Research progress on rainfall-triggered landslide risk assessment under the context of climate change
-
摘要:
随着全球气候变化的加剧,极端降雨事件日益频繁,导致降雨型滑坡灾害频发,造成了巨大的人员伤亡与经济损失。文章系统回顾了气候变化背景下降雨型滑坡风险评估的研究进展,重点讨论了以下三个关键方面:(1)考虑气候变化的降雨作用下边坡可靠度评估;(2)考虑降雨模式不确定性的边坡易损性评估;(3)基于机器学习方法的降雨型滑坡危险性评估。在此基础上,文章进一步分析了气候变化背景下降雨型滑坡风险评估所面临的多维挑战,包括气候变化带来的不确定性、高时空分辨率地质气象数据缺乏以及模型跨区域的适应性等。最后,文章从精细的地质调查、多因素孕灾机理、基于韧性的风险评估等角度,展望了实现降雨型滑坡灾害韧性防灾的未来研究方向。研究旨在为降雨型滑坡灾害的防灾减灾工作提供理论支持和方法参考,促进滑坡灾害风险管理的科学化与精细化发展。
Abstract:With the intensification of global climate change, extreme rainfall events have become increasingly frequent, leading to recurrent rainfall-triggered landslides and causing significant casualties and economic losses. With the context of climate change, this study systematically reviews the research progress on advancements in probabilistic risk assessment of rainfall-triggered landslides, focusing on three key aspects: (1) slope reliability assessment under rainfall conditions considering climate change; (2) vulnerability assessment of slopes considering the uncertainty of rainfall patterns; and (3) rainfall-induced landslide hazard assessment based on machine learning methods. On this basis, this study further analyzes the multidimensional challenges faced by rainfall-triggered landslide risk assessment under climate change, including uncertainties associated with climate change, the lack of high spatio-temporal resolution geological and meteorological data, and the adaptability of models across different regions. Finally, from the perspectives of detailed geological surveys, multi-factor disaster gestation mechanisms, this study looks towards future research directions for enhancing resilience in rainfall-induced landslide disaster prevention, from landslide mechanisms under multiple factors, to resilience-based risk assessment. This study aims to provide theoretical support and methodological references for the disaster prevention and mitigation work of rainfall-triggered landslides, promoting the scientific, systematic, and refined development of landslide risk management.
-
Keywords:
- rainfall-induced landslide /
- risk assessment /
- uncertainty /
- climate change /
- disaster resilience.
-
0. 引言
强降雨作用下,山地丘陵区极易发生山洪、崩塌、滑坡、泥石流等地质灾害,并且可能阻断河流,形成堰塞湖,威胁堰塞体上下游人民生命财产安全[1 − 3]。据统计,近年来我国地质灾害造成的年死亡人数达200~400人[4]。山地丘陵地区由降雨引发的滑坡、泥石流灾害频发,造成严重的人员伤亡和经济财产损失[5]。在自然降雨条件下,山区中堆积的松散土体会在强降雨作用下诱发滑坡和泥石流灾害。大体积滑坡和泥石流汇入江河后,极易堵塞河道形成堰塞坝,壅高上游水位,堰塞坝一旦溃决将在下游造成巨大的洪水灾害,形成滑坡/泥石流-堰塞湖-溃决洪水灾害链[6 − 8]。
降雨是滑坡/泥石流-堰塞湖-溃决洪水灾害链的主要诱发因素,尤其是强度大、持续时间长的降雨往往是引发滑坡/泥石流-堰塞湖-溃决洪水灾害链的关键控制因素[9 − 11]。通过降雨试验揭示降雨诱发滑坡/泥石流-堰塞湖-溃决洪水灾害链的机理对防灾减灾工作具有重要意义。目前,众多学者采用物理模型试验揭示降雨诱发地质灾害的机理,王如宾等[12]基于人工模拟降雨室内大型滑坡模型试验,揭示了降雨诱发滑坡变形破坏机理。胡华等[13]设计了降雨滑坡模拟试验,研究了降雨强度和斜坡坡度对滑塌破坏的影响。部分学者通过现场试验来揭示降雨诱发地质灾害的机理,谭建民等[14]开展了降雨边坡破坏现场试验,探究了降雨作用下花岗岩风化土坡的失稳机制。周中等[15]综合通过人工降雨模拟试验和原位综合监测手段,探究了降雨条件下土石混合体滑坡的失稳机理。王刚等[16]开展降雨型滑坡现场试验研究,探究了不同雨强条件下天然黄土边坡的入渗规律及变形破坏模式。詹良通等[17]对非饱和膨胀土进行了降雨试验和原位监测,揭示了降雨入渗对边坡失稳的影响。综上可知,目前在利用模型试验和现场试验揭示降雨滑坡诱发机理方面已经开展了大量研究,取得了一些新的认识,但是,室内模型试验存在尺寸效应,难以还原灾害的真实情况,而现有现场试验多不是在灾害现场开展的原位试验。因此,在灾害现场开展原位试验对进一步探究降雨诱发滑坡、泥石流灾害机理至关重要。
本文选取2020年发生在四川省凉山州甘洛县黑西洛沟的山洪-滑坡-泥石流-堰塞湖灾害链残留边坡开展现场人工降雨试验,综合利用三维激光扫描仪、孔隙水压力计、土壤含水率传感器、EDS能谱分析等多种设备和方法,探究降雨诱发该处滑坡的机理,以期为当地的防灾减灾提供有益借鉴。
1. 灾害概况
黑西洛沟位于四川省凉山州甘洛县,为尼日河右侧的一条小山沟,长度约5 km。经现场调查,沟道两侧松散物源分布广泛,植被不发育。在非汛期,沟内仅有较小溪流流出,在枯水季节沟内偶尔断流。2020年8月31日上午8时,在持续的降雨作用下,黑西洛沟内发生了山洪-滑坡-泥石流-堰塞湖灾害链。灾害发生时,黑西洛沟内原有松散物源被山洪裹挟带走,并在运移过程中不断铲刮沟道底部物源,导致沟边两侧边坡失稳,逐渐演变为滑坡灾害。沟内通道不断下切过程中,两侧岸坡持续垮塌,崩塌体进入沟道后,滑坡规模急速扩大,最终演变为泥石流灾害。大量泥石流物源几乎呈垂直状态冲入尼日河,形成堰塞坝,堵塞尼日河,如图1(a)所示。经现场测量,形成的堰塞坝沿河道纵向方向长度约200 m,顺河向长度约为400 m,高度约30 m,堰塞坝体积约100×104 m3。堰塞坝自然溃决后冲毁下游场镇、村庄、学校和道路,造成阿兹觉乡一千余名群众受灾,3人失踪,黑西洛沟口的成昆铁路桥梁被冲毁,成昆铁路断道数月,堰塞坝下游的国道G245约1.2 km道路和多处桥梁被掩埋、冲毁,多栋房屋损毁,经济损失严重。堰塞坝材料在下游1 km范围内淤积,导致下游阿兹觉村挖哈组、乃牛组两个组被完全掩埋。
通过现场调查和资料收集,本次滑坡-泥石流-堰塞湖灾害链是一次典型的“小水大灾”灾害,本文聚焦该灾害链中的滑坡灾害,通过现场降雨试验和室内EDS能谱分析,以期揭示降雨作用下边坡侵蚀破坏的发生机理。
2. 现场试验
2.1 试验边坡概况
本次现场模型试验在2020年黑西洛沟灾害后的残余边坡上进行,试验边坡高度约为2.2 m,宽约2.0 m,坡长约3.0 m,天然坡度约为49°,如图1(b)所示。降雨试验前对坡面进行简单平整,清除坡面杂草、大块石等影响坡面径流和入渗的障碍物。现场筛分试验测得黑西洛沟内松散堆积体的颗粒级配曲线如图2所示[18]。
2.2 降雨及监测设备
降雨装置主要包括支架、雨水输送管道、喷头和雨量计。喷头设置在边坡顶部并延伸至坡面,喷头顶部可通过调节流量的方式模拟不同的雨强。
试验中设计了两排喷头,试验中经过多次调试,最终确定喷头间距约为0.7 m,每排喷头间距约为0.5 m,经现场观察,这一间距能够确保坡面降雨的均匀性。雨量计放置在边坡试验区,位于试验降雨区内,以实时测量坡面的降雨量,测得值能代表试验区的平均雨量,降雨试验装置如图3所示。
试验中数据采集设备包括孔隙水压力传感器、土壤含水率传感器、雨量计以及三维激光扫描仪,其中孔隙水压力传感器3个,土壤含水率传感器3个。孔隙水压力传感器量程是10 kPa,准确度误差≤0.5 F∙S,土壤含水率传感器测量范围0~100%。黑西洛沟滑坡灾害的主要原因就是堆积体浅层物源浸水后被冲出,故为了与灾害实际情况相似,本次试验所用传感器埋入边坡表层,深度为0.3 m。孔隙水压力计和土壤含水率传感器放入预挖的孔洞后,利用坡体原样土回填后进行人工夯实,保证夯实后孔内的土体与天然状态一致。边坡尺寸和传感器埋设的位置如图4所示。三维激光扫描仪立于边坡的正面,通过不同阶段的扫描,以获取降雨过程中边坡的三维地形点云数据,由此识别边坡的变形破坏过程。
2.3 降雨试验方案
根据甘洛县水利局的实测数据,本次灾害发生前后黑西洛沟临近监测站点的降雨数据如图5所示。临近监测站点位于苏雄镇,距离灾害点约500 m,本站点降雨数据可以代表真实的降雨量。灾害发生时当地已连续降雨约15 h,持续降雨导致沟内的松散物源浸水饱和,并最终被沟内山洪裹挟冲出,诱发链生的滑坡、泥石流和堰塞湖灾害,降雨是此次灾害链发生的主要诱因。为了更好地分析灾害链发生机理,试验降雨量尽量保证与灾害实际情况相符。受现场试验条件限制,经雨量计实测,此次现场试验共计降雨量为28 mm,降雨历时150 min,小时降雨量为11.2mm,试验小时降雨量与灾害发生时的降雨量接近,如图5所示。
3. 试验结果分析
本研究通过对试验数据的分析,揭示降雨条件下黑西洛沟内残余边坡内部的孔隙水压力和土壤含水率变化规律,同时通过三维激光扫描仪精准识别边坡表面的变形破坏过程。
3.1 孔隙水压力监测结果分析
根据现场监测结果,得出降雨过程中边坡内孔隙水压力随降雨历时的变化规律,如图6所示。
由图6可知,边坡体内孔隙水压力的变化过程大致可分为三个阶段:加速上升、下降和趋于稳定。降雨初期,雨水未入渗至坡体内部,孔隙水压力传感器监测数据未发生明显变化。随着降雨的持续进行,雨水在入渗过程中逐渐汇聚在坡面,形成坡面径流和坡内渗流,导致孔隙水压力开始变化,其中A1和A3孔隙水压力传感器在40 min至50 min陡然增加,边坡表面出现冲刷痕迹。继续降雨,边坡表面产生拉裂缝,雨水通过裂缝
不断渗入坡体内部,孔隙水压力持续上升,致使边坡的抗剪强度由于有效应力的减少而降低。降雨后期,边坡表面出现局部塌陷,坡体内部渗透路径发生变化,导致孔隙水压力开始下降。
降雨35~50 min时间段内,A1和A3传感器的孔隙水压力开始增加,坡面有明显的降雨冲蚀痕迹。继续降雨,A1和A3传感器的数据持续上升。降雨65 min后,A2孔隙水压力传感器才开始快速增加,并且此位置的含水率传感器也有明显响应,含水率曲线开始发生变化,土体的含水率开始逐渐上升,含水率和孔隙水压力变化一致。此时坡面的雨水冲蚀痕迹加深,侵蚀破坏范围扩大,土体颗粒被水流带走堆积在坡脚,整个坡面有明显的冲刷破坏。继续进行降雨,边坡土体开裂,雨水沿着拉裂缝进入坡体内部,孔隙水软化了边坡土体,土体有效应力减少,边坡稳定性下降,坡面产生了明显的局部塌陷,内部渗流场发生变化,孔隙水压力开始下降,直至不再改变。
不同位置的孔隙水压力传感器变化有明显差异,原因是,A3传感器位于坡顶,A1传感器位于边坡中部,降雨过程中,A1传感器由于受到降雨入渗和上部土体水分沿拉裂缝入渗的补给,上升速度更快,孔隙水压力相较更大。A2孔隙水压力传感器数据明显滞后,因为该传感器周围有无法清理的大块石,降雨过程中,雨水流经坡面,块石改变了雨水的渗流路径,导致其渗透速度变慢。
3.2 土壤含水率监测结果分析
持续降雨条件下边坡不同位置的土壤含水率变化规律如图7所示。
由图7可知,降雨过程中,含水率持续增大,并最终趋于稳定。土体含水率随降雨历时共经历3个变化阶段:基本不变、加速增大和保持稳定。在降雨初期,边坡雨水入渗量较少,各个监测点的土壤含水率均无明显变化,坡体处在基本稳定状态。随着降雨历时的增加,雨水逐渐从坡面向
坡体内部渗透,土壤含水率开始增加,降雨入渗使得土体由非饱和状态向饱和状态过渡,坡面土体遇水软化,强度降低,表面出现多处裂缝,在土体内部形成渗流通道,B2和B3位置的土壤含水率处于快速增长阶段,降雨后期,B1传感器才有明显的变化,最后土壤含水率都保持平稳状态。出现这种现象的原因是,雨水流经坡体表面,表层土体被冲刷而流失,水分子与土粒在表面形成阻碍入渗的结合水膜,土体内部气体无法排出,使得雨水难以下渗,边坡内的水分保持平衡,土壤含水率达到稳定,但此时边坡土体并未达到饱和状态。
土壤含水率明显变化的这段时间内,含水率传感器埋设位置的孔隙水压力也在迅速上升。降雨50 min左右,雨水流过坡面形成冲沟,坡面产生侵蚀破坏,如图8(a)所示。B3土壤含水率传感器开始快速增加,此时该位置的孔隙水压力也处在快速上升阶段,土体抗侵蚀性下降,坡体表面出现雨水冲蚀痕迹,发生降雨侵蚀破坏;降雨90 min左右,B3含水率传感器达到最大值并保持不变,此时土体孔隙水压力也达到稳定值,不再改变,边坡上部土体侵蚀破坏范围扩大,土体稳定性降低。降雨后期,B1传感器才开始加速上升。整个坡面的侵蚀进一步扩大,表面出现局部塌陷,如图8(b)所示。整个降雨过程中,雨水聚集在边坡表面,流经边坡使其受到侵蚀破坏,同时在降雨过程中,坡面产生裂缝,形成渗流优势通道,更有利于雨水的入渗,使得土体含水率不断增大。
3.3 边坡破坏过程分析
降雨试验过程中的边坡坡面形态变化过程如图9所示。试验过程中,分别在持续降雨45,90,135 min三个时间点对坡面的三维形体进行扫描,获取坡面点云数据,经多期作差后,可以识别出边坡不同阶段的坡面三维形态变化,降雨过程中坡面形态变化云图如图10所示。
由图10可知,持续降雨过程中,边坡的破坏过程具体表现为:持续降雨45 min后,坡面出现了侵蚀破坏,雨水在坡面聚集,形成表面径流,带走坡体表面的松散颗粒。从边坡坡面变形云图可以看到,边坡表面有明显的冲刷区域,被冲刷掉的土体堆积在了坡脚。随着时间与累计降雨量的增大,试验边坡坡面破坏开始逐渐明显,坡面的冲刷痕迹不断加深,冲刷范围不断扩大,边坡上部土体流失,在边坡中部位置发生局部垮塌现象,如图9所示。这段时间,土体内部孔隙水压力也在迅速增大,变形破坏与孔隙水压力之间响应关系明显。降雨120 min后,如图9(b)所示,边坡前缘的冲沟逐渐加宽加深,表面出现多处拉裂缝,雨水沿着裂缝进入土体内部,边坡变形破坏范围不断扩大,此时土壤含水率陡然增加,边坡产生局部垮塌,土体内部渗透路径发生改变,孔隙水压力开始下降。持续降雨135 min后,由图10可知,边坡表面有更多的土体流失且在坡脚堆积。从坡面形态图中可以看出,位移变化的对应位置有裂缝产生和局部小范围的塌陷,雨水的冲蚀痕迹明显,坡脚堆积土体明显增多。
基于多次三维激光扫描获取的点云数据,通过计算得到本次整个降雨试验过程中边坡坡面的冲刷物源体积约为10.0 dm3。
3.4 EDS测试结果分析
为进一步揭示该残余边坡的变形破坏原因,对试验土样开展了X射线能谱分析(EDS)测试。能谱仪配合扫描电子显微镜与透射电子显微镜的
使用,可以获取土样成分的元素种类及含量,其测试结果如表1所示。
表 1 边坡物质成分组成表Table 1. Composition of slope material components元素 质量百分比/% 原子百分比/% 标准样品标签 C 8.08 12.91 C O 49.38 59.23 SiO2 Na 1.84 1.54 Albite(钠长石) Mg 0.39 0.31 MgO Al 6.96 4.95 Al2O3 Si 26.51 18.11 SiO2 K 3.72 1.82 KBr Ca 0.28 0.14 Wollastonite(硅石灰) Ti 0.36 0.14 Ti Fe 2.49 0.86 Fe 总量 100 100 由表1可知,边坡的物质成分较为复杂,主要化学成分为SiO2和Al2O3,含少量Mg、Fe、Na元素。物质组成表明边坡土体中含有伊利石和高岭石等黏土矿物,而伊利石和高岭石是影响膨胀土性质的主要矿物。膨胀土吸水膨胀,遇水崩解或软化,抗冲刷性能差。因此,含有伊利石和高岭石等黏性矿物的边坡表面极易吸水膨胀,抗冲刷能力降低,导致边坡表层土体强度急剧衰减,在降雨作用下极易冲刷破坏。
由图9可知,降雨120 min后,边坡表面出现了侵蚀破坏和局部塌陷,土体被雨水带走堆积在坡脚,整体稳定性受到影响,原因在于:非饱和膨胀土在长时间的持续降雨作用下,雨水入渗会使得浅表层土体孔隙水压力上升和吸力降低。孔隙水压力的升高会导致坡体滑动力增加,且土体的有效应力下降,边坡强度降低,边坡坡面发生侵蚀冲刷。同时吸力下降将使得土层发生膨胀,含有高岭石、伊利石等黏性矿物的边坡土体会因为吸水膨胀而软化,导致土体的抗冲刷性能下降,土颗粒之间的黏聚力随时间而降低,在重力和雨水裹挟作用下,导致边坡出现了多处拉裂缝,拉裂缝的产生使得雨水进一步入渗,雨水充满裂缝产生水压力导致边坡强度降低,加剧边坡的破坏,最终边坡坡面产生冲刷破坏和局部塌陷。
4. 结论
(1)降雨作用下,边坡土壤含水率发生明显增加;同时孔隙水压力在降雨期间也会增大,后期土体发生变形破坏,孔隙水压力开始下降。
(2)三维激光扫描结果表明:边坡表面有明显的冲刷区域且范围不断扩大,持续降雨导致边坡的抗侵蚀能力变弱,土体被雨水冲刷而流失,流失的土颗粒堆积在坡脚。整个降雨试验过程中,边坡坡面的冲刷物源体积约为10.0 dm3。
(3)EDS测试结果表明边坡土体含有伊利石和高岭石等黏性矿物,遇水后极易发生膨胀而软化,导致土体黏聚力降低,边坡抗侵蚀能力变弱,边坡产生拉裂缝,雨水充满裂缝产生水压力加剧边坡破坏,恶化了边坡稳定性,最终发生冲刷破坏和局部塌陷。
(4)试验对揭示降雨作用下边坡侵蚀破坏机理具有重要意义。降雨入渗使得边坡土体内的含水率和孔隙水压力发生波动陡增,导致土体基质吸力减小,土体软化,从而导致边坡土体强度降低是边坡发生侵蚀破坏的主要原因。
-
-
[1] WANG Hao,WANG Binbin,CUI Peng,et al. Disaster effects of climate change in high mountain Asia:State of art and scientific challenges[J]. Advances in Climate Change Research,2024,15(3):367 − 389. DOI: 10.1016/j.accre.2024.06.003
[2] HUANG Yufen,CHEN Yileng. Numerical simulations of seasonal variations of rainfall over the island of Hawaii[J]. Journal of Applied Meteorology and Climatology,58(6):1219-1232.
[3] XU Xi,HUANG Yu,XING Yuanchuang,et al. Investigation of rainfall-induced toe-cut slope failure mechanisms in the southeastern coastal area of China[J]. Natural Hazards,2022,110(3):1761 − 1782. DOI: 10.1007/s11069-021-05011-1
[4] 崔鹏,陈树群,苏凤环,等. 台湾“莫拉克” 台风诱发山地灾害成因与启示[J]. 山地学报,2010,28(1):103 − 115. [CUI Peng,CHEN Suchin,SU Fenghuan,et al. Formation and mitigation countermeasure of geo-hazards caused by moarc typhoon in Taiwan [J]. Journal of Mountain Science,2010,28(1):103 − 115. (in Chinese with English abstract)] CUI Peng, CHEN Suchin, SU Fenghuan, et al. Formation and mitigation countermeasure of geo-hazards caused by moarc typhoon in Taiwan [J]. Journal of Mountain Science, 2010, 28(1): 103 − 115. (in Chinese with English abstract)
[5] BATISTA J A N,JULIEN P Y. Remotely sensed survey of landslide clusters:Case study of Itaoca,Brazil[J]. Journal of South American Earth Sciences,2019,92:145 − 150. DOI: 10.1016/j.jsames.2019.02.021
[6] 全国地质灾害防治“十四五”规划[EB]. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.gov.cn%2Fzhengce%2Fzhengceku%2F2023-01%2F04%2F5734957%2Ffiles%2F38ec8ee4b51c4762b17bf054b2f56254.doc&wdOrigin=BROWSELINK. [7] 陈博,张灿灿,李振洪,等. 福建龙岩市2024年“6•16”特大暴雨诱发滑坡发育特征及其调控因子分析[J]. 武汉大学学报(信息科学版),2024,49(11):2145 − 2155. [CHEN Bo,ZHANG Cancan,LI Zhenhong,et al. Developmental characteristics and controlling factors of landslides triggered by extreme rainfalls on 16 June 2024 in Longyan,Fujian Province[J]. Geomatics and Information Science of Wuhan University,2024,49(11):2145 − 2155. (in Chinese with English abstract)] CHEN Bo, ZHANG Cancan, LI Zhenhong, et al. Developmental characteristics and controlling factors of landslides triggered by extreme rainfalls on 16 June 2024 in Longyan, Fujian Province[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2145 − 2155. (in Chinese with English abstract)
[8] HUANG Yu,CHENG Hualin. The impact of climate change on coastal geological disasters in southeastern China[J]. Natural Hazards,2013,65(1):377 − 390. DOI: 10.1007/s11069-012-0370-7
[9] ADARSH S,SHAMLA D S,NAIR G R A,et al. Indian landslide tragedy demands a rethink of hazard mapping in a changing climate[J]. Nature,2024,632(8027):985.
[10] 林滨强,章德生,简文彬,等. 风驱雨作用下植被斜坡稳定性响应研究[J]. 岩土力学,2024,45(9):2765 − 2774. [LIN Binqiang,ZHANG Desheng,JIAN Wenbin,et al. Response of vegetated slope stability under wind-driven rain conditions[J]. Rock and Soil Mechanics,2024,45(9):2765 − 2774. (in Chinese with English abstract)] LIN Binqiang, ZHANG Desheng, JIAN Wenbin, et al. Response of vegetated slope stability under wind-driven rain conditions[J]. Rock and Soil Mechanics, 2024, 45(9): 2765 − 2774. (in Chinese with English abstract)
[11] 张泰丽,周爱国,施斌,等. 台风暴雨条件下滑坡变形特征物理试验研究[J]. 水文地质工程地质,2016,43(6):127 − 132. [ZHANG Taili,ZHOU Aiguo,SHI Bin,et al. Physical experiment research on landslide deformation characteristics under the condition of the typhoon heavy rain[J]. Hydrogeology & Engineering Geology,2016,43(6):127 − 132. (in Chinese with English abstract)] ZHANG Taili, ZHOU Aiguo, SHI Bin, et al. Physical experiment research on landslide deformation characteristics under the condition of the typhoon heavy rain[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 127 − 132. (in Chinese with English abstract)
[12] 沈佳,董岩松,简文彬,等. 台风暴雨型土质滑坡演化过程研究[J]. 工程地质学报,2020,28(6):1290 − 1299. [SHEN Jia,DONG Yansong,JIAN Wenbin,et al. Study on evolution process of landslides triggered by typhoon rainstorm[J]. Journal of Engineering Geology,2020,28(6):1290 − 1299. (in Chinese with English abstract)] SHEN Jia, DONG Yansong, JIAN Wenbin, et al. Study on evolution process of landslides triggered by typhoon rainstorm[J]. Journal of Engineering Geology, 2020, 28(6): 1290 − 1299. (in Chinese with English abstract)
[13] 许旭堂,简文彬,吴能森,等. 降雨诱发残积土坡失稳的模型试验[J]. 中国公路学报,2018,31(2):270 − 279. [XU Xutang,JIAN Wenbin,WU Nengsen,et al. Model test of rainfall-induced residual soil slope failure[J]. China Journal of Highway and Transport,2018,31(2):270 − 279. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-7372.2018.02.029 XU Xutang, JIAN Wenbin, WU Nengsen, et al. Model test of rainfall-induced residual soil slope failure[J]. China Journal of Highway and Transport, 2018, 31(2): 270 − 279. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-7372.2018.02.029
[14] 简文彬,黄聪惠,罗阳华,等. 降雨入渗下非饱和坡残积土湿润锋运移试验研究[J]. 岩土力学,2020,41(4):1123 − 1133. [JIAN Wenbin,HUANG Conghui,LUO Yanghua,et al. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil[J]. Rock and Soil Mechanics,2020,41(4):1123 − 1133. (in Chinese with English abstract)] JIAN Wenbin, HUANG Conghui, LUO Yanghua, et al. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil[J]. Rock and Soil Mechanics, 2020, 41(4): 1123 − 1133. (in Chinese with English abstract)
[15] 许建聪,尚岳全. 降雨作用下碎石土滑坡解体变形破坏机制研究[J]. 岩土力学,2008,29(1):106 − 112. [XU Jiancong,SHANG Yuequan. Study on mechanism of disintegration deformation and failure of debris landslide under rainfall[J]. Rock and Soil Mechanics,2008,29(1):106 − 112. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2008.01.020 XU Jiancong, SHANG Yuequan. Study on mechanism of disintegration deformation and failure of debris landslide under rainfall[J]. Rock and Soil Mechanics, 2008, 29(1): 106 − 112. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.01.020
[16] 周永强,盛谦,宋顶峰,等. 降雨作用下裂缝对杆塔基础滑坡影响的物理模型试验[J]. 工程科学与技术,2022,54(4):88 − 98. [ZHOU Yongqiang,SHENG Qian,SONG Dingfeng,et al. Physical model test on the influence of crack on tower foundation landslide under rainfall[J]. Advanced Engineering Sciences,2022,54(4):88 − 98. (in Chinese with English abstract)] ZHOU Yongqiang, SHENG Qian, SONG Dingfeng, et al. Physical model test on the influence of crack on tower foundation landslide under rainfall[J]. Advanced Engineering Sciences, 2022, 54(4): 88 − 98. (in Chinese with English abstract)
[17] 张明,胡瑞林,殷跃平,等. 川东缓倾红层中降雨诱发型滑坡机制研究[J]. 岩石力学与工程学报,2014,33(增刊2):3783 − 3790. [ZHANG Ming,HU Ruilin,YIN Yueping,et al. Study on mechanism of rainfall-induced landslide in gently inclined red beds in eastern Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(Sup 2):3783 − 3790. (in Chinese with English abstract)] ZHANG Ming, HU Ruilin, YIN Yueping, et al. Study on mechanism of rainfall-induced landslide in gently inclined red beds in eastern Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup 2): 3783 − 3790. (in Chinese with English abstract)
[18] 李鹤. 东南沿海残积土地区降雨型滑坡预警预报体系的研究与应用[D]. 杭州:浙江大学,2011:129. [LI He. Research and application of early warning and forecasting system of rainfall-type landslide in residual soil area of southeast coast[D]. Hangzhou:Zhejiang University,2011:129]. (in Chinese with English abstract)] LI He. Research and application of early warning and forecasting system of rainfall-type landslide in residual soil area of southeast coast[D]. Hangzhou: Zhejiang University, 2011: 129]. (in Chinese with English abstract)
[19] 庄建琦,彭建兵,张利勇. 不同降雨条件下黄土高原浅层滑坡危险性预测评价[J]. 吉林大学学报(地球科学版),2013,43(3):867 − 876. [ZHUANG Jianqi,PENG Jianbing,ZHANG Liyong. Risk assessment and prediction of the shallow landslide at different precipitation in Loess Plateau[J]. Journal of Jilin University (Earth Science Edition),2013,43(3):867 − 876. (in Chinese with English abstract)] ZHUANG Jianqi, PENG Jianbing, ZHANG Liyong. Risk assessment and prediction of the shallow landslide at different precipitation in Loess Plateau[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3): 867 − 876. (in Chinese with English abstract)
[20] 高华喜,殷坤龙. 降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J]. 岩土力学,2007,28(5):1055 − 1060. [GAO Huaxi,YIN Kunlong. Discuss on the correlations between landslides and rainfall and threshold for landslide early-warning and prediction[J]. Rock and Soil Mechanics,2007,28(5):1055 − 1060. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2007.05.039 GAO Huaxi, YIN Kunlong. Discuss on the correlations between landslides and rainfall and threshold for landslide early-warning and prediction[J]. Rock and Soil Mechanics, 2007, 28(5): 1055 − 1060. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.05.039
[21] 亓星,许强,郑光,等. 降雨诱发顺层岩质及土质滑坡动态预警力学模型[J]. 灾害学,2015,30(3):38 − 42. [QI Xing,XU Qiang,ZHENG Guang,et al. Dynamic mechanics early warning model of rainfall induced bedding rock and soil landslide[J]. Journal of Catastrophology,2015,30(3):38 − 42. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-811X.2015.03.008 QI Xing, XU Qiang, ZHENG Guang, et al. Dynamic mechanics early warning model of rainfall induced bedding rock and soil landslide[J]. Journal of Catastrophology, 2015, 30(3): 38 − 42. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2015.03.008
[22] ZHANG Yonggang,CHEN Xinquan,LIAO Raoping,et al. Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area[J]. Natural Hazards,2021,107(2):1709 − 1729. DOI: 10.1007/s11069-021-04655-3
[23] ZHANG Yonggang,TANG Jun,HE Zhengying,et al. A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide[J]. Natural Hazards,2021,105(1):783 − 813. DOI: 10.1007/s11069-020-04337-6
[24] 李江山,李滨,殷跃平,等. 强降雨诱发作用下岩溶山体滑坡机制研究——以关岭滑坡为例[J]. 岩石力学与工程学报,2023,42(6):1497 − 1507. [LI Jiangshan,LI Bin,YIN Yueping,et al. Research on mechanism of landslides in the southwest karst mountain areas under intensive rainfall:A case study of the Guanling landslide[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(6):1497 − 1507. (in Chinese with English abstract)] LI Jiangshan, LI Bin, YIN Yueping, et al. Research on mechanism of landslides in the southwest karst mountain areas under intensive rainfall: A case study of the Guanling landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(6): 1497 − 1507. (in Chinese with English abstract)
[25] 缪海波,王功辉. 风振影响下乔木坡地暴雨型浅层滑坡演化机制[J]. 地质科技通报,2022,41(2):60 − 70. [MIAO Haibo,WANG Gonghui. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology,2022,41(2):60 − 70. (in Chinese with English abstract)] MIAO Haibo, WANG Gonghui. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 60 − 70. (in Chinese with English abstract)
[26] 刘浩,张文,芦磊. 基于3D打印技术的软弱夹层干湿循环作用强度劣化试验研究[J/OL]. 水文地质工程地质. (2024-11-22)[2025-01-01]. [LIU Hao,ZHANG Wen,LU Lei. An experimental study on strength degradation of soft interlayer during dry and wet cycling based on 3D printing technology [J/OL]. Hydrogeology & Engineering Geology. (2024-11-22)[2025-01-01]. http://kns.cnki.net/kcms/detail/11.2202.P.20241122.1047.002.html. (in Chinese with English abstract)] LIU Hao, ZHANG Wen, LU Lei. An experimental study on strength degradation of soft interlayer during dry and wet cycling based on 3D printing technology [J/OL]. Hydrogeology & Engineering Geology. (2024-11-22)[2025-01-01]. http://kns.cnki.net/kcms/detail/11.2202.P.20241122.1047.002.html. (in Chinese with English abstract)
[27] 张洁,庄一豪,陆盟. 降雨诱发公路滑坡社会风险评估[J]. 防灾减灾工程学报,2023,43(3):413 − 422+473. [ZHANG Jie,ZHUANG Yihao,LU Meng. Assessing societal risk of rainfall-induced landslides along highways[J]. Journal of Disaster Prevention and Mitigation Engineering,2023,43(3):413 − 422+473. (in Chinese with English abstract)] ZHANG Jie, ZHUANG Yihao, LU Meng. Assessing societal risk of rainfall-induced landslides along highways[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(3): 413 − 422+473. (in Chinese with English abstract)
[28] 郭子正,何俊,黄达,等. 降雨诱发浅层滑坡危险性的快速评估模型及应用[J]. 岩石力学与工程学报,2023,42(5):1188 − 1201. [GUO Zizheng,HE Jun,HUANG Da,et al. Fast assessment model for rainfall-induced shallow landslide hazard and application[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(5):1188 − 1201. (in Chinese with English abstract)] GUO Zizheng, HE Jun, HUANG Da, et al. Fast assessment model for rainfall-induced shallow landslide hazard and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1188 − 1201. (in Chinese with English abstract)
[29] 荣广智. 基于情景模拟的贵州省水城县极端降水诱发地质灾害链风险评估研究[D]. 长春:东北师范大学,2023. [RONG Guangzhi. Study on risk assessment of geological hazard chain induced by extreme precipitation in Shuicheng County,Guizhou Province based on scenario simulation[D]. Changchun:Northeast Normal University,2023. (in Chinese with English abstract)] RONG Guangzhi. Study on risk assessment of geological hazard chain induced by extreme precipitation in Shuicheng County, Guizhou Province based on scenario simulation[D]. Changchun: Northeast Normal University, 2023. (in Chinese with English abstract)
[30] 许启松,杨国珍. 浅析贵州省暴雨-地质灾害链典型区减灾能力评估示范[J]. 中国减灾,2022(7):34 − 35. [XU Qisong,YANG Guozhen. Evaluation and demonstration of disaster reduction capacity in typical areas of rainstorm-geological disaster chain in Guizhou Province[J]. Disaster Reduction in China,2022(7):34 − 35. (in Chinese)] DOI: 10.3969/j.issn.1002-4549.2022.07.013 XU Qisong, YANG Guozhen. Evaluation and demonstration of disaster reduction capacity in typical areas of rainstorm-geological disaster chain in Guizhou Province[J]. Disaster Reduction in China, 2022(7): 34 − 35. (in Chinese) DOI: 10.3969/j.issn.1002-4549.2022.07.013
[31] HE Zhengying,HUANG Yu,ZHAO Cuizhu. A preliminary general framework for seismic resilience assessment of slope engineering[J]. Bulletin of Engineering Geology and the Environment,2022,81(11):463.
[32] HE Zhengying,HUANG Yu,LI Yinke,et al. Probabilistic fragility assessment of slopes considering uncertainty associated with temporal patterns of rainfall intensity[J]. Computers and Geotechnics,2024,173:106534. DOI: 10.1016/j.compgeo.2024.106534
[33] HE Zhengying,AKIYAMA M,ALHAMID A K,et al. Probabilistic life-cycle landslide assessment subjected to nonstationary rainfall based on alternating stochastic renewal process[J]. Engineering Geology,2024,338:107543. DOI: 10.1016/j.enggeo.2024.107543
[34] KIM H,LEE J H,PARK H J,et al. Assessment of temporal probability for rainfall-induced landslides based on nonstationary extreme value analysis[J]. Engineering Geology,2021,294:106372. DOI: 10.1016/j.enggeo.2021.106372
[35] 陈晓清,韦方强,崔鹏,等. 云南新平2002-08-14特大滑坡泥石流灾害及防治对策[J]. 山地学报,2003,21(5):599 − 604. [CHEN Xiaoqing,WEI Fangqiang,CUI Peng,et al. 2002-08-14 large-scale landslide debris-flow hazard in Xinping County and the prevention countermeasure[J]. Mountain Research,2003,21(5):599 − 604. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2003.05.013 CHEN Xiaoqing, WEI Fangqiang, CUI Peng, et al. 2002-08-14 large-scale landslide debris-flow hazard in Xinping County and the prevention countermeasure[J]. Mountain Research, 2003, 21(5): 599 − 604. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2003.05.013
[36] AWMALONE,黄润秋. 香港的边坡安全管理与滑坡风险防范[J]. 山地学报,2000,18(2):187 − 192. [AWMALONE,HUANG Runqiu. Slope safety and landslides risk management[J]. Mountain Research,2000,18(2):187 − 192. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2000.02.017 AWMALONE, HUANG Runqiu. Slope safety and landslides risk management[J]. Mountain Research, 2000, 18(2): 187 − 192. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2000.02.017
[37] HUANG Yu,HE Zhengying. Rainfall-oriented resilient design for slope system:Resilience-enhancing strategies[J]. Soils and Foundations,2023,63(2):101297. DOI: 10.1016/j.sandf.2023.101297
[38] 何正迎,黄雨,AKIYAMA M,等. 基于路网连通可靠度的边坡韧性提升决策优化方法[J]. 中国科学:技术科学,2024,54(12):2392 − 2404. [HE Zhengying,HUANG Yu,AKIYAMA M,et al. A decision optimization method for resilience-enhanced strategies for slopes based on road network connectivity reliability[J]. Scientia Sinica Technologica,2024,54(12):2392 − 2404. (in Chinese with English abstract)] DOI: 10.1360/SST-2024-0115 HE Zhengying, HUANG Yu, AKIYAMA M, et al. A decision optimization method for resilience-enhanced strategies for slopes based on road network connectivity reliability[J]. Scientia Sinica Technologica, 2024, 54(12): 2392 − 2404. (in Chinese with English abstract) DOI: 10.1360/SST-2024-0115
[39] 汪丁建,唐辉明,李长冬,等. 强降雨作用下堆积层滑坡稳定性分析[J]. 岩土力学,2016,37(2):439 − 445. [WANG Dingjian,TANG Huiming,LI Changdong,et al. Stability analysis of colluvial landslide due to heavy rainfall[J]. Rock and Soil Mechanics,2016,37(2):439 − 445. (in Chinese with English abstract)] WANG Dingjian, TANG Huiming, LI Changdong, et al. Stability analysis of colluvial landslide due to heavy rainfall[J]. Rock and Soil Mechanics, 2016, 37(2): 439 − 445. (in Chinese with English abstract)
[40] 兰恒星,周成虎,李焯芬,等. 瞬时孔隙水压力作用下的降雨滑坡稳定性响应分析:以香港天然降雨滑坡为例[J]. 中国科学E辑:技术科学,2003,33(增刊1):119 − 136. [LAN Hengxing,ZHOU Chenghu,LI Zhuofen,et al. Stability response analysis of rainfall landslide under instantaneous pore water pressure:A case study of natural rainfall landslide in Hong Kong[J]. Scientia Sinica (Technologica),2003,33(Sup 1):119 − 136. (in Chinese)] LAN Hengxing, ZHOU Chenghu, LI Zhuofen, et al. Stability response analysis of rainfall landslide under instantaneous pore water pressure: A case study of natural rainfall landslide in Hong Kong[J]. Scientia Sinica (Technologica), 2003, 33(Sup 1): 119 − 136. (in Chinese)
[41] 许强,徐繁树,蒲川豪,等. 2024年4月广东韶关江湾镇极端降雨诱发群发性滑坡初步分析[J]. 武汉大学学报(信息科学版),2024,49(8):1264 − 1274. [XU Qiang,XU Fanshu,PU Chuanhao,et al. Preliminary analysis of extreme rainfall-induced cluster landslides in Jiangwan township,Shaoguan,Guangdong,April 2024[J]. Geomatics and Information Science of Wuhan University,2024,49(8):1264 − 1274. (in Chinese with English abstract)] XU Qiang, XU Fanshu, PU Chuanhao, et al. Preliminary analysis of extreme rainfall-induced cluster landslides in Jiangwan township, Shaoguan, Guangdong, April 2024[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1264 − 1274. (in Chinese with English abstract)
[42] 陈洪凯,魏来,谭玲. 降雨型滑坡经验性降雨阈值研究综述[J]. 重庆交通大学学报(自然科学版),2012,31(5):990 − 996. [CHEN Hongkai,WEI Lai,TAN Ling. Review of research on empirical rainfall threshold of rainfall-induced landslide[J]. Journal of Chongqing Jiaotong University (Natural Science),2012,31(5):990 − 996. (in Chinese with English abstract)] CHEN Hongkai, WEI Lai, TAN Ling. Review of research on empirical rainfall threshold of rainfall-induced landslide[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(5): 990 − 996. (in Chinese with English abstract)
[43] 亓星,许强,孙亮,等. 降雨型黄土滑坡预警研究现状综述[J]. 地质科技情报,2014,33(6):219 − 225. [QI Xing,XU Qiang,SUN Liang,et al. Research overview on early warning of precipitation-induced loess landslides[J]. Geological Science and Technology Information,2014,33(6):219 − 225. (in Chinese with English abstract)] QI Xing, XU Qiang, SUN Liang, et al. Research overview on early warning of precipitation-induced loess landslides[J]. Geological Science and Technology Information, 2014, 33(6): 219 − 225. (in Chinese with English abstract)
[44] 文海家,张岩岩,付红梅,等. 降雨型滑坡失稳机理及稳定性评价方法研究进展[J]. 中国公路学报,2018,31(2):15 − 29. [WEN Haijia,ZHANG Yanyan,FU Hongmei,et al. Research status of instability mechanism of rainfall-induced landslide and stability evaluation methods[J]. China Journal of Highway and Transport,2018,31(2):15 − 29. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-7372.2018.02.002 WEN Haijia, ZHANG Yanyan, FU Hongmei, et al. Research status of instability mechanism of rainfall-induced landslide and stability evaluation methods[J]. China Journal of Highway and Transport, 2018, 31(2): 15 − 29. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-7372.2018.02.002
[45] 徐卫亚,周伟杰,闫龙. 降雨型堆积体滑坡渗流稳定性研究进展[J]. 水利水电科技进展,2020,40(4):87 − 94. [XU Weiya,ZHOU Weijie,YAN Long. Research progress on seepage stability of rainfall-induced accumulation landslide[J]. Advances in Science and Technology of Water Resources,2020,40(4):87 − 94. (in Chinese with English abstract)] XU Weiya, ZHOU Weijie, YAN Long. Research progress on seepage stability of rainfall-induced accumulation landslide[J]. Advances in Science and Technology of Water Resources, 2020, 40(4): 87 − 94. (in Chinese with English abstract)
[46] 豆红强,简文彬,王浩,等. 高植被覆盖区台风暴雨型滑坡成灾机制及预警模型研究综述[J]. 自然灾害学报,2023,32(2):1 − 15. [DOU Hongqiang,JIAN Wenbin,WANG Hao,et al. Review of failure mechanism and early warning model of landslides induced by typhoon and associated rainstorm in high vegetation coverage area[J]. Journal of Natural Disasters,2023,32(2):1 − 15. (in Chinese)] DOU Hongqiang, JIAN Wenbin, WANG Hao, et al. Review of failure mechanism and early warning model of landslides induced by typhoon and associated rainstorm in high vegetation coverage area[J]. Journal of Natural Disasters, 2023, 32(2): 1 − 15. (in Chinese)
[47] 黄润秋,祁生文. 工程地质:十年回顾与展望[J]. 工程地质学报,2017,25(2):257 − 276. [HUANG Runqiu,QI Shengwen. Engineering geology:Review and prospect of past ten years in China[J]. Journal of Engineering Geology,2017,25(2):257 − 276. (in Chinese with English abstract)] HUANG Runqiu, QI Shengwen. Engineering geology: Review and prospect of past ten years in China[J]. Journal of Engineering Geology, 2017, 25(2): 257 − 276. (in Chinese with English abstract)
[48] SUI Haoyue,SU Tianming,HU Ruilin,et al. Study on the risk assessment method of rainfall landslide[J]. Water,2022,14(22):3678. DOI: 10.3390/w14223678
[49] 唐亚明,张茂省,李政国,等. 国内外地质灾害风险管理对比及评述[J]. 西北地质,2015,48(2):238 − 246. [TANG Yaming,ZHANG Maosheng,LI Zhengguo,et al. Review and comparison onInland and overseas geo-hazards risk management[J]. Northwestern Geology,2015,48(2):238 − 246. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1009-6248.2015.02.025 TANG Yaming, ZHANG Maosheng, LI Zhengguo, et al. Review and comparison onInland and overseas geo-hazards risk management[J]. Northwestern Geology, 2015, 48(2): 238 − 246. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-6248.2015.02.025
[50] FELL R,COROMINAS J,BONNARD C,et al. Guidelines for landslide susceptibility,hazard and risk zoning for land use planning[J]. Engineering Geology,2008,102(3/4):85 − 98.
[51] AMARASINGHE M P,KULATHILAKA S A S,ROBERT D J,et al. Risk assessment and management of rainfall-induced landslides in tropical regions:A review[J]. Natural Hazards,2024,120(3):2179 − 2231. DOI: 10.1007/s11069-023-06277-3
[52] TYAGI A,TIWARI R K,JAMES N. GIS-based landslide hazard zonation and risk studies using MCDM[M]//Local Site Effects and Ground Failures. Singapore:Springer Singapore,2021:251-266.
[53] 向喜琼,黄润秋. 地质灾害风险评价与风险管理[J]. 地质灾害与环境保护,2000,11(1):38 − 41. [XIANG Xiqiong,HUANG Runqiu. Risk assessment and risk management for slope geohazards[J]. Journal of Geological Hazards and Environment Preservation,2000,11(1):38 − 41. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-4362.2000.01.008 XIANG Xiqiong, HUANG Runqiu. Risk assessment and risk management for slope geohazards[J]. Journal of Geological Hazards and Environment Preservation, 2000, 11(1): 38 − 41. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2000.01.008
[54] 张业成,马宗晋,高庆华,等. 中国的巨灾风险与巨灾防范[J]. 地质力学学报,2006,12(2):119 − 126. [ZHANG Yecheng,MA Zongjin,GAO Qinghua,et al. Huge disaster risk and prevention in China[J]. Journal of Geomechanics,2006,12(2):119 − 126. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2006.02.002 ZHANG Yecheng, MA Zongjin, GAO Qinghua, et al. Huge disaster risk and prevention in China[J]. Journal of Geomechanics, 2006, 12(2): 119 − 126. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2006.02.002
[55] 廖文旺,姬建,张童,等. 考虑降雨入渗参数空间变异性的浅层滑坡时效风险分析[J]. 岩土力学,2022,43(增刊1):623 − 632. [LIAO Wenwang,JI Jian,ZHANG Tong,et al. Time-effect risk analysis of shallow landslide considering spatial variability of rainfall infiltration parameters[J]. Rock and Soil Mechanics,2022,43(Sup 1):623 − 632. (in Chinese)] LIAO Wenwang, JI Jian, ZHANG Tong, et al. Time-effect risk analysis of shallow landslide considering spatial variability of rainfall infiltration parameters[J]. Rock and Soil Mechanics, 2022, 43(Sup 1): 623 − 632. (in Chinese)
[56] 王俊,黄润秋,聂闻,等. 基于无限边坡算法的降雨型滑坡预警系统的模型试验研究[J]. 岩土力学,2014,35(12):3503 − 3510. [WANG Jun,HUANG Runqiu,NIE Wen,et al. Experimental study of early warning system model of landslide induced by rainfall based on infinite slope method[J]. Rock and Soil Mechanics,2014,35(12):3503 − 3510. (in Chinese with English abstract)] WANG Jun, HUANG Runqiu, NIE Wen, et al. Experimental study of early warning system model of landslide induced by rainfall based on infinite slope method[J]. Rock and Soil Mechanics, 2014, 35(12): 3503 − 3510. (in Chinese with English abstract)
[57] 徐晶,江玉红,韦方强,等. 我国登陆台风影响区地质灾害易发性分析[J]. 中国地质灾害与防治学报,2008,19(4):61 − 66. [XU Jing,JIANG Yuhong,WEI Fangqiang,et al. Susceptibility analysis of geologic hazards in landfall typhoon-affected areas in China[J]. The Chinese Journal of Geological Hazard and Control,2008,19(4):61 − 66. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-8035.2008.04.013 XU Jing, JIANG Yuhong, WEI Fangqiang, et al. Susceptibility analysis of geologic hazards in landfall typhoon-affected areas in China[J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(4): 61 − 66. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2008.04.013
[58] LUO H Y,ZHANG L M,ZHANG L L,et al. Vulnerability of buildings to landslides:The state of the art and future needs[J]. Earth-Science Reviews,2023,238:104329. DOI: 10.1016/j.earscirev.2023.104329
[59] PU Jian,HUANG Yu,GUO Zhen,et al. Physical vulnerability of reinforced concrete buildings under debris avalanche impact based on GF-discrepancy and DEM-FEM[J]. Natural Hazards,2024,120(3):2571 − 2597.
[60] 姬建,崔红志,佟斌,等. 基于物理过程不确定性的降雨诱发浅层滑坡易发性快速区划: GIS-FORM技术开发与应用[J]. 岩石力学与工程学报,2024,43(4):838 − 850. [JI Jian,CUI Hongzhi,TONG Bin,et al. Fast zoning of rainfall-induced shallow landslide susceptibility based on physical process uncertainty: Development and application of GIS-FORM[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(4):838 − 850. (in Chinese with English abstract)] JI Jian, CUI Hongzhi, TONG Bin, et al. Fast zoning of rainfall-induced shallow landslide susceptibility based on physical process uncertainty: Development and application of GIS-FORM[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(4): 838 − 850. (in Chinese with English abstract)
[61] 张柯月,崔玉龙,许冲,等. 基于机器学习模型的三明市强降雨滑坡易发性评价[J]. 防灾科技学院学报,2024,26(3):59 − 66. [ZHANG Keyue,CUI Yulong,XU Chong,et al. Evaluation of landslide susceptibility to heavy rainfall in Sanming City,Fujian Province based on machine learning modeling[J]. Journal of Institute of Disaster Prevention,2024,26(3):59 − 66. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-8047.2024.03.007 ZHANG Keyue, CUI Yulong, XU Chong, et al. Evaluation of landslide susceptibility to heavy rainfall in Sanming City, Fujian Province based on machine learning modeling[J]. Journal of Institute of Disaster Prevention, 2024, 26(3): 59 − 66. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-8047.2024.03.007
[62] XIE Chenchen,HUANG Yuandong,LI Lei,et al. Detailed inventory and spatial distribution analysis of rainfall-induced landslides in Jiexi County,Guangdong Province,China in August 2018[J]. Sustainability,2023,15(18):13930. DOI: 10.3390/su151813930
[63] ALHAMID A K,AKIYAMA M,HE Zhengying,et al. LRFD methodology for river embankments against non-stationary flooding under climate change[J]. Structural Safety,2024,109:102477. DOI: 10.1016/j.strusafe.2024.102477
[64] GARIANO S L,GUZZETTI F. Landslides in a changing climate[J]. Earth-Science Reviews,2016,162:227 − 252. DOI: 10.1016/j.earscirev.2016.08.011
[65] SOBIE S R. Future changes in precipitation-caused landslide frequency in British Columbia[J]. Climatic Change,2020,162(2):465 − 484. DOI: 10.1007/s10584-020-02788-1
[66] LIN Qigen,STEGER S,PITTORE M,et al. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change[J]. Science of the Total Environment,2022,850:158049. DOI: 10.1016/j.scitotenv.2022.158049
[67] HUANG Yu,XIONG Min. Probability density evolution method for seismic liquefaction performance analysis of earth dam[J]. Earthquake Engineering & Structural Dynamics,2017,46(6):925 − 943.
[68] HUANG Yu,XIONG Min,ZHAO Liuyuan. Slope stochastic dynamics[M]. Springer,2022.
[69] 罗渝,何思明,何尽川. 降雨类型对浅层滑坡稳定性的影响[J]. 地球科学,2014,39(9):1357 − 1363. [LUO Yu,HE Siming,HE Jinchuan. Effect of rainfall patterns on stability of shallow landslide[J]. Earth Science,2014,39(9):1357 − 1363. (in Chinese with English abstract)] LUO Yu, HE Siming, HE Jinchuan. Effect of rainfall patterns on stability of shallow landslide[J]. Earth Science, 2014, 39(9): 1357 − 1363. (in Chinese with English abstract)
[70] 兰恒星,周成虎,伍法权,等. GIS支持下的降雨型滑坡危险性空间分析预测[J]. 科学通报,2003,48(5):507 − 512. [LAN Hengxing,ZHOU Chenghu,WU Faquan,et al. Spatial analysis and prediction of rainfall landslide risk supported by GIS[J]. Chinese Science Bulletin,2003,48(5):507 − 512. (in Chinese with English abstract)] DOI: 10.3321/j.issn:0023-074X.2003.05.021 LAN Hengxing, ZHOU Chenghu, WU Faquan, et al. Spatial analysis and prediction of rainfall landslide risk supported by GIS[J]. Chinese Science Bulletin, 2003, 48(5): 507 − 512. (in Chinese with English abstract) DOI: 10.3321/j.issn:0023-074X.2003.05.021
[71] MARTINOVIĆ K,REALE C,GAVIN K. Fragility curves for rainfall-induced shallow landslides on transport networks[J]. Canadian Geotechnical Journal,2018,55(6):852 − 861. DOI: 10.1139/cgj-2016-0565
[72] HU Hongqiang,BAO Yangjuan,HAN Xu,et al. Non-parametric fragility curves for probabilistic risk assessment of rainfall-triggered landslides[J]. Computers and Geotechnics,2024,173:106546. DOI: 10.1016/j.compgeo.2024.106546
[73] TANG Gaopeng,HUANG Jinsong,SHENG Daichao,et al. Stability analysis of unsaturated soil slopes under random rainfall patterns[J]. Engineering Geology,2018,245:322 − 332. DOI: 10.1016/j.enggeo.2018.09.013
[74] 杨国强,陶虎,雷少伟,等. 不同雨型条件下非饱和土边坡渗流及稳定分析[J]. 水电能源科学,2022,40(6):166 − 170. [YANG Guoqiang,TAO Hu,LEI Shaowei,et al. Analysis of seepage and stability of unsaturated soil slopes under different rainfall patterns[J]. Water Resources and Power,2022,40(6):166 − 170. (in Chinese with English abstract)] YANG Guoqiang, TAO Hu, LEI Shaowei, et al. Analysis of seepage and stability of unsaturated soil slopes under different rainfall patterns[J]. Water Resources and Power, 2022, 40(6): 166 − 170. (in Chinese with English abstract)
[75] MA Jianhua,YAO Yunqi,WEI Ziran,et al. Stability analysis of a loess landslide considering rainfall patterns and spatial variability of soil[J]. Computers and Geotechnics,2024,167:106059. DOI: 10.1016/j.compgeo.2023.106059
[76] HUANG Yu,HE Zhengying,YASHIMA A,et al. Multi-objective optimization design of pile-anchor structures for slopes based on reliability theory considering the spatial variability of soil properties[J]. Computers and Geotechnics,2022,147:104751. DOI: 10.1016/j.compgeo.2022.104751
[77] GONG Wenping,ZHAO Chao,JUANG C H,et al. Coupled characterization of stratigraphic and geo-properties uncertainties–A conditional random field approach[J]. Engineering Geology,2021,294:106348. DOI: 10.1016/j.enggeo.2021.106348
[78] SANTOSO A M,PHOON K K,QUEK S T. Effects of soil spatial variability on rainfall-induced landslides[J]. Computers & Structures,2011,89(11/12):893 − 900.
[79] CHEN Wei,CHEN Xi,PENG Jianbing,et al. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer[J]. Geoscience Frontiers,2021,12(1):93 − 107. DOI: 10.1016/j.gsf.2020.07.012
[80] 黄发明,欧阳慰平,蒋水华,等. 考虑机器学习建模中训练/测试集时空划分原则的滑坡易发性预测建模[J]. 地球科学,2024,49(5):1607 − 1618. [HUANG Faming,OUYANG Weiping,JIANG Shuihua,et al. Landslide susceptibility prediction considering spatio-temporal division principle of training/testing datasets in machine learning models[J]. Earth Science,2024,49(5):1607 − 1618. (in Chinese with English abstract)] HUANG Faming, OUYANG Weiping, JIANG Shuihua, et al. Landslide susceptibility prediction considering spatio-temporal division principle of training/testing datasets in machine learning models[J]. Earth Science, 2024, 49(5): 1607 − 1618. (in Chinese with English abstract)
[81] 王家柱,铁永波,白永健,等. 机器学习在斜坡地质灾害领域的应用现状与展望[J]. 水文地质工程地质,(2024-07-25)[2025-01-10]. [WANG Jiazhu,TIE Yongbo,BAI Yongjian,et al. Application and prospects of machine learning for rockfalls,landslides and debris flows[J]. Hydrogeology & Engineering Geology,(2024-07-25)[2025-01-10]. https://doi.org/10.16030/j.cnki.issn.1000-3665.202402011. (in Chinese with English abstract)] WANG Jiazhu, TIE Yongbo, BAI Yongjian, et al. Application and prospects of machine learning for rockfalls, landslides and debris flows[J]. Hydrogeology & Engineering Geology, (2024-07-25)[2025-01-10]. https://doi.org/10.16030/j.cnki.issn.1000-3665.202402011. (in Chinese with English abstract)
[82] 张清,何毅,陈学业,等. 基于多尺度卷积神经网络的深圳市滑坡易发性评价[J]. 中国地质灾害与防治学报,2024,35(4):146 − 162. [ZHANG Qing,HE Yi,CHEN Xueye,et al. Landslide susceptibility assessment in Shenzhen based on multi-scale convolutional neural networks model[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):146 − 162. (in Chinese with English abstract)] ZHANG Qing, HE Yi, CHEN Xueye, et al. Landslide susceptibility assessment in Shenzhen based on multi-scale convolutional neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 146 − 162. (in Chinese with English abstract)
[83] 方然可,刘艳辉,黄志全. 基于机器学习的区域滑坡危险性评价方法综述[J]. 中国地质灾害与防治学报,2021,32(4):1 − 8. [FANG Ranke,LIU Yanhui,HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):1 − 8. (in Chinese with English abstract)] FANG Ranke, LIU Yanhui, HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 1 − 8. (in Chinese with English abstract)
[84] HUANG Faming,CHEN Jiawu,LIU Weiping,et al. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold[J]. Geomorphology,2022,408:108236. DOI: 10.1016/j.geomorph.2022.108236
[85] GUZZETTI F,MONDINI A C,CARDINALI M,et al. Landslide inventory maps:New tools for an old problem[J]. Earth-Science Reviews,2012,112(1/2):42 − 66.
[86] HUANG Faming,ZHANG Jing,ZHOU Chuangbing,et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides,2020,17(1):217 − 229. DOI: 10.1007/s10346-019-01274-9
[87] ZHU Li,WANG Gongjian,HUANG Faming,et al. Landslide susceptibility prediction using sparse feature extraction and machine learning models based on GIS and remote sensing[J]. IEEE Geoscience and Remote Sensing Letters,2022,19:1 − 5.
[88] SUN Deliang,SHI Shuxian,WEN Haijia,et al. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping[J]. Geomorphology,2021,379:107623. DOI: 10.1016/j.geomorph.2021.107623
[89] LEE J H,SAMEEN M I,PRADHAN B,et al. Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods[J]. Geomorphology,2018,303:284 − 298. DOI: 10.1016/j.geomorph.2017.12.007
[90] DU Juan,GLADE T,WOLDAI T,et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley,Tibet,Chinese Himalayas[J]. Engineering Geology,2020,270:105572. DOI: 10.1016/j.enggeo.2020.105572
[91] HE Zhengying,AKIYAMA M,FIRDAUS P S,et al. Probabilistic connectivity assessment of road networks exposed to spatially correlated rainfall-triggered landslides[J]. Reliability Engineering & System Safety,2025,257:110800.
[92] HUANG Yu,HAN Xu,ZHAO Liuyuan. Recurrent neural networks for complicated seismic dynamic response prediction of a slope system[J]. Engineering Geology,2021,289:106198. DOI: 10.1016/j.enggeo.2021.106198
[93] HUANG Yu,MAO Wuwei,XIONG Min,et al. Report on the international workshop on seismic design and assessment for resilience,robustness and sustainability of slope engineering,13–15 January 2023,Shanghai,China[J]. Geoenvironmental Disasters,2023,10(1):23. DOI: 10.1186/s40677-023-00251-8
-
期刊类型引用(1)
1. 彭双庆,刘朋飞,陈刚,王丽萍,张伟,罗文文,景熙亮. 信息量法与随机森林耦合模型和临界月平均降雨阈值的区域滑坡危险性评价与区划——以重庆市涪陵区为例. 中国地质灾害与防治学报. 2025(01): 131-145 . 本站查看
其他类型引用(0)