Research progress on rainfall-triggered landslide risk assessment under the context of climate change
-
摘要:
随着全球气候变化的加剧,极端降雨事件日益频繁,导致降雨型滑坡灾害频发,造成了巨大的人员伤亡与经济损失。本文系统回顾了气候变化背景下降雨型滑坡风险评估的研究进展,重点讨论了以下三个关键方面:(1)考虑气候变化的降雨作用下边坡可靠度评估;(2)考虑降雨模式不确定性的边坡易损性评估;以及(3)基于机器学习方法的降雨型滑坡危险性评估。在此基础上,本文进一步分析了气候变化背景下降雨型滑坡风险评估所面临的多维挑战,包括气候变化带来的不确定性、高时空分辨率地质气象数据缺乏以及模型跨区域的适应性等。最后,本文从精细的地质调查、多因素孕灾机理、基于韧性的风险评估等角度,展望了实现降雨型滑坡灾害韧性防灾的未来研究方向。研究旨在为降雨型滑坡灾害的防灾减灾工作提供理论支持和方法参考,促进滑坡灾害风险管理的科学化与精细化发展。
Abstract:With the intensification of global climate change, extreme rainfall events have become increasingly frequent, leading to recurrent rainfall-triggered landslides and causing significant casualties and economic losses. With the context of climate change, this study systematically reviews the research progress on advancements in probabilistic risk assessment of rainfall-triggered landslides, focusing on three key aspects: (1) slope reliability assessment under rainfall conditions considering climate change; (2) vulnerability assessment of slopes considering the uncertainty of rainfall patterns; and (3) rainfall-induced landslide hazard assessment based on machine learning methods. On this basis, this study further analyzes the multidimensional challenges faced by rainfall-triggered landslide risk assessment under climate change, including uncertainties associated with climate change, the lack of high spatio-temporal resolution geological and meteorological data, and the adaptability of models across different regions. Finally, from the perspectives of detailed geological surveys, multi-factor disaster gestation mechanisms, this study looks towards future research directions for enhancing resilience in rainfall-induced landslide disaster prevention, from landslide mechanisms under multiple factors, to resilience-based risk assessment. This study aims to provide theoretical support and methodological references for the disaster prevention and mitigation work of rainfall-triggered landslides, promoting the scientific, systematic, and refined development of landslide risk management.
-
0. 引 言
近年来,中国建设开发了数十座软岩露天煤矿,在开采过程中采场及排土场均发生过一定规模的滑坡,对于采场底帮顺倾软岩边坡与顺倾软基底内排土场边坡滑坡灾害尤为严重。滑坡灾害直接影响剥采排工程的发展,造成人员伤害和设备损毁及地貌景观破坏,严重制约着露天矿的安全高效生产[1-2],边坡稳定性治理问题已成为边坡工程领域亟待解决的难题之一。
目前国内外学者们应用不同理论对其展开大量有意义的研究,成果丰硕。王东等[3]综合运用极限平衡法及数值模拟法,分析了不同压帮高度下边坡稳定性变化规律,提出了逆倾软岩边坡变形的治理措施;刘子春等[4]以扎尼河露天矿为背景,通过分析扩帮、内排压角等治理措施的基础上,提出了一种条带式开采技术的边坡治理方案;陈毓等[5]采用ANSYS对黑山露天矿内排土场边坡稳定性和破坏机理进行了分析,揭示了内排土场滑坡模式为“坐落滑移式”滑动,运用削坡治理技术来保证内排土场稳定性;唐文亮等[6]系统分析了露天矿内排土场滑坡影响因素,提出了预留煤柱的滑坡治理方法;李伟[7]揭示了阴湾排土场边坡变形破坏机理并结合数值模拟法和极限平衡法,分析了内排不同压脚方案下边坡稳定性,提出了阴湾排土场滑坡治理措施;王刚等[8]基于有限元数值模拟法和极限平衡法,分析了边坡破坏机理并对边坡进行了稳定性计算,提出了削坡减载的治理措施。软岩露天煤矿采场边坡稳定性治理最经济有效的方式是内排追踪压帮,内排土场稳定是前提,但现有方法均是单一针对采场或排土场边坡稳定性分析和治理,未能同时兼顾采场与内排土场边坡的稳定性,对工程实际的指导性不强。
本文以贺斯格乌拉南露天煤矿首采区南帮为工程背景,在兼顾采场与内排土场边坡稳定性的基础上,提出了露天煤矿顺倾软岩边坡内排追踪压帮治理工程,为深入研究顺倾软岩露天煤矿边坡稳定性治理方法提供新的参考。
1. 边坡工程地质条件分析
贺斯格乌拉南露天煤矿设计生产能力为15 Mt/a,首采区南帮地层自上而下主要发育第四系、2煤组、2煤组与3煤组间夹石、3煤组、3煤组底板和盆地基底火山岩,含煤岩系主要以泥岩为主,全区可采的有2-1、3-1煤层,第四系以粉砂质黏土为主,局部夹黄-浅灰色细砂及含砾粗砂层,岩性较差,首采区土层赋存较薄,且其地层中多赋存软弱夹层,主要以3-1、3-4煤底板弱层主,属于典型的顺倾软岩边坡,岩土体物理力学指标如表1所示,典型工程地质剖面如图1所示。
表 1 岩土体物理力学指标Table 1. Physical and mechanical parameters of rock mass岩体名称 内摩擦角/(°) 黏聚力/kPa 容重/(kN·m−3) 弹性模量/MPa 泊松比 砂岩 26.00 65 19.6 35 0.42 粉质黏土 14.06 22 19.8 46 0.38 煤 29.00 85 12.1 40 0.35 泥岩 20.00 40 19.4 75 0.36 排弃物 14.49 20 19.0 60 0.40 弱层 6.00 0 19.1 20 0.42 回填岩石 20.00 40 19.0 − − 2. 采场底帮浅层边坡二维稳定性分析
影响顺倾软岩露天煤矿采场边坡稳定性的主控因素是弱层及其暴露长度,采用追踪压帮方式治理该类边坡稳定性时,可忽略软弱夹层为底界面的切层-顺层组合滑动模式[9-10],仅考虑剪胀破坏模式。由于贺斯格乌拉南露天矿边坡体内赋存软弱夹层,主要以3-1、3-4煤底板弱层为主,顺倾角度大,岩质松软,对于此类边坡,浅部可通过平盘参数进行重新设计,深部必须利用三维效应,实现稳定性控制。可采用刚体极限平衡法中的剩余推力法对浅层边坡进行稳定性计算[11-12]。该方法的优点是可以用来计算求解给定任意边坡潜在滑面的稳定系数,并且可以考虑在复杂外力作用下的不同抗剪参数滑动岩体对边坡稳定性的影响。稳定系数求解公式为:
$$ {P_i} = \frac{{{W_i}\sin {\alpha _i}({W_i}\sin {\alpha _i}\tan {\varphi _i}) + {C_i}{L_i}}}{{{F_{\rm{s}}}}} + {\phi _i}{p_{i - 1}} $$ (1) $$ {\phi _i} = \frac{{\cos ({\alpha _{i - 1}} - {\alpha _i})\tan {\varphi _i}\sin ({\alpha _{i - 1}} - {\alpha _i})}}{{{F_{\rm{s}}}}} $$ (2) 式中:
${P_i}$ ——第$i$ 条块的剩余推力/kN;$ {W_i} $ ——第$i$ 条块的重量/(N·m−3);$\alpha_i$ ——第$i$ 条块的滑面倾角/(°);${\varphi _i}$ ——第$i$ 条块的推力传递系数;${C_i}$ ——第$i$ 条块的滑面黏聚力/kPa;${L_i}$ ——第$i$ 条块的底面长度/m;${\phi _i}$ ——第$i$ 条块的滑面摩擦角/(°);${F_{\rm{s}}}$ ——稳定性系数。依据《煤炭工业露天矿设计规范》(GB 50197―2015)[13]综合考虑贺斯格乌拉南露天煤矿首采区南帮边坡服务年限、地质条件与力学参数的可靠性、潜在滑坡危害程度等,确定安全储备系数为1.2。
由于南帮压覆大量煤层,在保证安全前提下,为实现最大限度回采压覆的煤炭资源,需要对边坡形态重新设计。本文选取典型剖面为研究对象,浅层边坡形态按照40 m运输平盘、15 m保安平盘进行设计,深部利用横采内排三维支挡效应回采采场底帮深部压覆煤炭资源。通过上述情况对浅层边坡进行了分析,边坡稳定性计算结果如图2所示。
分析图2可知,浅部边坡形态可按照40 m运输平盘、15 m保安平盘进行设计,由于弱层上部存在煤岩支挡,边坡潜在滑坡模式为以圆弧为侧界面、3-1煤底板弱层为底界面、沿边坡坡脚处剪出,此时,浅层边坡能满足安全储备系数1.2的要求。
3. 采场底帮深部边坡稳定性三维效应分析
基于浅层边坡二维稳定性分析结果可知,实现深部稳定性控制,必须借助横采工作帮与内排土场的双重支挡作用进行压煤回采,因此提出了利用横采内排三维支挡效应回采采场深部压覆煤炭资源[14]。本文借助FLAC3D数值模拟软件,分析不同降深角度和不同追踪距离条件下的边坡三维稳定性,以期获得最优的边坡空间形态参数。
(1) 模型的建立
考虑到FLAC3D建模较为复杂,采用CAD与Rhino相结合的方法,首先在CAD中对剖面进行整理,然后在Rhino软件中进行模型成体与网格划分的处理,并用Griddle将网格导出,生成精细的六面体网格模型[15 − 17],最后导入采用于FLAC3D进行数值模拟计算。为尽可能凸显边坡稳定性的三维效应,以南帮断面形态设计边坡为数值模拟对象,共计建立15种工况模型,模型如图3,追踪距离分别为50,100,200,300,400 m。为避免边界效应,在模型的底部和两侧分别施加水平和垂直位移约束,加载方式为重力加载[18]。
(2) 计算结果分析
由于计算结果过多,本文仅列举降深角度α=29°,追踪距离50,200,400 m工况下边坡位移云图(切割位置为沿模型走向中间处),如图4所示。南帮边坡三维稳定性计算结果如图5所示。
分析图4、图5可知,追踪距离50 m时,三维支挡效应显著,边坡深部位移明显小于上部,发生以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层-剪出滑动,稳定系数大于1.2。当追踪距离大于50 m时,通过对比分析不同深部边坡角(α)条件下的数值模拟结果可知,深部边坡角对边坡稳定性系数影响较小,随着追踪距离的增加,边坡的破坏模式过渡为以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层滑动,并且此时边坡的稳定性不满足安全储备系数1.2要求。因此,内排土场追踪距离需控制在50 m以内,深部边坡角设计为29°。
4. 内排土场压帮边坡稳定性分析与治理
露天矿内排土场边坡稳定的主控因素是软弱基底,软弱基底分为自身软弱岩土层和受外界条影响转变为软弱岩土层2种类型。排土场下沉是软弱基底内排土场失稳的特征,主要现象是含有纵向强烈挤压区,基底上部岩层隆起,地面出现滑坡等[19 − 21]。在保证采场南帮安全的前提下降深至3-1煤底板,须借助横采工作帮与内排土场的双重支挡作用,内排土场稳定是前提[22]。由于内排土场基底为3-1、3-4煤底板弱层,顺倾角度较大,按照内排土场设计参数,其稳定性无法满足安全储备系数的要求[23]。从提供基底强度角度出发,采用破坏弱层回填岩石的方式提高内排土场边坡稳定性。按照排土台阶高度24 m、平盘宽度60 m、坡面角33°对不同内排压帮标高边坡稳定性进行试算,确定内排最小压帮标高为+844水平,因此本文分析了内排基于+844水平的压帮高度下内排土场基底不同的处理方式时的边坡稳定性计算结果如图6—7所示,边坡稳定性与破坏弱层回填岩石范围关系曲线如图8所示。
分析图6—图8可知,当内排基于+844的压帮高度,内排基底3-1底板弱层完全破坏并回填岩石,破坏3-4底板弱层并回填岩石倾向长度达60 m时,内排土场及其与采场南帮复合边坡稳定性均可满足安全系数1.2要求。边坡稳定性随破坏底板弱层回填岩石范围的增大呈正指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。采用破坏弱层回填岩石的基底处理方法,既保证了边坡的稳定又规避了过渡处理基底的生产成本。
5. 结 论
(1) 弱层暴露长度是露天矿顺倾软岩边坡稳定性的主控因素,据此提出了露天矿顺倾软岩边坡内排追踪压帮治理工程,可最大限度的安全回收边坡压覆煤炭资源。
(2) 控制采场与内排土场间的追踪距离是改善边坡稳定性的有效途径。随着追踪距离的增加,边坡破坏模式从以圆弧为侧界面、弱层为底界面的切层-顺层-剪出滑动逐渐过渡为以圆弧为侧界面、弱层为底界面的切层-顺层滑动。
(3) 内排土场及其与采场构成的复合边坡稳定性随破坏底板弱层回填岩石范围的增大呈指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。
(4) 贺斯格乌拉南露天煤矿首采区南帮浅部边坡留设40 m运输平盘、15 m保安平盘,底帮深部边坡角29°,追踪距离控制在50 m之内时可满足安全要求;内排基底弱层完全破坏并回填岩石倾向长度60 m时可满足安全需求。
-
-
[1] WANG Hao,WANG Binbin,CUI Peng,et al. Disaster effects of climate change in high Mountain Asia:State of art and scientific challenges[J]. Advances in Climate Change Research,2024,15(3):367 − 389. DOI: 10.1016/j.accre.2024.06.003
[2] HUANG Yufen,CHEN Yileng. Numerical simulations of seasonal variations of rainfall over the island of Hawaii[J]. Journal of Applied Meteorology and Climatology,58(6):1219-1232.
[3] XU Xi,HUANG Yu,XING Yuanchuang,et al. Investigation of rainfall-induced toe-cut slope failure mechanisms in the southeastern coastal area of China[J]. Natural Hazards,2022,110(3):1761 − 1782. DOI: 10.1007/s11069-021-05011-1
[4] 崔鹏,陈树群,苏凤环,等. 台湾“莫拉克” 台风诱发山地灾害成因与启示[J]. 山地学报,2010,28(1):103 − 115. [CUI Peng,CHEN Suchin,SU Fenghuan,et al. Formation and mitigation countermeasure of geo-hazards caused by moarc typhoon in Taiwan [J]. Journal of Mountain Science,2010,28(1):103 − 115. (in Chinese with English abstract)] CUI Peng, CHEN Suchin, SU Fenghuan, et al. Formation and mitigation countermeasure of geo-hazards caused by moarc typhoon in Taiwan [J]. Journal of Mountain Science, 2010, 28(1): 103 − 115. (in Chinese with English abstract)
[5] BATISTA J A N,JULIEN P Y. Remotely sensed survey of landslide clusters:Case study of Itaoca,Brazil[J]. Journal of South American Earth Sciences,2019,92:145 − 150. DOI: 10.1016/j.jsames.2019.02.021
[6] 全国地质灾害防治“十四五”规划[EB]. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.gov.cn%2Fzhengce%2Fzhengceku%2F2023-01%2F04%2F5734957%2Ffiles%2F38ec8ee4b51c4762b17bf054b2f56254.doc&wdOrigin=BROWSELINK. [7] 陈博,张灿灿,李振洪,等. 福建龙岩市2024年“6•16”特大暴雨诱发滑坡发育特征及其调控因子分析[J]. 武汉大学学报(信息科学版),2024,49(11):2145 − 2155. [CHEN Bo,ZHANG Cancan,LI Zhenhong,et al. Developmental characteristics and controlling factors of landslides triggered by extreme rainfalls on 16 June 2024 in Longyan,Fujian Province[J]. Geomatics and Information Science of Wuhan University,2024,49(11):2145 − 2155. (in Chinese with English abstract)] CHEN Bo, ZHANG Cancan, LI Zhenhong, et al. Developmental characteristics and controlling factors of landslides triggered by extreme rainfalls on 16 June 2024 in Longyan, Fujian Province[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2145 − 2155. (in Chinese with English abstract)
[8] HUANG Yu,CHENG Hualin. The impact of climate change on coastal geological disasters in southeastern China[J]. Natural Hazards,2013,65(1):377 − 390. DOI: 10.1007/s11069-012-0370-7
[9] ADARSH S,SHAMLA D S,NAIR G R A,et al. Indian landslide tragedy demands a rethink of hazard mapping in a changing climate[J]. Nature,2024,632(8027):985.
[10] 林滨强,章德生,简文彬,等. 风驱雨作用下植被斜坡稳定性响应研究[J]. 岩土力学,2024,45(9):2765 − 2774. [LIN Binqiang,ZHANG Desheng,JIAN Wenbin,et al. Response of vegetated slope stability under wind-driven rain conditions[J]. Rock and Soil Mechanics,2024,45(9):2765 − 2774. (in Chinese)] LIN Binqiang, ZHANG Desheng, JIAN Wenbin, et al. Response of vegetated slope stability under wind-driven rain conditions[J]. Rock and Soil Mechanics, 2024, 45(9): 2765 − 2774. (in Chinese)
[11] 张泰丽,周爱国,施斌,等. 台风暴雨条件下滑坡变形特征物理试验研究[J]. 水文地质工程地质,2016,43(6):127 − 132. [ZHANG Taili,ZHOU Aiguo,SHI Bin,et al. Physical experiment research on landslide deformation characteristics under the condition of the typhoon heavy rain[J]. Hydrogeology & Engineering Geology,2016,43(6):127 − 132. (in Chinese with English abstract)] ZHANG Taili, ZHOU Aiguo, SHI Bin, et al. Physical experiment research on landslide deformation characteristics under the condition of the typhoon heavy rain[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 127 − 132. (in Chinese with English abstract)
[12] 沈佳,董岩松,简文彬,等. 台风暴雨型土质滑坡演化过程研究[J]. 工程地质学报,2020,28(6):1290 − 1299. [SHEN Jia,DONG Yansong,JIAN Wenbin,et al. Study on evolution process of landslides triggered by typhoon rainstorm[J]. Journal of Engineering Geology,2020,28(6):1290 − 1299. (in Chinese with English abstract)] SHEN Jia, DONG Yansong, JIAN Wenbin, et al. Study on evolution process of landslides triggered by typhoon rainstorm[J]. Journal of Engineering Geology, 2020, 28(6): 1290 − 1299. (in Chinese with English abstract)
[13] 许旭堂,简文彬,吴能森,等. 降雨诱发残积土坡失稳的模型试验[J]. 中国公路学报,2018,31(2):270 − 279. [XU Xutang,JIAN Wenbin,WU Nengsen,et al. Model test of rainfall-induced residual soil slope failure[J]. China Journal of Highway and Transport,2018,31(2):270 − 279. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-7372.2018.02.029 XU Xutang, JIAN Wenbin, WU Nengsen, et al. Model test of rainfall-induced residual soil slope failure[J]. China Journal of Highway and Transport, 2018, 31(2): 270 − 279. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-7372.2018.02.029
[14] 简文彬,黄聪惠,罗阳华,等. 降雨入渗下非饱和坡残积土湿润锋运移试验研究[J]. 岩土力学,2020,41(4):1123 − 1133. [JIAN Wenbin,HUANG Conghui,LUO Yanghua,et al. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil[J]. Rock and Soil Mechanics,2020,41(4):1123 − 1133. (in Chinese with English abstract)] JIAN Wenbin, HUANG Conghui, LUO Yanghua, et al. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil[J]. Rock and Soil Mechanics, 2020, 41(4): 1123 − 1133. (in Chinese with English abstract)
[15] 许建聪,尚岳全. 降雨作用下碎石土滑坡解体变形破坏机制研究[J]. 岩土力学,2008,29(1):106 − 112. [XU Jiancong,SHANG Yuequan. Study on mechanism of disintegration deformation and failure of debris landslide under rainfall[J]. Rock and Soil Mechanics,2008,29(1):106 − 112. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2008.01.020 XU Jiancong, SHANG Yuequan. Study on mechanism of disintegration deformation and failure of debris landslide under rainfall[J]. Rock and Soil Mechanics, 2008, 29(1): 106 − 112. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.01.020
[16] 周永强,盛谦,宋顶峰,等. 降雨作用下裂缝对杆塔基础滑坡影响的物理模型试验[J]. 工程科学与技术,2022,54(4):88 − 98. [ZHOU Yongqiang,SHENG Qian,SONG Dingfeng,et al. Physical model test on the influence of crack on tower foundation landslide under rainfall[J]. Advanced Engineering Sciences,2022,54(4):88 − 98. (in Chinese)] ZHOU Yongqiang, SHENG Qian, SONG Dingfeng, et al. Physical model test on the influence of crack on tower foundation landslide under rainfall[J]. Advanced Engineering Sciences, 2022, 54(4): 88 − 98. (in Chinese)
[17] 张明,胡瑞林,殷跃平,等. 川东缓倾红层中降雨诱发型滑坡机制研究[J]. 岩石力学与工程学报,2014,33(增刊2):3783-3790. [ZHANG Ming,HU Ruilin,YIN Yueping,et al. Study on mechanism of rainfall-induced landslide in gently inclined red beds in eastern Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(Sup 2):3783-3790. (in Chinese)] ZHANG Ming, HU Ruilin, YIN Yueping, et al. Study on mechanism of rainfall-induced landslide in gently inclined red beds in eastern Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup 2): 3783-3790. (in Chinese)
[18] 李鹤. 东南沿海残积土地区降雨型滑坡预警预报体系的研究与应用[D]. 杭州:浙江大学,2011:129]. [LI He. Research and application of early warning and forecasting system of rainfall-type landslide in residual soil area of southeast coast[D]. Hangzhou:Zhejiang University,2011:129]. (in Chinese with English abstract)] LI He. Research and application of early warning and forecasting system of rainfall-type landslide in residual soil area of southeast coast[D]. Hangzhou: Zhejiang University, 2011: 129]. (in Chinese with English abstract)
[19] 庄建琦,彭建兵,张利勇. 不同降雨条件下黄土高原浅层滑坡危险性预测评价[J]. 吉林大学学报(地球科学版),2013,43(3):867 − 876. [ZHUANG Jianqi,PENG Jianbing,ZHANG Liyong. Risk assessment and prediction of the shallow landslide at different precipitation in Loess Plateau[J]. Journal of Jilin University (Earth Science Edition),2013,43(3):867 − 876. (in Chinese with English abstract)] ZHUANG Jianqi, PENG Jianbing, ZHANG Liyong. Risk assessment and prediction of the shallow landslide at different precipitation in Loess Plateau[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3): 867 − 876. (in Chinese with English abstract)
[20] 高华喜,殷坤龙. 降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J]. 岩土力学,2007,28(5):1055 − 1060. [GAO Huaxi,YIN Kunlong. Discuss on the correlations between landslides and rainfall and threshold for landslide early-warning and prediction[J]. Rock and Soil Mechanics,2007,28(5):1055 − 1060. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2007.05.039 GAO Huaxi, YIN Kunlong. Discuss on the correlations between landslides and rainfall and threshold for landslide early-warning and prediction[J]. Rock and Soil Mechanics, 2007, 28(5): 1055 − 1060. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2007.05.039
[21] 亓星,许强,郑光,等. 降雨诱发顺层岩质及土质滑坡动态预警力学模型[J]. 灾害学,2015,30(3):38 − 42. [QI Xing,XU Qiang,ZHENG Guang,et al. Dynamic mechanics early warning model of rainfall induced bedding rock and soil landslide[J]. Journal of Catastrophology,2015,30(3):38 − 42. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-811X.2015.03.008 QI Xing, XU Qiang, ZHENG Guang, et al. Dynamic mechanics early warning model of rainfall induced bedding rock and soil landslide[J]. Journal of Catastrophology, 2015, 30(3): 38 − 42. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2015.03.008
[22] ZHANG Yonggang,CHEN Xinquan,LIAO Raoping,et al. Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area[J]. Natural Hazards,2021,107(2):1709 − 1729. DOI: 10.1007/s11069-021-04655-3
[23] ZHANG Yonggang,TANG Jun,HE Zhengying,et al. A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide[J]. Natural Hazards,2021,105(1):783 − 813. DOI: 10.1007/s11069-020-04337-6
[24] 李江山,李滨,殷跃平,等. 强降雨诱发作用下岩溶山体滑坡机制研究——以关岭滑坡为例[J]. 岩石力学与工程学报,2023,42(6):1497 − 1507. [LI Jiang-shan,LI Bin,YIN Yue-ping,et al. Research on mechanism of landslides in the southwest karst mountain areas under intensive rainfall:a case study of the Guanling landslide[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(6):1497 − 1507. (in Chinese with English abstract)] LI Jiang-shan, LI Bin, YIN Yue-ping, et al. Research on mechanism of landslides in the southwest karst mountain areas under intensive rainfall: a case study of the Guanling landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(6): 1497 − 1507. (in Chinese with English abstract)
[25] 缪海波,王功辉. 风振影响下乔木坡地暴雨型浅层滑坡演化机制[J]. 地质科技通报,2022,41(2):60 − 70. [MIAO Haibo,WANG Gonghui. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology,2022,41(2):60 − 70. (in Chinese with English abstract)] MIAO Haibo, WANG Gonghui. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 60 − 70. (in Chinese with English abstract)
[26] 刘浩,张文,芦磊. 基于3D打印技术的软弱夹层干湿循环作用强度劣化试验研究[J]. 水文地质工程地质,2024. [LIU Hao,ZHANG Wen,LU Lei. An experimental study on strength degradation of soft interlayer during dry and wet cycling based on 3D printing technology [J]. Hydrogeology & Engineering Geology,2024. (in Chinese with English abstract)] LIU Hao, ZHANG Wen, LU Lei. An experimental study on strength degradation of soft interlayer during dry and wet cycling based on 3D printing technology [J]. Hydrogeology & Engineering Geology, 2024. (in Chinese with English abstract)
[27] 张洁,庄一豪,陆盟. 降雨诱发公路滑坡社会风险评估[J]. 防灾减灾工程学报,2023,43(3):413 − 422+473. [ZHANG Jie,ZHUANG Yi-hao,LU Meng. Assessing societal risk of rainfall-induced landslides along highways[J]. Journal of Disaster Prevention and Mitigation Engineering,2023,43(3):413 − 422+473. (in Chinese with English abstract)] ZHANG Jie, ZHUANG Yi-hao, LU Meng. Assessing societal risk of rainfall-induced landslides along highways[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(3): 413 − 422+473. (in Chinese with English abstract)
[28] 郭子正,何俊,黄达,等. 降雨诱发浅层滑坡危险性的快速评估模型及应用[J]. 岩石力学与工程学报,2023,42(5):1188 − 1201. [GUO Zizheng,HE Jun,HUANG Da,et al. Fast assessment model for rainfall-induced shallow landslide hazard and application[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(5):1188 − 1201. (in Chinese with English abstract)] GUO Zizheng, HE Jun, HUANG Da, et al. Fast assessment model for rainfall-induced shallow landslide hazard and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1188 − 1201. (in Chinese with English abstract)
[29] 荣广智. 基于情景模拟的贵州省水城县极端降水诱发地质灾害链风险评估研究[D]. 长春:东北师范大学,2023. [RONG Guangzhi. Study on risk assessment of geological hazard chain induced by extreme precipitation in Shuicheng County,Guizhou Province based on scenario simulation[D]. Changchun:Northeast Normal University,2023. (in Chinese with English abstract)] RONG Guangzhi. Study on risk assessment of geological hazard chain induced by extreme precipitation in Shuicheng County, Guizhou Province based on scenario simulation[D]. Changchun: Northeast Normal University, 2023. (in Chinese with English abstract)
[30] 许启松,杨国珍. 浅析贵州省暴雨-地质灾害链典型区减灾能力评估示范[J]. 中国减灾,2022(7):34 − 35. [XU Qisong,YANG Guozhen. Evaluation and demonstration of disaster reduction capacity in typical areas of rainstorm-geological disaster chain in Guizhou Province[J]. Disaster Reduction in China,2022(7):34 − 35. (in Chinese)] DOI: 10.3969/j.issn.1002-4549.2022.07.013 XU Qisong, YANG Guozhen. Evaluation and demonstration of disaster reduction capacity in typical areas of rainstorm-geological disaster chain in Guizhou Province[J]. Disaster Reduction in China, 2022(7): 34 − 35. (in Chinese) DOI: 10.3969/j.issn.1002-4549.2022.07.013
[31] HE Zhengying,HUANG Yu,LI Yinke,et al. Probabilistic fragility assessment of slopes considering uncertainty associated with temporal patterns of rainfall intensity[J]. Computers and Geotechnics,2024,173:106534. DOI: 10.1016/j.compgeo.2024.106534
[32] HE Zhengying,HUANG Yu,LI Yinke,et al. Probabilistic fragility assessment of slopes considering uncertainty associated with temporal patterns of rainfall intensity[J]. Computers and Geotechnics,2024,173:106534. DOI: 10.1016/j.compgeo.2024.106534
[33] HE Zhengying,AKIYAMA M,ALHAMID A K,et al. Probabilistic life-cycle landslide assessment subjected to nonstationary rainfall based on alternating stochastic renewal process[J]. Engineering Geology,2024,338:107543. DOI: 10.1016/j.enggeo.2024.107543
[34] KIM H,LEE J H,PARK H J,et al. Assessment of temporal probability for rainfall-induced landslides based on nonstationary extreme value analysis[J]. Engineering Geology,2021,294:106372. DOI: 10.1016/j.enggeo.2021.106372
[35] 陈晓清,韦方强,崔鹏,等. 云南新平2002-08-14特大滑坡泥石流灾害及防治对策[J]. 山地学报,2003,21(5):599 − 604. [CHEN Xiaoqing,WEI Fangqiang,CUI Peng,et al. 2002-08-14 large-scale landslide debris-flow hazard in Xinping County and the prevention countermeasure[J]. Mountain Research,2003,21(5):599 − 604. (in Chinese)] DOI: 10.3969/j.issn.1008-2786.2003.05.013 CHEN Xiaoqing, WEI Fangqiang, CUI Peng, et al. 2002-08-14 large-scale landslide debris-flow hazard in Xinping County and the prevention countermeasure[J]. Mountain Research, 2003, 21(5): 599 − 604. (in Chinese) DOI: 10.3969/j.issn.1008-2786.2003.05.013
[36] AWMalone,黄润秋. 香港的边坡安全管理与滑坡风险防范[J]. 山地学报,2000,18(2):187 − 192. [AWMALONE,HUANG Runqiu. Slope safety and landslides risk management[J]. Mountain Research,2000,18(2):187 − 192. (in Chinese)] DOI: 10.3969/j.issn.1008-2786.2000.02.017 AWMALONE, HUANG Runqiu. Slope safety and landslides risk management[J]. Mountain Research, 2000, 18(2): 187 − 192. (in Chinese) DOI: 10.3969/j.issn.1008-2786.2000.02.017
[37] HUANG Yu,HE Zhengying. Rainfall-oriented resilient design for slope system:Resilience-enhancing strategies[J]. Soils and Foundations,2023,63(2):101297. DOI: 10.1016/j.sandf.2023.101297
[38] 何正迎,黄雨,AKIYAMA M,等. 基于路网连通可靠度的边坡韧性提升决策优化方法[J]. 中国科学:技术科学,2024,54(12):2392 − 2404. [HE Zhengying,HUANG Yu,AKIYAMA M,et al. A decision optimization method for resilience-enhanced strategies for slopes based on road network connectivity reliability[J]. Scientia Sinica Technologica,2024,54(12):2392 − 2404. (in Chinese with English abstract)] DOI: 10.1360/SST-2024-0115 HE Zhengying, HUANG Yu, AKIYAMA M, et al. A decision optimization method for resilience-enhanced strategies for slopes based on road network connectivity reliability[J]. Scientia Sinica Technologica, 2024, 54(12): 2392 − 2404. (in Chinese with English abstract) DOI: 10.1360/SST-2024-0115
[39] 汪丁建,唐辉明,李长冬,等. 强降雨作用下堆积层滑坡稳定性分析[J]. 岩土力学,2016,37(2):439 − 445. [WANG Dingjian,TANG Huiming,LI Changdong,et al. Stability analysis of colluvial landslide due to heavy rainfall[J]. Rock and Soil Mechanics,2016,37(2):439 − 445. (in Chinese with English abstract)] WANG Dingjian, TANG Huiming, LI Changdong, et al. Stability analysis of colluvial landslide due to heavy rainfall[J]. Rock and Soil Mechanics, 2016, 37(2): 439 − 445. (in Chinese with English abstract)
[40] 兰恒星,周成虎,李焯芬,等. 瞬时孔隙水压力作用下的降雨滑坡稳定性响应分析:以香港天然降雨滑坡为例[J]. 中国科学E辑:技术科学,2003,33(增刊1):119 − 136. [LAN Hengxing,ZHOU Chenghu,LI Zhuofen,et al. Stability response analysis of rainfall landslide under instantaneous pore water pressure:A case study of natural rainfall landslide in [◆◆◆Hong Kong◆◆◆][J]. Scientia Sinica (Technologica),2003,33(Sup 1):119 − 136. (in Chinese)] LAN Hengxing, ZHOU Chenghu, LI Zhuofen, et al. Stability response analysis of rainfall landslide under instantaneous pore water pressure: A case study of natural rainfall landslide in [◆◆◆Hong Kong◆◆◆][J]. Scientia Sinica (Technologica), 2003, 33(Sup 1): 119 − 136. (in Chinese)
[41] 许强,徐繁树,蒲川豪,等. 2024年4月广东韶关江湾镇极端降雨诱发群发性滑坡初步分析[J]. 武汉大学学报(信息科学版),2024,49(8):1264 − 1274. [XU Qiang,XU Fanshu,PU Chuanhao,et al. Preliminary analysis of extreme rainfall-induced cluster landslides in Jiangwan township,Shaoguan,Guangdong,April 2024[J]. Geomatics and Information Science of Wuhan University,2024,49(8):1264 − 1274. (in Chinese)] XU Qiang, XU Fanshu, PU Chuanhao, et al. Preliminary analysis of extreme rainfall-induced cluster landslides in Jiangwan township, Shaoguan, Guangdong, April 2024[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1264 − 1274. (in Chinese)
[42] 陈洪凯,魏来,谭玲. 降雨型滑坡经验性降雨阈值研究综述[J]. 重庆交通大学学报(自然科学版),2012,31(5):990 − 996. [CHEN Hongkai,WEI Lai,TAN Ling. Review of research on empirical rainfall threshold of rainfall-induced landslide[J]. Journal of Chongqing Jiaotong University (Natural Science),2012,31(5):990 − 996. (in Chinese with English abstract)] CHEN Hongkai, WEI Lai, TAN Ling. Review of research on empirical rainfall threshold of rainfall-induced landslide[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(5): 990 − 996. (in Chinese with English abstract)
[43] 亓星,许强,孙亮,等. 降雨型黄土滑坡预警研究现状综述[J]. 地质科技情报,2014,33(6):219 − 225. [QI Xing,XU Qiang,SUN Liang,et al. Research overview on early warning of precipitation-induced loess landslides[J]. Geological Science and Technology Information,2014,33(6):219 − 225. (in Chinese with English abstract)] QI Xing, XU Qiang, SUN Liang, et al. Research overview on early warning of precipitation-induced loess landslides[J]. Geological Science and Technology Information, 2014, 33(6): 219 − 225. (in Chinese with English abstract)
[44] 文海家,张岩岩,付红梅,等. 降雨型滑坡失稳机理及稳定性评价方法研究进展[J]. 中国公路学报,2018,31(2):15 − 29. [WEN Haijia,ZHANG Yanyan,FU Hongmei,et al. Research status of instability mechanism of rainfall-induced landslide and stability evaluation methods[J]. China Journal of Highway and Transport,2018,31(2):15 − 29. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-7372.2018.02.002 WEN Haijia, ZHANG Yanyan, FU Hongmei, et al. Research status of instability mechanism of rainfall-induced landslide and stability evaluation methods[J]. China Journal of Highway and Transport, 2018, 31(2): 15 − 29. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-7372.2018.02.002
[45] 徐卫亚,周伟杰,闫龙. 降雨型堆积体滑坡渗流稳定性研究进展[J]. 水利水电科技进展,2020,40(4):87 − 94. [XU Weiya,ZHOU Weijie,YAN Long. Research progress on seepage stability of rainfall-induced accumulation landslide[J]. Advances in Science and Technology of Water Resources,2020,40(4):87 − 94. (in Chinese with English abstract)] XU Weiya, ZHOU Weijie, YAN Long. Research progress on seepage stability of rainfall-induced accumulation landslide[J]. Advances in Science and Technology of Water Resources, 2020, 40(4): 87 − 94. (in Chinese with English abstract)
[46] 豆红强,简文彬,王浩,等. 高植被覆盖区台风暴雨型滑坡成灾机制及预警模型研究综述[J]. 自然灾害学报,2023,32(2):1 − 15. [DOU Hongqiang,JIAN Wenbin,WANG Hao,et al. Review of failure mechanism and early warning model of landslides induced by typhoon and associated rainstorm in high vegetation coverage area[J]. Journal of Natural Disasters,2023,32(2):1 − 15. (in Chinese)] DOU Hongqiang, JIAN Wenbin, WANG Hao, et al. Review of failure mechanism and early warning model of landslides induced by typhoon and associated rainstorm in high vegetation coverage area[J]. Journal of Natural Disasters, 2023, 32(2): 1 − 15. (in Chinese)
[47] 黄润秋,祁生文. 工程地质:十年回顾与展望[J]. 工程地质学报,2017,25(2):257 − 276. [HUANG Runqiu,QI Shengwen. Engineering geology:Review and prospect of past ten years in China[J]. Journal of Engineering Geology,2017,25(2):257 − 276. (in Chinese)] HUANG Runqiu, QI Shengwen. Engineering geology: Review and prospect of past ten years in China[J]. Journal of Engineering Geology, 2017, 25(2): 257 − 276. (in Chinese)
[48] SUI Haoyue,SU Tianming,HU Ruilin,et al. Study on the risk assessment method of rainfall landslide[J]. Water,2022,14(22):3678. DOI: 10.3390/w14223678
[49] 唐亚明,张茂省,李政国,等. 国内外地质灾害风险管理对比及评述[J]. 西北地质,2015,48(2):238 − 246. [TANG Yaming,ZHANG Maosheng,LI Zhengguo,et al. Review and comparison onInland and overseas geo-hazards risk management[J]. Northwestern Geology,2015,48(2):238 − 246. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1009-6248.2015.02.025 TANG Yaming, ZHANG Maosheng, LI Zhengguo, et al. Review and comparison onInland and overseas geo-hazards risk management[J]. Northwestern Geology, 2015, 48(2): 238 − 246. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-6248.2015.02.025
[50] FELL R,COROMINAS J,BONNARD C,et al. Guidelines for landslide susceptibility,hazard and risk zoning for land use planning[J]. Engineering Geology,2008,102(3/4):85 − 98.
[51] AMARASINGHE M P,KULATHILAKA S A S,ROBERT D J,et al. Risk assessment and management of rainfall-induced landslides in tropical regions:A review[J]. Natural Hazards,2024,120(3):2179 − 2231. DOI: 10.1007/s11069-023-06277-3
[52] TYAGI A,TIWARI R K,JAMES N. GIS-based landslide hazard zonation and risk studies using MCDM[M]//Local Site Effects and Ground Failures. Singapore:Springer Singapore,2021:251-266.
[53] 向喜琼,黄润秋. 地质灾害风险评价与风险管理[J]. 地质灾害与环境保护,2000,11(1):38 − 41. [XIANG Xiqiong,HUANG Runqiu. Risk assessment and risk management for slope geohazards[J]. Journal of Geological Hazards and Environment Preservation,2000,11(1):38 − 41. (in Chinese)] DOI: 10.3969/j.issn.1006-4362.2000.01.008 XIANG Xiqiong, HUANG Runqiu. Risk assessment and risk management for slope geohazards[J]. Journal of Geological Hazards and Environment Preservation, 2000, 11(1): 38 − 41. (in Chinese) DOI: 10.3969/j.issn.1006-4362.2000.01.008
[54] 张业成,马宗晋,高庆华,等. 中国的巨灾风险与巨灾防范[J]. 地质力学学报,2006,12(2):119 − 126. [ZHANG Yecheng,MA Zongjin,GAO Qinghua,et al. Huge disaster risk and prevention in China[J]. Journal of Geomechanics,2006,12(2):119 − 126. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-6616.2006.02.002 ZHANG Yecheng, MA Zongjin, GAO Qinghua, et al. Huge disaster risk and prevention in China[J]. Journal of Geomechanics, 2006, 12(2): 119 − 126. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-6616.2006.02.002
[55] 廖文旺,姬建,张童,等. 考虑降雨入渗参数空间变异性的浅层滑坡时效风险分析[J]. 岩土力学,2022,43(增刊1):623 − 632. [LIAO Wenwang,JI Jian,ZHANG Tong,et al. Time-effect risk analysis of shallow landslide considering spatial variability of rainfall infiltration parameters[J]. Rock and Soil Mechanics,2022,43(Sup 1):623 − 632. (in Chinese)] LIAO Wenwang, JI Jian, ZHANG Tong, et al. Time-effect risk analysis of shallow landslide considering spatial variability of rainfall infiltration parameters[J]. Rock and Soil Mechanics, 2022, 43(Sup 1): 623 − 632. (in Chinese)
[56] 王俊,黄润秋,聂闻,等. 基于无限边坡算法的降雨型滑坡预警系统的模型试验研究[J]. 岩土力学,2014,35(12):3503 − 3510. [WANG Jun,HUANG Runqiu,NIE Wen,et al. Experimental study of early warning system model of landslide induced by rainfall based on infinite slope method[J]. Rock and Soil Mechanics,2014,35(12):3503 − 3510. (in Chinese with English abstract)] WANG Jun, HUANG Runqiu, NIE Wen, et al. Experimental study of early warning system model of landslide induced by rainfall based on infinite slope method[J]. Rock and Soil Mechanics, 2014, 35(12): 3503 − 3510. (in Chinese with English abstract)
[57] 徐晶,江玉红,韦方强,等. 我国登陆台风影响区地质灾害易发性分析[J]. 中国地质灾害与防治学报,2008,19(4):61 − 66. [XU Jing,JIANG Yuhong,WEI Fangqiang,et al. Susceptibility analysis of geologic hazards in landfall typhoon-affected areas in China[J]. The Chinese Journal of Geological Hazard and Control,2008,19(4):61 − 66. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-8035.2008.04.013 XU Jing, JIANG Yuhong, WEI Fangqiang, et al. Susceptibility analysis of geologic hazards in landfall typhoon-affected areas in China[J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(4): 61 − 66. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2008.04.013
[58] LUO H Y,ZHANG L M,ZHANG L L,et al. Vulnerability of buildings to landslides:The state of the art and future needs[J]. Earth-Science Reviews,2023,238:104329. DOI: 10.1016/j.earscirev.2023.104329
[59] FELL R,COROMINAS J,BONNARD C,et al. Guidelines for landslide susceptibility,hazard and risk zoning for land use planning[J]. Engineering Geology,2008,102(3/4):85 − 98.
[60] 姬建,崔红志,佟斌,等. 基于物理过程不确定性的降雨诱发浅层滑坡易发性快速区划:GIS-FORM技术开发与应用[J/OL]. 岩石力学与工程学报,2024: 1 − 13. (2024-01-10). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSLX20240108001&dbname=CJFD&dbcode=CJFQ. [JI Jian, CUI Hongzhi, TONG Bin, et al. Rapid division of rainfall-induced shallow landslide susceptibility based on physical process uncertainty: Development and application of GIS-FORM technology[J/OL]. China Industrial Economics, 2024: 1 − 13. (2024-01-10). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSLX20240108001&dbname=CJFD&dbcode=CJFQ. (in Chinese)] JI Jian, CUI Hongzhi, TONG Bin, et al. Rapid division of rainfall-induced shallow landslide susceptibility based on physical process uncertainty: Development and application of GIS-FORM technology[J/OL]. China Industrial Economics, 2024: 1 − 13. (2024-01-10). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSLX20240108001&dbname=CJFD&dbcode=CJFQ. (in Chinese)
[61] 张柯月,崔玉龙,许冲,等. 基于机器学习模型的三明市强降雨滑坡易发性评价[J]. 防灾科技学院学报,2024,26(3):59 − 66. [ZHANG Keyue,CUI Yulong,XU Chong,et al. Evaluation of landslide susceptibility to heavy rainfall in Sanming City,Fujian Province based on machine learning modeling[J]. Journal of Institute of Disaster Prevention,2024,26(3):59 − 66. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-8047.2024.03.007 ZHANG Keyue, CUI Yulong, XU Chong, et al. Evaluation of landslide susceptibility to heavy rainfall in Sanming City, Fujian Province based on machine learning modeling[J]. Journal of Institute of Disaster Prevention, 2024, 26(3): 59 − 66. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-8047.2024.03.007
[62] XIE Chenchen,HUANG Yuandong,LI Lei,et al. Detailed inventory and spatial distribution analysis of rainfall-induced landslides in Jiexi County,Guangdong Province,China in August 2018[J]. Sustainability,2023,15(18):13930. DOI: 10.3390/su151813930
[63] ALHAMID A K,AKIYAMA M,HE Zhengying,et al. LRFD methodology for river embankments against non-stationary flooding under climate change[J]. Structural Safety,2024,109:102477. DOI: 10.1016/j.strusafe.2024.102477
[64] GARIANO S L,GUZZETTI F. Landslides in a changing climate[J]. Earth-Science Reviews,2016,162:227 − 252. DOI: 10.1016/j.earscirev.2016.08.011
[65] SOBIE S R. Future changes in precipitation-caused landslide frequency in British Columbia[J]. Climatic Change,2020,162(2):465 − 484. DOI: 10.1007/s10584-020-02788-1
[66] LIN Qigen,STEGER S,PITTORE M,et al. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change[J]. Science of the Total Environment,2022,850:158049. DOI: 10.1016/j.scitotenv.2022.158049
[67] HUANG Yu,XIONG Min. Probability density evolution method for seismic liquefaction performance analysis of earth dam[J]. Earthquake Engineering & Structural Dynamics,2017,46(6):925 − 943.
[68] HUANG Yu,XIONG Min,ZHAO Liuyuan. Slope stochastic dynamics[M].
[69] 罗渝,何思明,何尽川. 降雨类型对浅层滑坡稳定性的影响[J]. 地球科学,2014,39(9):1357 − 1363. [LUO Yu,HE Siming,HE Jinchuan. Effect of rainfall patterns on stability of shallow landslide[J]. Earth Science,2014,39(9):1357 − 1363. (in Chinese with English abstract)] LUO Yu, HE Siming, HE Jinchuan. Effect of rainfall patterns on stability of shallow landslide[J]. Earth Science, 2014, 39(9): 1357 − 1363. (in Chinese with English abstract)
[70] 兰恒星,周成虎,伍法权,等. GIS支持下的降雨型滑坡危险性空间分析预测[J]. 科学通报,2003,48(5):507 − 512. [LAN Hengxing,ZHOU Chenghu,WU Faquan,et al. Spatial analysis and prediction of rainfall landslide risk supported by GIS[J]. Chinese Science Bulletin,2003,48(5):507 − 512. (in Chinese)] DOI: 10.3321/j.issn:0023-074X.2003.05.021 LAN Hengxing, ZHOU Chenghu, WU Faquan, et al. Spatial analysis and prediction of rainfall landslide risk supported by GIS[J]. Chinese Science Bulletin, 2003, 48(5): 507 − 512. (in Chinese) DOI: 10.3321/j.issn:0023-074X.2003.05.021
[71] MARTINOVIĆ K,REALE C,GAVIN K. Fragility curves for rainfall-induced shallow landslides on transport networks[J]. Canadian Geotechnical Journal,2018,55(6):852 − 861. DOI: 10.1139/cgj-2016-0565
[72] HU Hongqiang,BAO Yangjuan,HAN Xu,et al. Non-parametric fragility curves for probabilistic risk assessment of rainfall-triggered landslides[J]. Computers and Geotechnics,2024,173:106546. DOI: 10.1016/j.compgeo.2024.106546
[73] TANG Gaopeng,HUANG Jinsong,SHENG Daichao,et al. Stability analysis of unsaturated soil slopes under random rainfall patterns[J]. Engineering Geology,2018,245:322 − 332. DOI: 10.1016/j.enggeo.2018.09.013
[74] 杨国强,陶虎,雷少伟,等. 不同雨型条件下非饱和土边坡渗流及稳定分析[J]. 水电能源科学,2022,40(6):166 − 170. [YANG Guoqiang,TAO Hu,LEI Shaowei,et al. Analysis of seepage and stability of unsaturated soil slopes under different rainfall patterns[J]. Water Resources and Power,2022,40(6):166 − 170. (in Chinese with English abstract)] YANG Guoqiang, TAO Hu, LEI Shaowei, et al. Analysis of seepage and stability of unsaturated soil slopes under different rainfall patterns[J]. Water Resources and Power, 2022, 40(6): 166 − 170. (in Chinese with English abstract)
[75] MA Jianhua,YAO Yunqi,WEI Ziran,et al. Stability analysis of a loess landslide considering rainfall patterns and spatial variability of soil[J]. Computers and Geotechnics,2024,167:106059. DOI: 10.1016/j.compgeo.2023.106059
[76] HUANG Yu,HE Zhengying,YASHIMA A,et al. Multi-objective optimization design of pile-anchor structures for slopes based on reliability theory considering the spatial variability of soil properties[J]. Computers and Geotechnics,2022,147:104751. DOI: 10.1016/j.compgeo.2022.104751
[77] GONG Wenping,ZHAO Chao,JUANG C H,et al. Coupled characterization of stratigraphic and geo-properties uncertainties–A conditional random field approach[J]. Engineering Geology,2021,294:106348. DOI: 10.1016/j.enggeo.2021.106348
[78] SANTOSO A M,PHOON K K,QUEK S T. Effects of soil spatial variability on rainfall-induced landslides[J]. Computers & Structures,2011,89(11/12):893 − 900.
[79] CHEN Wei,CHEN Xi,PENG Jianbing,et al. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer[J]. Geoscience Frontiers,2021,12(1):93 − 107. DOI: 10.1016/j.gsf.2020.07.012
[80] 黄发明,欧阳慰平,蒋水华,等. 考虑机器学习建模中训练/测试集时空划分原则的滑坡易发性预测建模[J]. 地球科学,2024,49(5):1607 − 1618. [HUANG Faming,OUYANG Weiping,JIANG Shuihua,et al. Landslide susceptibility prediction considering spatio-temporal division principle of training/testing datasets in machine learning models[J]. Earth Science,2024,49(5):1607 − 1618. (in Chinese with English abstract)] HUANG Faming, OUYANG Weiping, JIANG Shuihua, et al. Landslide susceptibility prediction considering spatio-temporal division principle of training/testing datasets in machine learning models[J]. Earth Science, 2024, 49(5): 1607 − 1618. (in Chinese with English abstract)
[81] 王家柱,铁永波,白永健,等. 机器学习在斜坡地质灾害领域的应用现状与展望[J]. 水文地质工程地质,2024. [WANG Jiazhu,TIE Yongbo,BAI Yongjian,et al. Application and prospects of machine learning for rockfalls,landslides and debris flows[J]. Hydrogeology & Engineering Geology,2024. (in Chinese with English abstract)] WANG Jiazhu, TIE Yongbo, BAI Yongjian, et al. Application and prospects of machine learning for rockfalls, landslides and debris flows[J]. Hydrogeology & Engineering Geology, 2024. (in Chinese with English abstract)
[82] 张清,何毅,陈学业,等. 基于多尺度卷积神经网络的深圳市滑坡易发性评价[J]. 中国地质灾害与防治学报,2024,35(4):146 − 162. [ZHANG Qing,HE Yi,CHEN Xueye,et al. Landslide susceptibility assessment in Shenzhen based on multi-scale convolutional neural networks model[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):146 − 162. (in Chinese)] ZHANG Qing, HE Yi, CHEN Xueye, et al. Landslide susceptibility assessment in Shenzhen based on multi-scale convolutional neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 146 − 162. (in Chinese)
[83] 方然可,刘艳辉,黄志全. 基于机器学习的区域滑坡危险性评价方法综述[J]. 中国地质灾害与防治学报,2021,32(4):1 − 8. [FANG Ranke,LIU Yanhui,HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):1 − 8. (in Chinese with English abstract)] FANG Ranke, LIU Yanhui, HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 1 − 8. (in Chinese with English abstract)
[84] HUANG Faming,CHEN Jiawu,LIU Weiping,et al. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold[J]. Geomorphology,2022,408:108236. DOI: 10.1016/j.geomorph.2022.108236
[85] GUZZETTI F,MONDINI A C,CARDINALI M,et al. Landslide inventory maps:New tools for an old problem[J]. Earth-Science Reviews,2012,112(1/2):42 − 66.
[86] HUANG Faming,ZHANG Jing,ZHOU Chuangbing,et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides,2020,17(1):217 − 229. DOI: 10.1007/s10346-019-01274-9
[87] ZHU Li,WANG Gongjian,HUANG Faming,et al. Landslide susceptibility prediction using sparse feature extraction and machine learning models based on GIS and remote sensing[J]. IEEE Geoscience and Remote Sensing Letters,2022,19:1 − 5.
[88] SUN Deliang,SHI Shuxian,WEN Haijia,et al. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping[J]. Geomorphology,2021,379:107623. DOI: 10.1016/j.geomorph.2021.107623
[89] LEE J H,SAMEEN M I,PRADHAN B,et al. Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods[J]. Geomorphology,2018,303:284 − 298. DOI: 10.1016/j.geomorph.2017.12.007
[90] DU Juan,GLADE T,WOLDAI T,et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley,Tibet,Chinese Himalayas[J]. Engineering Geology,2020,270:105572. DOI: 10.1016/j.enggeo.2020.105572
[91] HE Zhengying,AKIYAMA M,FIRDAUS P S,et al. Probabilistic connectivity assessment of road networks exposed to spatially correlated rainfall-triggered landslides[J]. Reliability Engineering & System Safety,2025,257:110800.
[92] HUANG Yu,HAN Xu,ZHAO Liuyuan. Recurrent neural networks for complicated seismic dynamic response prediction of a slope system[J]. Engineering Geology,2021,289:106198. DOI: 10.1016/j.enggeo.2021.106198
[93] HUANG Yu,MAO Wuwei,XIONG Min,et al. Report on the international workshop on seismic design and assessment for resilience,robustness and sustainability of slope engineering,13–15 January 2023,Shanghai,China[J]. Geoenvironmental Disasters,2023,10(1):23. DOI: 10.1186/s40677-023-00251-8
-
期刊类型引用(1)
1. 管少杰,吕进国,王康,张砚力. 露天矿下伏采空区距坡脚水平距离对边坡稳定性的影响. 工矿自动化. 2025(02): 113-120 . 百度学术
其他类型引用(0)