启动机制分类,可分为三种成因类型(图4):一是暴雨型泥石流,松散堆积层在短时集中降雨工况下,地表径流易形成暴雨型泥石流;二是溃决型泥石流,由于一中河沟谷侵蚀切割较深,岸坡岩体易发生坍塌堵塞沟道,演变为溃决型泥石流;三是崩滑流型泥石流,上游源区发育高位危岩带及崩滑体,在暴雨+地震极端工况下,可能发生高位岩体崩滑-碎屑流-泥石流链式灾害[1216]

    图  4  一中河泥石流启动机制
    Figure  4.  Starting mechanism of Yizhong River debris flow

    综合上述三种类型的泥石流启动机制,根据一中河泥石流高位崩滑体的失稳机理、分布位置、启动特征等,对沟域内提供物源的链式灾害进行分析,归纳其成灾机制为高位崩滑体-碎屑流-泥石流-堰塞湖-溃决洪水的沟谷灾害链(图5)。在暴雨+地震极端工况下,发生此类链式灾害的风险极大。崩滑体位于流域的顶部,具有较大的势能,失稳碰撞解体后转化为碎屑流,以较高的速度冲向下游。一中河频繁暴发的泥石流侵蚀冲刷坡脚,导致沟岸坡体失稳,汇入沟道转化为泥石流。泥石流运动过程中不断铲刮沿程碎屑物质,补给固体物源,从而壮大泥石流的规模,这样不仅改变了流体性质和运动特征,而且急剧增加了暴发泥石流链式灾害的可能性[17]

    图  5  一中河泥石流灾害成灾机制示意图
    Figure  5.  Schematic diagram of disaster mechanism of Yizhong River debris flow

    RAMMS软件中泥石流模块能够较好地模拟泥石流的运动过程,获得最大流速、堆积深度和冲击力等动力学特征参数[18]。经研究表明,泥石流运动过程中会受各种因素影响而改变流体的性质。考虑到泥石流运动过程中固体颗粒之间的摩擦阻力,本文采用Voellmy流变模型,该模型是基于Voellmy摩擦流变学。模型如下:

    $$ S = \mu N + \frac{{\rho g{u^2}}}{\varepsilon } $$ (1)

    式中:S——摩擦阻力/Pa;

    u——流速/(m·s−1);

    ρ——密度/(kg·m−3);

    g——重力加速度/(m·s−2);

    μ——摩擦系数;

    ε——湍流系数/(m·s−2);

    N——正应力/Pa。

    摩擦系数反映流动的行为。摩擦系数(μ)决定了流体开始停止流动的时刻,湍流系数(ε)决定了流体快速流动的时刻[1920]。该模型被广泛用于模拟山区沟谷型泥石流的运动过程。为预测一中河上游源区潜在高位崩滑体失稳后沿途铲刮形成泥石流链式灾害的危险性,本次模拟工况采取暴雨+地震的极端工况,设计暴雨频率为1%,地震强度为Ⅷ级。地震为上游潜在高位崩滑体失稳并参与泥石流活动提供必要条件。

    前人研究表明,Voellmy模型μ取值范围为0.1~0.3,ε取值范围为150~250 m/s2。通过多次与已发生泥石流灾害对比,本文选取模拟参数μ=0.1,ε=200 m/s2ρ2200 kg/m3,物源体积为16.05×104 m3。泥石流正应力(N)为软件自动计算,随着泥石流流体厚度的增加而增大。

    根据初步估算一中河流域上游源区潜在物源体积为16.05×104 m3,对此进行暴雨+地震极端工况下泥石流运动过程模拟预测,历时t=2135 s,并分析其影响范围和危险性。泥石流运动过程中最大流速、最大堆积深度和最大冲击力分布,如图6所示。

    图  6  暴雨+地震极端工况下一中河泥石流模拟结果
    Figure  6.  Simulation results of Yizhong River debris flow under extreme conditions of heavy rainfall and earthquake

    由模拟结果可知,泥石流流速、堆积深度和冲击力等变化特征主要受地形影响,泥石流堆积呈不规则扇形,总体表现出冲刷-淤积-运动-堆积的特点。在暴雨+地震极端工况下一中河泥石流最大流动速度达23.93 m/s,最大堆积深度达9.33 m,最大冲击力为1000 kPa。经过拦挡坝之后,运动速度并没有明显减小,从G214国道处以8~15 m/s的速度冲向下游,沿途泥石流漫槽,在沟口形成宽度约300 m的堆积扇,泥石流冲出体积约8×104 m3

    由于G214国道以下渡槽的排导能力有限,泥石流会漫出渡槽,运动至下游沟口时会冲进县城区,致灾影响范围较大。将对下游居民区、德钦一中和县政府等地区造成巨大的威胁,并且随着泥石流物源增加,泥石流影响范围和冲出量也不断扩大,甚至可能堵塞芝曲河。

    结合泥石流现场调查情况,通过对暴雨+地震极端工况下一中河泥石流运动过程的模拟,得到泥石流运动速度、堆积深度和冲击力等动力学参数分布特征,总体表现出冲刷-淤积-运动-堆积的规律,预测并划定了两处危险区,如图7所示。

    图  7  一中河泥石流危险区范围
    Figure  7.  Risk zone of Yizhong River debris flow

    危险区Ⅰ位于G214国道至德维路区域,此处沟道变窄,泥石流流动速度较大,渡槽及涵洞易发生堵塞和漫槽现象,影响范围约0.13 km2

    危险区Ⅱ位于沟口区域,此处弯道较多,易发生堆积,影响范围约0.18 km2。因此,在暴雨+地震极端工况下,此区域危险性较高,须提高G214国道下游渡槽的排导能力,应采取有效的工程防治措施。

    (1)G214国道在流通区穿过,危险区Ⅰ位于国道至德维路区域,此处沟道变窄,流速较大,破坏力强。最大流速达23.93 m/s,最大冲击力为1000 kPa。影响范围达0.13 km2。泥石流冲出的泥砂砾石会造成国道被冲埋。因此,提高G214国道以下渡槽的排导能力为首要工作。

    (2)危险区Ⅱ为沟口区域,此区建筑物较集中,涉及德钦县第一中学、县委政府和公租房小区等地区。泥石流沟口处弯道较多,且此区域易发生堆积,最大泥深为9.33 m,泥石流冲出体积约8×104 m3,影响范围达0.18 km2。应加强对渡槽基础的防护。

    (3)根据一中河泥石流不同启动机制,分为暴雨型泥石流、溃决型泥石流和崩滑流型泥石流三种成因类型。其成灾机制为暴雨+地震极端工况下高位岩体发生崩塌、滑坡后转变为碎屑流,沿程铲刮沟床松散物源,泥石流规模不断壮大,进而引发溃坝或堵塞河道等次生地质灾害链。对于一中河泥石流链式灾害的形成特征与演化机制,其防治工程应重点关注成链过程,采取有效的灾害链防灾减灾工程措施,为避险搬迁与应急处置方案提供理论依据。

  • 图  1   研究区地震断裂及历史地震分布图[4]

    Figure  1.   Distribution map of seismic faults and historical earthquakes in the study area

    图  2   马居滑坡工程地质平面图

    Figure  2.   Engineering geological plane map of Maju landslide

    图  3   2-2′剖面图

    Figure  3.   Section 2-2′ of landslide area

    图  4   多遇地震条件下人工合成地震波时程曲线

    Figure  4.   Synthetic seismic wave time history curve under frequent earthquakes

    图  5   多遇地震条件下斜坡塑性区发育分布图

    Figure  5.   Development distribution of slope plastic zone under frequent earthquake conditions

    图  6   多遇地震条件下斜坡最大剪应变增量云图

    Figure  6.   Cloud map of maximum shear strain increment of slope under frequent Earthquake

    图  7   坡脚下切后斜坡最大剪应变增量云图

    Figure  7.   Cloud map of maximum shear stress increment of slope after slope toe undercutting

    图  8   距离240 m处强降雨历时全过程饱和土体厚度变化情况(2-2′剖面)

    Figure  8.   Variation of saturated soil thickness in the whole process of heavy rainfall at x = 240 m (2-2′ section)

    图  9   滑坡体在强降雨入渗条件下稳定系数变化情况

    Figure  9.   Variation of stability coefficient of landslide under heavy rainfall infiltration

    图  10   不同回淤高度滑坡前缘稳定系数变化情况

    Figure  10.   Variation of stability coefficient of landslide front at different siltation heights

    图  11   沟道现状条件下滑坡前缘最大剪应变增量云图

    Figure  11.   Cloud map of maximum shear strain increment at the front edge of landslide under the current condition of gully

    图  12   失去支挡后天然工况下滑坡稳定性分区云图

    Figure  12.   Cloud map of landslide stability zoning under natural conditions after loss of support at the front edge

    图  13   失去支挡后多遇地震工况下滑坡稳定性分区云图

    Figure  13.   Cloud map of landslide stability zoning under frequent earthquake conditions after loss of support at the front edge

    图  14   失去支挡后基本地震工况下滑坡稳定性分区云图

    Figure  14.   Cloud map of landslide stability under basic seismic conditions after loss of support at the front edge

    图  15   失去支挡后罕遇地震工况下滑坡稳定性分区云图

    Figure  15.   Cloud map of landslide stability zoning under rare earthquake conditions after loss of support at the front edge

    表  1   滑坡区主要岩土参数表

    Table  1   Geotechnical parameters of landslide area

    岩土体体积模量/MPa剪变模量
    /MPa
    天然状态饱和状态
    重度/(t·m−3)内聚力/kPa内摩擦角/(°)重度/(t·m−3)内聚力/kPa内摩擦角/(°)
    滑坡体15.605.182.0124.330.82.0522.927.8
    强风化15.207.80224035---
    中风化基岩20.0012.0027190042.8---
    下载: 导出CSV
  • [1] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报,2011,19(2):145 − 151. [HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2011,19(2):145 − 151. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2011.02.001
    [2] 于宝国, 边波, 李春龙, 等. 基于知识图谱的碎石土堆积体滑坡研究热点及发展趋势[J]. 地球科学前沿(汉斯),2021(10):1326 − 1340. [YU Baoguo, BIAN Bo, LI Chunlong, et al. Research hotspot and development trend of gravel soil accumulation landslide based on knowledge graph[J]. Advances in Geosciences,2021(10):1326 − 1340. (in Chinese with English abstract)
    [3] 孙凯, 孟国杰, 洪顺英, 等. 联合InSAR和GPS研究鲜水河断裂带炉霍—道孚段震间运动特征[J]. 地球物理学报,2021,64(7):2278 − 2296. [SUN Kai, MENG Guojie, HONG Shunying, et al. Interseismic movement along the Luhuo-Daofu section of the Xianshuihe Fault from InSAR and GPS observations[J]. Chinese Journal of Geophysics,2021,64(7):2278 − 2296. (in Chinese with English abstract)
    [4] 中国地震台网中心国家地震科学数据中心. http://data.earthquake.cn

    China Seismological Network Center National Seismological Science Data Center.http://data.earthquake.cn.(in Chinese)

    [5] 赵金, 吴红刚, 杨涛. 滑坡对不同特性地震波的动力响应规律[J]. 中国地质灾害与防治学报,2018,29(6):47 − 52. [ZHAO Jin, WU Honggang, YANG Tao. Dynamic response of landslides to different seismic wave[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):47 − 52. (in Chinese with English abstract)
    [6] 丁秀美, 刘光士, 黄润秋, 等. 剪应变增量在堆积体边坡稳定性研究中的应用[J]. 地球科学进展,2009,19(增刊 1):318 − 323. [DING Xiumei, LIU Guangshi, HUANG Runqiu, et al. Shear strain increment applying instability studying of debris slope[J]. Advance in Earth Sciences,2009,19(Sup 1):318 − 323. (in Chinese with English abstract)
    [7] 李秀珍, 何思明. 基于Mein-Larson入渗模型的浅层降雨滑坡稳定性研究[J]. 灾害学,2015,30(2):16 − 20. [LI Xiuzhen, HE Siming. A study on stability of shallow rainfall-induced landslide based on mein-larson infiltration model[J]. Journal of Catastrophology,2015,30(2):16 − 20. (in Chinese with English abstract)
    [8] 杨宗佶, 蔡焕, 雷小芹, 等. 非饱和地震滑坡堆积体降雨破坏水-力耦合行为试验[J]. 岩土力学,2019,40(5):1869 − 1880. [YANG Zongji, CAI Huan, LEI Xiaoqin, et al. Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope[J]. Rock and Soil Mechanics,2019,40(5):1869 − 1880. (in Chinese with English abstract)
    [9] 邹祖银, 朱占元, 张锋, 等. 连续降雨条件下某震后高边坡稳定性分析[J]. 地震工程学报,2016,38(4):541 − 548. [ZOU Zuyin, ZHU Zhanyuan, ZHANG Feng, et al. Stability analysis of post-earthquake high slope under continuous rainfall[J]. China Earthquake Engineering Journal,2016,38(4):541 − 548. (in Chinese with English abstract)
    [10] 贺小黑, 彭鑫, 谭建民, 等. 地下水渗流对崩坡积滑坡稳定性和变形的影响: 以湖南安化春风滑坡群为例[J]. 中国地质灾害与防治学报,2020,31(6):96 − 103. [HE Xiaohei, PENG Xin, TAN Jianmin, et al. Influence of groundwater seepage on stability and deformation of colluvial deposit landslide: Taking Chunfeng Landslide group in Anhua County of Hunan Province as an example[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):96 − 103. (in Chinese with English abstract)
    [11] 韩培锋, 樊晓一, 田述军, 等. 降雨强度与含石量对松散堆积体失稳影响研究[J]. 工程科学与技术,2019,51(1):112 − 120. [HAN Peifeng, FAN Xiaoyi, TIAN Shujun, et al. Effect of rainfall intensity and stone content on the instability of quaternary deposits[J]. Advanced Engineering Sciences,2019,51(1):112 − 120. (in Chinese with English abstract)
    [12] 王家柱, 葛华, 高延超, 等. 川南红层区黄子树滑坡形成过程与运动特征[J]. 中国地质灾害与防治学报,2020,31(2):9 − 17. [WANG Jiazhu, GE Hua, GAO Yanchao, et al. Mechanism and kinematic characteristics of Huangzishu Landslide in the red mudstone of southern Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):9 − 17. (in Chinese with English abstract)
    [13] 吴火珍, 冯美果, 焦玉勇, 等. 降雨条件下堆积层滑坡体滑动机制分析[J]. 岩土力学,2010,31(增刊 1):324 − 329. [WU Huozhen, FENG Meiguo, JIAO Yuyong, et al. Analysis of sliding mechanism of accumulation horizon landslide under rainfall condition[J]. Rock and Soil Mechanics,2010,31(Sup 1):324 − 329. (in Chinese with English abstract)
    [14] 刘明扬, 武哲, 付晓东, 等. 不同降雨条件下堆积体边坡响应规律与失稳力学机制分析[J]. 科技和产业,2021,21(7):266 − 274. [LIU Mingyang, WU Zhe, FU Xiaodong, et al. Analysis of response law and instability mechanism of accumulation slope under different rainfall conditions[J]. Science Technology and Industry,2021,21(7):266 − 274. (in Chinese with English abstract)
    [15] 廖军, 邓涛, 周越良, 等. 降雨作用下第四系堆积体路堤稳定性[J]. 科学技术与工程,2021,21(23):10090 − 10097. [LIAO Jun, DENG Tao, ZHOU Yueliang, et al. Stability of quaternary accumulation embankment under rainfall[J]. Science Technology and Engineering,2021,21(23):10090 − 10097. (in Chinese with English abstract)
    [16] 张雨林, 石惊涛, 涂国祥, 等. 粗、巨颗粒富集位置对堆积体降雨入渗的影响[J]. 水利水运工程学报,2021,5:76 − 83. [ZHANG Yulin, SHI Jingtao, TU Guoxiang, et al. Influence of coarse and giant particles enrichment position on rainfall infiltration of accumulation body[J]. Hydro-Science and Engineering,2021,5:76 − 83. (in Chinese with English abstract)
    [17] 张国帅, 王晓亮, 夏建新. 入渗条件下颗粒堆积体稳定性试验研究[J]. 泥沙研究,2021,46(5):68 − 73. [ZHANG Guo-shuai, WANG Xiaoliang, XIA Jianxin. Experimental study on stability of particle accumulation under infiltration[J]. Journal of Sediment Research,2021,46(5):68 − 73. (in Chinese with English abstract)
    [18] 张玉, 徐卫亚, 邹丽芳, 等. 降雨条件下大型滑坡体渗流稳定性分析[J]. 岩土力学,2013,34(3):833 − 841. [ZHANG Yu, XU Weiya, ZOU Lifang, et al. Analysis of seepage stability of large-scale landslide under rainfall condition[J]. Rock and Soil Mechanics,2013,34(3):833 − 841. (in Chinese with English abstract)
    [19] 左自波, 张璐璐, 王建华. 降雨触发不同级配堆积体滑坡模型试验研究[J]. 岩土工程学报,2015,37(7):1319 − 1327. [ZUO Zibo, ZHANG Lulu, WANG Jianhua. Model tests on rainfall-induced colluvium landslides: effects of particle-size distribution[J]. Chinese Journal of Geotechnical Engineering,2015,37(7):1319 − 1327. (in Chinese with English abstract)
    [20] 卫童瑶, 殷跃平, 高杨, 等. 三峡库区巫山县塔坪H1滑坡变形机制[J]. 水文地质工程地质,2020,47(4):73 − 81. [WEI Tongyao, YIN Yueping, GAO Yang, et al. Deformation mechanism of the Taping H1 landslide in Wushan County in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology,2020,47(4):73 − 81. (in Chinese with English abstract)
    [21] 穆鹏, 吴玮江, 折学森. 汶川地震重灾区陇南红土坡滑坡稳定性分析与防治对策研究[J]. 工程地质学报,2012,20(2):204 − 212. [MU Peng, WU Weijiang, SHE Xuesen. Stability assessment and treatment for hongtupo landslide in severe disaster area of southern Gansu induced by Wenchuan earthquake[J]. Journal of Engineering Geology,2012,20(2):204 − 212. (in Chinese with English abstract)
    [22] 张玉, 徐卫亚, 石崇, 等. 争岗滑坡堆积体稳定性及治理措施研究[J]. 岩土工程学报,2010,32(9):1470 − 1478. [ZHANG Yu, XU Weiya, SHI Chong, et al. Stability and treatment of Zhenggang landslide accumulation mass[J]. Chinese Journal of Geotechnical Engineering,2010,32(9):1470 − 1478. (in Chinese with English abstract)
  • 期刊类型引用(2)

    1. 韩健松,崔光耀,王道远. 强震区隧道洞口段新型墙-板抗减震措施的效果分析. 太原学院学报(自然科学版). 2025(01): 9-16 . 百度学术
    2. 李海清,伏冠西,席锦州,古浩,于丽,李泽星. 高烈度地震区连拱隧道薄直中墙抗减震措施及破坏模式研究. 公路. 2023(05): 399-406 . 百度学术

    其他类型引用(0)

图(15)  /  表(1)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  182
  • PDF下载量:  272
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-12-05
  • 修回日期:  2022-01-20
  • 网络出版日期:  2022-02-13
  • 刊出日期:  2022-03-06

目录

/

返回文章
返回