基于改进FOA-SVM的冲击地压危险性等级预测
-
摘要: 对冲击地压危险性进行准确的预测预报对于防治冲击地压事故的发生至关重要。提出利用改进的果蝇优化算法(FOA)优化参数,建立模型实现对冲击地压危险性等级的预测。首先,利用文献提供的砚石台煤矿实测数据作为样本,选取影响冲击地压发生的十种主要因素如煤厚、埋深、倾角等,对数据进行归一化预处理和主成分分析。利用改进FOA的全局优化能力对SVM进行寻优,继而建立FOA-SVM模型;然后对23组训练样本进行训练,检验得模型误判率为0;最后将模型用于另外12组现场采集数据进行测试,并与标准FOA-SVM、PSO-SVM和GA-SVM预测结果进行比较。结果表明:改进的FOA-SVM模型适用于冲击地压危险性等级预测且预测精度较高。
-
-
[1] [1]. 姜耀东,赵毅鑫.我国煤矿冲击地压的研究现状:机制、预警与控制[J].岩石力学与工程学报,2015,11(34):2188-2204. [2] [2].JIANG Yaodong,ZHAO Yixin.State of the art: investigation on mechanism,forecast and control of coal bumps in China[J]. Chinese Journal of Rock Mechanics and Engineering,2015,11(34): 2188-2204.
[3] [3].兰天伟,张宏伟,李胜,等.矿井冲击地压危险性预测的多因素模式识别[J].中国安全科学学报,2013,23(3):33-38. [4] [4].LAN Tianwei,ZHANG Hongwei,LI Sheng,et al. Multi-factor pattern recognition method for predicting mine rock burst risk[J]. China Safety Science Journal,2013,23(3):33-38.
[5] [5].陈 峰,潘一山,李忠华,等.基于钻屑法的冲击地压危险性检测研究[J].中国地质灾害与防治学报,2013,24(2):116-119. [6] [6].CHEN Feng,PAN Yishan,LI Zhonghua,et al. Detection and study of rock burst hazard based on drilling cuttings method[J].The Chinese Journal of Geological Hazard and Control,2013,24(2):116-119.
[7] [7].李文健.微震监测技术在冲击地压矿井的应用[J].中国地质灾害与防治学报,2015,26(4):116-120. [8] [8].LI Wenjian.Application of microseism monitoring technology in rock burst coal mine[J].The Chinese Journal of Geological Hazard and Control, 2015,26(4): 116-120.
[9] [9].陶慧,马小平,乔美英.基于多变量混沌时间序列的冲击地压预测[J].煤炭学报,2012,37(10):1624-1629. [10] [10].TAO Hui,MA Xiaoping,Qiaomeiying.Rock burst on multivariate chaotic time series[J].Journal of China Coal Society, 2012,37(10):1624-1629.
[11] [11].孙凤琪.AdaBoost 集成神经网络在冲击地压预报中的应用[J].吉林大学学报(信息科学版),2009,27(1):79-84. [12] [12].SUN Fengqi.New rock burst prediction modeling based on ensemble neural network[J].Journal of Jilin University (Information Science Edition),2009,27(1): 79-84.
[13] [13].周健,史秀志.冲击地压危险性等级预测的Fisher判别分析方法[J].煤炭学报,2010,35增刊:22-27. [14] [14].ZHOU Jian,SHI Xiuzhi.Fisher discriminant analysis method for prediction of classification of rock burst risk[J].Journal of China Coal Society,2010,35 Sup:22-27.
[15] [15].金佩剑,王恩元,刘晓斐,等.冲击地压危险性综合评价的突变级数法研究[J].采矿与安全工程学报,2013,30(2):256-261. [16] [16].JIN Peijian,WANG Enyuan,LIU Xiaofei, et al. Catastrophe progression method on comprehensive evaluation of rock burst[J]. Journal of Mining & Safety Engineering,2013,30(2):256-261.
[17] [17].史策,高峰,陈连城,等.煤矿冲击地压预测的PCA-GRNN方法[J].中国安全科学学报,2016,26(7): 119-124. [18] [18].SHI Ce,GAO Feng,CHEN Liancheng,et al.Prediction of pressure bump in coal mine by PCA-GRNN[J]. China Safety Science Journal,2016,26(7):119-124.
[19] [19].温廷新,陈晓宇,杨红玉,等.基于优化Bagging-LSSVM模型的冲击地压预测[J].中国安全科学学报,2017,27(6):121-126. [20] [20].WEN Tingxin,CHEN Xiaoyu,YANG Hongyu,et al. Research on prediction of rock burst based on optimized Bagging-LSSVM model[J].China Safety Science Journal,2017,27(6):121-126.
[21] [21].邵良杉,马寒.煤体瓦斯渗透率的PSO-LSSVM预测模型[J].煤田地质与勘探,2015,43(4):23-26. [22] [22].SHAO Liangshan, MA Han. Model of coal gas permeability prediction based on PSO-LSSVM[J]. Coal Geology & Exploration,2015,43(4):23-26.
[23] [23].张振,钮冰.基于支持向量机回归的抗癌药物活性研究[J].计算机与应用化学,2011,28(11):1377-1380. [24] [24].ZHANG Zhen,NIU Bing.Predicting bis methylamines analog compounds by using support vector regression. [J].Computers and Applied Chemistry,2011,28(11): 1377-1380.
[25] [25].王春龙,刘建国,赵南京,等.基于支持向量机回归的水体重金属激光诱导击穿光谱定量分析研究[J].光学学报,2013,33(3):314-319. [26] [26].WANG Chunlong,LIU Jianguo,ZHAO Nanjing,et al.Quantitative analysis of laser-induced breakdown spectroscopy of heavy metals in water based on support vector machine regression[J].Acta Optica Sinica,2013, 33(3):314-319.
[27] [27].孙立,董君伊,李东海.基于果蝇算法的过热汽温自抗扰优化控制[J].清华大学学报:自然科学版,2014,54(10): 1288-1292. [28] [28].SUN Li,DONG Junyi,LI Donghai.Active disturbance rejection control for superheated steam boiler temperatures using the fruit fly algorithm[J].J Tsinghua Univ(Sci & Technol),2014,54(10):1288-1292.
[29] [29].刘东锐,赵国彦,彭康.矿井水源判别GA-SVM模型研究[J].安全与环境学报,2015,15(1):35-39. [30] [30].LIU Jianmin,WANG Jiren,LIU Yinpeng. Hydrochemistry analysis based on the source determination of coal mine water-bursts[J]. Journal of Safety and Environment,2015,15(1):35-39.
[31] [31].PAN Wentsao.A new fruit fly optimization algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, 2011,26(7):69-74.
[32] [32].石志标,苗 莹.基于FOA-SVM的汽轮机振动故障诊断[J].振动与冲击,2014,33(22):111-114. [33] [33].SHI Zhibiao,MIAO Ying.Vibration fault diagnosis for steam turbine by using support vector machine based on fruit fly optimization algorithm[J]. Journal of Vibration and Shock,2014,33(22): 111-114.
[34] [34].吴琼,陈志军.基于果蝇优化算法的支持向量机径流预测[J].人民黄河,2015,37(9):28-31. [35] [35].WU Qiong,CHEN Zhijun.Runoff forecasting based on fruit fly optimization algorithm and SVM algorithm[J]. Yellow River,2015, 37(9):28-31.
[36] [36].李铁,蔡美峰,王金安,等.深部开采冲击地压与瓦斯的相关性探讨[J].煤炭学报,2005,30(5):562-567. [37] [37].LI Tie,CAI Meifeng,WANG Jinan,et al.Discussion on relativity between rockburst and gas in deep exploitation[J].Journal of China Coal Society, 2005,30(5):562-567.
[38] [38].代高飞.岩石非线性动力学特征及冲击地压的研究[D].重庆:重庆大学,2002. [39] [39].DAI Gaofei.Research on nonlinear dynamics characteristics of rock and rockburst in coal mine[D]. Chongqing:Chongqing University,2002.
[40] [40].潘文超.果蝇最优化演算法[M].台湾:沧海书局,2013. [41] [41].PAN Wenchao.Fruit fly optimization algorithm[M]. Taiwan:Tsang Hai Publishing,2013.
-
期刊类型引用(7)
1. 付君宜,陈发达,沈志平,尹林莉,王祥. 岩溶山区城市地下隧道工程地质灾害风险分析. 中国地质灾害与防治学报. 2023(03): 100-108 . 本站查看
2. 茹媛博,苏昭. 某隧道突泥涌水灾害的致灾成因分析及危险性评价. 勘察科学技术. 2022(03): 24-28 . 百度学术
3. 李江龙,樊燕燕. 基于压力-状态-响应模型框架的城市地震综合易损性评价. 中国地质灾害与防治学报. 2021(02): 117-125 . 本站查看
4. 陈忠源,戴自航. 基于指标变权重复合云模型的岩质边坡稳定性评价初探. 中国地质灾害与防治学报. 2021(06): 9-17 . 本站查看
5. 唐万贵. 刚柔联合注浆支护技术在深部岩溶隧道施工中的应用. 建筑施工. 2020(01): 96-98 . 百度学术
6. 周玲,杨广庆,杨青潮. 基于优化组合模型及重标极差法的岩溶隧道涌水量预测研究. 武汉大学学报(工学版). 2020(10): 875-882 . 百度学术
7. 丁小华,原文杰,解祯,李爱和,祁茂富,刘晓明,肖双双. 基于综合赋权云模型的露天矿岩体可爆性分级识别. 煤炭科学技术. 2019(10): 96-101 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 584
- HTML全文浏览量: 11
- PDF下载量: 378
- 被引次数: 11