ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

全风化花岗岩残积土长距离剪切特性试验研究

毛无卫, 潘龙, 冯晨锐, 牟旭, 崔寅兵, 郭桢, 黄雨

毛无卫,潘龙,冯晨锐,等. 全风化花岗岩残积土长距离剪切特性试验研究[J]. 中国地质灾害与防治学报,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202412048
引用本文: 毛无卫,潘龙,冯晨锐,等. 全风化花岗岩残积土长距离剪切特性试验研究[J]. 中国地质灾害与防治学报,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202412048
MAO Wuwei,PAN Long,FENG Chenrui,et al. Experimental study on long-distance shear characteristics of fully weathered granite residual soil[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202412048
Citation: MAO Wuwei,PAN Long,FENG Chenrui,et al. Experimental study on long-distance shear characteristics of fully weathered granite residual soil[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202412048

全风化花岗岩残积土长距离剪切特性试验研究

基金项目: 国家重点研发计划项目(2024YFC3012603)
详细信息
    作者简介:

    毛无卫(1986—),男,副教授,博士,博士生导师,主要从事地质灾害机理与防治相关的科研和教学工作。E-mail:maowuwei@tongji.edu.cn

  • 中图分类号: P694

Experimental study on long-distance shear characteristics of fully weathered granite residual soil

  • 摘要:

    近年来,随着全球气候变化和人类工程活动的加剧,我国东南地区因降雨引发的群发性滑坡事件频发,严重威胁着人民的生命和财产安全。全风化花岗岩残积土作为这类滑坡灾害的主要地质载体,深入研究其力学特性对于揭示群发性滑坡的孕育演化机制具有重要意义。文章选取全风化花岗岩残积土为研究对象,综合考虑正应力(20,50,100,150 kPa)、含水率(0,5,10,20和30%)和剪切速率(10,20,40,和80°/min)的影响,开展了一系列环剪试验,旨在探究全风化花岗岩残积土在滑坡启动阶段及长距离运动阶段的力学行为,尤其是长距离剪切特性。试验结果表明:土体的抗剪强度与含水率有着密切关系,随着含水率的增加,抗剪强度先降低后升高再降低,当含水率达到30%时,土体会出现明显的应变硬化现象。此外,土体的抗剪强度还与正应力、剪切速率和相对密实度密切相关。具体表现为,正应力越大,土体的峰值抗剪强度和残余抗剪强度越高,且对峰值抗剪强度的影响更为显著,同时应变软化现象也更加明显;剪切速率越大,土体的峰值抗剪强度和残余抗剪强度总体呈下降趋势,对峰值抗剪强度的影响大于对残余抗剪强度的影响,且表观黏度降低。研究成果可为群发滑坡灾害防治提供重要的理论支持。

    Abstract:

    In recent years, with the intensification of global climate change and human engineering activities, mass landslide events triggered by rainfall have become frequent in southeast China, posing serious threats to the lives and property safety of the people. Fully weathered granite residual soil, as the main geological carrier of such landslide disasters, has significant importance for revealing the mechanisms of the formation and evolution of landslide clusters through in-depth study of its mechanical properties. This paper selects fully weathered granite residual soil as the research subject and considers the effects of normal stress (20, 50, 100, 150 kPa), water content (0, 5, 10, 20, and 30%), and shear rate (10, 20, 40, and 80°/min) to conduct a series of ring shear tests. The aim is to explore the mechanical behavior of fully weathered granite residual soil during the landslide initiation and long-distance movement phases, especially its long-distance shear characteristics. Experimental results show that the shear strength of the soil is closely related to its water content; as the water content increases, the shear strength initially decreases, then increases, and decreases again. At a water content of 30%, the soil exhibits significant strain hardening. In addition, the shear strength of the soil is closely related to normal stress, shear rate, and relative density. Specifically, the higher the normal stress, the higher the peak and residual shear strengths of the soil, with a more significant effect on peak shear strength and more pronounced strain softening; the higher the shear rate, the overall downward trend in peak and residual shear strengths, with a greater effect on peak shear strength than on the residual shear strength, and lower the apparent viscosity. The findings of this study provide important theoretical support for the prevention and control of mass landslide disasters within this region.

  • 近年来,受强烈人类工程活动和极端气象事件影响,全球滑坡灾害处于多发频发态势,给社会经济和生态环境造成巨大破坏和损失[13]。开展区域滑坡灾害气象预警或风险管控工作,已成为一种有效的滑坡防灾减灾措施[46]。大量实践表明,滑坡危险性评价是区域滑坡灾害风险预警与管控的关键技术环节,其精度决定了滑坡风险结果的可靠度和适用性。

    滑坡危险性是指研究区特定时间内一定规模或强度的滑坡灾害发生的时空概率[7]。目前,区域滑坡危险性评价方法主要有两类:一类是基于历史数据统计或非线性模型的数理统计模型,另一类是基于水文-力学模型的物理模型[8]。前者主要是对研究区的环境因子与滑坡成因间的相关性进行统计分析,进而利用统计模型进行危险性指标的计算[9]。后者通过分析降雨入渗诱发滑坡的物理过程,开展区域滑坡危险性定量评价分析[10],这类方法近年来越来越受到重视。常用的评价模型包SINMAP[11]、SCOOPS 3D[12]、FSLAM[13]、TRIGRS[14]等。

    在物理模型中,SINMAP模型是以Taylor[15]提出的一维无限斜坡模型为基础,将无限斜坡稳定模型和坡面水文模型有效耦合后[16],结合稳定态水文学理论的一种分布式斜坡稳定性评价模型[17]。近年来,各国学者对SINMAP模型不断改进,广泛应用于区域滑坡灾害的危险性评估[18]。然而,部分学者的研究表明[19],SINMAP模型的评价精度主要取决于边坡岩土体参数赋值的准确性以及空间校准区域的划分。传统SINMAP模型只能对特定研究区域进行整体统一赋值,无法反映研究区岩土体物理力学参数空间分布的差异,导致评价结果不够合理和精确。为提高SINMAP模型评估精度,部分学者集成遥感信息、土地利用、土壤、植被、水文等数据划分地理上的校准区[20],或选取一定影响因子进行相关性评价,进而实现研究区的合理分区[21]

    综上,本文以万州区大周镇为例,开展了SINMAP模型的改进研究,对影响研究区域的指标因子进行频率比与敏感性指数分析,确定影响滑坡灾害发育的关键因子,根据关键因子的空间分布差异,实现研究区的合理分区,根据分区结果对岩土体物理力学参数进行分区标记以期得到相对可靠和精度更高的危险性评价结果。

    重庆市万州区位于四川盆地东部,地处三峡库区腹心地带。大周镇位于万州区的东北部,长江自西向东流经本区(图1)。区域属于构造-剥蚀低山丘陵地貌,地形整体北西高、南东低,地貌形态多呈台阶状。区内降雨充沛,多年平均年降雨量1191.3 mm,年最大降雨量可达1635.7 mm(1987年),降雨集中在每年的5~9月,且强度较大,最大月降水量达711.8 mm(1987年8月),最长连续降水16日。

    图  1  大周镇地貌及区域位置图
    Figure  1.  Topographic and regional location map of Dazhou Town

    大周镇地处万州向斜北西翼,区域内无次级褶皱和断层构造发育。岩层一般呈单斜产出,岩层倾向160°~210°,岩层倾角为5°~30°,岩体中主要发育两组陡倾构造节理。区内地层岩性主要为第四系堆积层、侏罗系上统遂宁组砂泥岩互层和侏罗系中统上沙溪庙组紫红色泥质粉砂岩。根据现场调查,可将工程地质岩组按照堆积层、软岩、硬岩和软硬相间岩层进行细分,侏罗系中统上沙溪庙组在研究区内出露16层,侏罗系上统遂宁组出露2层(图2)。地下水按赋存条件可分为松散岩类孔隙水以及红层裂隙水两大类型,主要受大气降雨补给,长江为最低排泄基准面。

    图  2  大周镇滑坡灾害点分布图
    Figure  2.  Distribution map of landslide disaster point in Dazhou Town

    根据资料分析和现场调查,大周镇共发育滑坡灾害44处。从物质组成看,主要为堆积层滑坡,潜在滑面类型均为土岩接触面,共33处;岩质滑坡发育较少,共11处。从规模分析,大周镇以中-大型滑坡为主,占总滑坡数的86.4%,且主要为中-浅层滑坡。滑坡平面形态以横长形和箕形为主,多分布在高程300 m以下区域(图2)。据滑坡灾害点的地层分布可知,滑坡滑床基岩主要发育在侏罗纪中统上沙溪庙组(J2s),滑坡数量33处,占比75%;侏罗纪上统遂宁组(J3s),滑坡数量11处,占比25%。

    八角树滑坡是位于大周镇铺垭村的一处典型堆积层滑坡,滑坡形态整体呈上陡下缓,后部坡度约30°,中前部约为15°(图3)。滑体主要由紫红色泥岩、灰色砂岩风化及崩坡堆积形成的第四系崩滑堆积层组成,下伏基岩为侏罗系中统沙溪庙组砂岩、砂质泥岩。滑面形态呈弧形,类型为土岩接触界面。滑坡的变形模式表现为后部向前部推移变形,主要成因是由于万州汛期雨量充沛,持续性的强降雨不能及时排泄从而入渗坡体,导致滑带处形成饱和渗流区,降低了滑带土的抗剪强度。加之前缘受库水位影响,以及中后部坡体农田灌溉和建房切坡,造成滑坡持续变形。

    图  3  八角树滑坡剖面图
    Figure  3.  Bajiaoshu landslide profile diagram

    综上,降水、库水位波动和人类活动等因素共同作用,影响并改变着研究区斜坡的长期稳定状态,是区内滑坡灾害的主要成因机制。

    SINMAP模型的基本思想是将水文模型与无限斜坡稳定性模型耦合,平衡重力的不稳定成分与平面上摩擦力及黏聚力的稳定成分,忽略边缘效应的影响。该模型较为全面地考虑了地形地貌和土壤岩性等各种孕灾因素的影响,并与GIS系统能有效集成。无限斜坡模型的稳定性系数(Fs)由下式计算:

    $$ F_{\mathrm{s}} = \frac{C_{\mathrm{r}} + C_{\mathrm{s}} + \left[ \rho_{\mathrm{s}} g (D - D_{\mathrm{W}}) + (\rho_{\mathrm{s}} g - \rho_{\mathrm{w}} g) D_W \right] \tan \varphi}{D \rho_{\mathrm{s}} g \sin \theta \cos \theta} $$ (1)

    式中:$ {{F}}_{\rm{s}} $——无限斜坡模型的稳定性系数;

    $ {{C}}_{\rm{r}} $——植物根系产生的黏聚力/(N·m−2);

    $ {{C}}_{\rm{s}} $——土体自身黏聚力/(N·m−2);

    θ——地形坡度/(°);

    $ {{\rho}}_{\rm{s}} $——湿土密度/(kg·m−3);

    $ {{\rho}}_{\rm{w}} $——水的密度/(kg·m−3);

    g——重力加速度/(9.18 m·s−2);

    D——土层垂直厚度/m;

    $ {{D}}_{\rm{W}} $——地下水位埋深/m;

    $ {\varphi} $——土的内摩擦角/(°)。

    图4为式(1)的几何图解。

    图  4  无限边坡稳定性模型图解
    Figure  4.  Infinite slope stability model diagram

    随着深度的变化,无限斜坡稳定性系数可进一步表达为无量纲形式:

    $$ {{F}}_{\rm{s}}=\frac{{C}+{\cos}{\theta}\left[{1-wr}\right]{\tan}{\varphi}}{{\sin}{\theta}} $$ (2)

    式中:$ {C} $——无量纲黏聚力系数;

    $ {r} $——水和土壤的相对密度比;

    $ {w} $——地形湿度指数。

    其中,无量纲黏聚力系数:

    $$ C=(C_{\rm{r}}+{{C}}_{\rm{s}}){/h}{{\rho}}_{\rm{s}}{g} $$ (3)

    水和土壤的相对密度比:

    $$ {}{r=}{{\rho}}_{\rm{w}}{/}{{\rho}}_{\rm{s}} $$ (4)

    地形湿度指数:

    $$ w=\min\left(\frac{{Ra}}{{T}{\sin}{\theta}},{1}\right) $$ (5)

    式中:R——汇水区域稳态补给/(mm·d−1);

    T——土壤的导水系数/(m2·d);

    $ {a} $——单位汇水面积/m2

    为了定义斜坡的稳定性系数,将地形湿度指数纳入无量纲稳定性系数中,得到:

    $$ F_{\mathrm{s}} = \frac{C + \cos \theta \left[ 1 - \min \left( \dfrac{R}{T} \dfrac{a}{\sin \theta}, 1 \right) r \right] \tan \varphi}{\sin \theta} $$ (6)

    将密度比($ {r} $)视为恒定值0.5,通过规定下限和上限来界定其他三个量的不确定性。如果对均匀分布定义R/T=x,$ {\tan}{\theta}{=t} $,则得到显示下限和上限的关系式如下:

    $$ {}{C\sim U}{(}{{C}}_{{1}}{{,}}{{C}}_{{2}}{)} $$ (7)
    $$ {}{x\sim U}{(}{{x}}_{{1}}{{,}}{{x}}_{{2}}{)} $$ (8)
    $$ {}{t\sim U}{(}{{t}}_{{1}}{{,}}{{t}}_{{2}}{)} $$ (9)

    根据斜坡稳定性系数,定义斜坡稳定性指数(SI)为地表斜坡稳定的概率,该值介于0(最不稳定)和1(临界稳定)之间。

    Ct最小,x最大时,不利于滑坡发生。在这种情况下,$ {{F}}_{\rm{s}} $>1的区域是无条件稳定的。此时SI定义为:

    $$ SI = F_{{\mathrm{smax}}} = \frac{C_1 + \cos\theta \left[1 - \min\left(x_2 \dfrac{a}{\sin\theta}, 1\right) r\right] t_1}{\sin\theta} $$ (10)

    对于最小稳定性系数小于1的区域,有可能发生滑坡。在这些地区($ {{F}}_{\rm{smin}} < 1 $)定义如下:

    $$ {}{SI=Prob}{(}{ > 1}{)} $$ (11)

    Ct最大,x最小时:

    $$ F_{{\mathrm{smax}}} = \frac{C_2 + \cos\theta \left[1 - \min\left(x_1 \dfrac{a}{\sin\theta}, 1\right) r\right] t_2}{\sin\theta} $$ (12)

    在$ {{F}}_{\rm{smax}} $<1的情况下:

    $$ {}{SI=Prob}{(}{{F}}_{\rm{s}}{ > 1}{)}{=0} $$ (13)

    根据稳定性指数(SI)分级分类,定义滑坡危险性分区见表1

    表  1  滑坡危险性分区表
    Table  1.  Landslide hazard zoning table
    条件类别预测状态
    SI≥1.51极稳定区
    1.5>SI≥1.252稳定区
    1.25>SI≥1.03基本稳定区
    1.0>SI≥0.54潜在不稳定区
    0.5>SI≥0.05不稳定区
    下载: 导出CSV 
    | 显示表格

    SINMAP模型的精度主要取决于边坡岩土体物理力学参数赋值准确性和空间校准区域的划分精度。传统SINMAP模型对整个评价区域统一进行赋值,不能详细的划分评价区域,无法反映研究区岩土物理力学参数空间不均匀造成的差异,在较大评价区域常常不符合滑坡灾害发育的基本规律,使得评价结果不够合理,影响了SINMAP模型的评价精度。本文提出如下改进:

    首先,考虑大周镇孕灾条件和滑坡灾害发育特征等因素,参照前人经验,全面选取滑坡灾害的影响因子,使用频率比法计算因子敏感性指数,对该区域的滑坡灾害影响因子进行重要程度分级,确定其中关键影响因子;进而根据关键因子指标的不同区间FR值,以及不同关键因子的相互组合关系,结合其空间分布差异,将研究区划分不同的空间校准区。最后,基于空间校准区域的划分,对每个区域分别采用SINMAP模型开展滑坡危险评价,将评价结果叠加合并为区域整体的评价结果(图5)。本文将得到的两种模型结果进行了比较分析,并用区域历史滑坡的实际发育分布特征进行验证,以评价改进模型的适用性与准确性。

    图  5  SINMAP模型改进流程图
    Figure  5.  SINMAP model improvement technology flowchart

    研究区内地质条件存在较大差异,滑坡内部地质控制因子在空间分布不均匀,因此应根据影响因素的特点科学合理地划分空间标定区域。

    频率比法能够对滑坡分布及其影响因子状态之间的空间关系进行分析,它与信息量法、确定性系数法、逻辑回归模型等是滑坡风险评价常用的概率统计模型[2223]。计算公式如下:

    $$ F_{j}R=\frac{P\left(LF_{j}\right)}{P\left(F_{j}\right)}=\frac{P\left(L|F_{j}\right)}{P\left(L\right)}=\frac{l/L}{s/S}-1$$ (14)

    式中:L——滑坡面积;

    F——影响因子;

    FjR——影响因子(F)的第j个区间的频率比;

    P(LFj)——L中$ {{F}}_{{j}} $的频率;

    $ {P(}{{F}}_{{j}}{)} $——研究区中$ {F}_{j} $的频率;

    l——单个因子某一属性区间内的滑坡栅格数;

    L——研究区内的滑坡总栅格数;

    s——该属性子区间的栅格数;

    S——研究区总栅格数。

    式(14)中滑坡面积L已知,故P(L)恒定,即P(L|Fj)越大,说明在第j区间的滑坡发生的概率就越大。因此,频率比值的大小反映出该指标因子对滑坡发生起有利或不利影响。根据式(14),在频率比大于0的情况下,该指标因子对滑坡的发生起促进作用,在频率比小于0的情况下,表示该分级状态对滑坡发生不利。

    鉴于频率比值只能反映特定影响因子不同分级区间内的影响程度,无法整体上确定某类影响因子对滑坡稳定性的影响程度,参考前人[2425]使用敏感性指数E,来刻画影响因子对滑坡稳定性的影响程度。其计算公式为:

    $$ {{E}}_{{i}}={{FR}}_{{(i,max)}}-{{FR}}_{{(i,min)}} $$ (15)

    式中:$ {{E}}_{{i}} $——指标因子i对灾害响应的影响指数;

    $ {{FR}}_{{(i,\max)}} $和$ {{FR}}_{{(i,\min)}} $——指标因子iFR的最大值、 最小值。

    采用该方法,可从整体上反映各类致灾因子对滑坡稳定性的影响。

    采用万州区1991—2021年历史降雨资料,计算研究区降雨极值。将降雨时间假设为降雨强度(i)、持续时长(T)和降雨总量(Q)的函数,分别定义Q、T、i为A、B、C事件,假设这些事件均为两两独立的随机变量。利用Gumbel函数进行拟合,得到万州区不同降雨重现期的累计降雨量(图6)。

    图  6  万州区降雨各重现期降雨量图
    Figure  6.  Wanzhou District rainfall amount map foruvarious return periods

    根据不同重现期降雨量值,分别统计多年平均单日最大降雨量值、20 a、50 a及100 a一遇的单日最大降雨量值,并据此设计4种降雨工况(表2)。为了方便获取数据,模型将T/R作为单个指标进行计算,在T/R满足上限3000时,水系分布接近研究区的真实水系。已知T/R上限后,可以根据万州区多年平均日降雨量的平均值(55.7 mm)推算出土体导水系数(T=167.1 m2/d)。具体工况如表2所示。

    表  2  4种降雨工况下的降雨量值和T/R的上下限
    Table  2.  Rainfall values and upper and lower limits of T/R under four rainfall conditions
    类别 降雨工况 降雨量值
    /mm
    模型参数T/R
    下限 上限
    1 多年平均单日最大降雨量 91 1836 3000
    2 20 a一遇单日最大降雨量 161 1038 3000
    3 50 a一遇单日最大降雨量 188 889 3000
    4 100 a一遇单日最大降雨量 208 803 3000
    下载: 导出CSV 
    | 显示表格

    传统SINMAP模型分析时,需要输入岩土体密度($ {\rho} $)、内摩擦角($ {\varphi} $)、黏聚力(c)、比集水面积(a)、地形坡度(θ)和坡向参数。岩土体参数$ {\rho} $、$ {\varphi} $和c可由工程地质类比法及室内试验综合确定,a基于1∶1万DEM图在SINMAP模型中计算得到,坡度和坡向可通过ArcGIS分析得出。传统SINMAP模型计算参数如表3所示。

    表  3  传统SINMAP模型计算参数
    Table  3.  Calculation parameters of traditional SINMAP model
    g
    /(m·s−2
    湿度(%) 黏聚力/kPa 内摩擦角/(°) 岩土体密度
    /(kg·m−3
    下限 上限 下限 上限
    9.8 10 5 25 10 25 1900
    下载: 导出CSV 
    | 显示表格

    为与当前滑坡危险性评价标准规范分级一致,便于比较不同评价方法的精度,参照前人经验对模型计算的稳定性状态分类进行修正。将表1中“极稳定区、稳定区”这两个等级合并为滑坡灾害低危险区,将“基本稳定区、潜在不稳定区、不稳定区”分别定义为“中危险区、高危险区和极高危险区”[19]。将表2表3的相关参数,输入SINMAP模型中,计算得到4种降雨工况下研究区滑坡灾害的危险性结果(图7)。

    图  7  传统SINMAP模型4种工况下滑坡灾害危险分区图
    Figure  7.  Traditional SINMAP model hazard zoning map of landslide disasters under four working conditions

    通过表4中不同降雨工况下大周镇内不同危险等级面积占比可以发现,极高危险区和高危险区主要分布在大周镇交通主干道两侧、库岸区域和河流河道两侧。当降雨量较小时,高-极高危险区小范围集中在砂岩坡度较陡的区域。随着降雨量的增加,高-极高危险区的面积快速增长,逐渐向山脊、道路两侧以及库岸、河流河道两侧等坡度较缓的地区扩展。

    表  4  传统SINMAP模型4种工况下滑坡灾害危险分区统计表
    Table  4.  Traditional SINMAP model landslide hazard zoning statistical table under four working conditions
    工况 危险性分级 滑坡数
    /个
    各危险等级
    面积/m2
    占总滑坡
    比例/%
    占总面积
    比例/%
    工况一 低危险区 25 15 235 400 56.82 62.57
    高危险区 3 1 145 600 6.82 4.70
    中危险区 16 7 671 880 36.36 31.51
    极高危险区 0 297 200 0.00 1.22
    工况二 低危险区 16 9 764 400 36.36 40.10
    中危险区 22 12 463 400 50.00 51.18
    高危险区 6 1 825 100 13.64 7.50
    极高危险区 0 297 200 0.00 1.22
    工况三 低危险区 11 7 047 230 25.00 28.94
    中危险区 17 9 985 030 38.64 41.00
    高危险区 13 5 878 900 29.55 24.14
    极高危险区 3 1 438 930 6.82 5.91
    工况四 低危险区 9 7 047 230 20.45 28.94
    中危险区 16 9 724 080 36.36 39.93
    高危险区 13 4 685 400 29.55 19.24
    极高危险区 6 2 893 380 13.64 11.88
    下载: 导出CSV 
    | 显示表格

    根据式(11),计算各指标因子频率比及敏感性指数值见表5。敏感性指数E的计算结果显示,岩土体类型、植被覆盖度和与距道路距离的值最高。大量研究表明[26],地层岩性与滑坡发生的关系极为密切,岩土体的力学强度是由岩石的类型、软硬程度以及层间结构决定,最终影响到坡体的稳定性和地表侵蚀的难易程度。从斜坡水文学角度分析,诱发植被发育斜坡失稳的并非降雨本身,而是降雨转化的地下水,因此植被覆盖率直接影响到降雨对滑坡的影响,植被极大地优化了地下水的补给环境[27]。此外,在各种滑坡诱发因素中,人类活动加速了对斜坡环境的破坏,如修建道路的过程中,由于过度的开挖,形成有效临空面,造成斜坡失稳。综上可知,岩土体类型、植被覆盖度和距道路距离是影响大周镇滑坡灾害的关键因子。

    表  5  各因子频率比及敏感性指数值
    Table  5.  Frequency ratios and sensitivity index values of each factor
    指标因子 $ {{E}}_{{i}} $ 分级 滑坡数/个 FR
    坡度/(°) 1.503 245 0~10 9 −0.139 74
    10~15 11 0.503 245
    15~20 6 0.157 018
    20~25 7 0.407 057
    25~30 4 −0.118 7
    30~35 5 0.145 126
    35~50 2 −0.768 24
    50~75 0 −1
    高程/m 1.211 059 115~215 19 0.501 409
    215~315 12 0.293 254
    315~415 6 −0.441 15
    415~515 5 −0.345 82
    515~660 2 −0.709 65
    斜坡形态 0.471 677 凹形坡 24 0.255 287
    直线形 4 −0.091 88
    凸形坡 16 −0.216 39
    地形湿度指数 2.034 442 0~3.38 2 −0.829 1
    3.38~4.62 8 0.2442 4
    4.62~5.77 12 0.011 489
    5.77~7.00 12 0.887 885
    7.00~8.42 7 1.034 442
    8.42~10.18 1 −1
    10.18~12.92 0 −1
    12.92~23.08 1 0.198,803
    距水系距离/m 1.467 326 >200 19 −0.132 43
    <100 12 1.234 746
    100~200 14 −0.232 58
    植被覆盖度 3.026 948 0~0.05 0 −1
    0.05~0.1 1 −0.263 94
    0.1~0.15 2 −0.165 24
    0.15~0.2 2 −0.307 28
    0.2~0.25 5 0.341 52
    0.25~0.3 13 2.026 948
    0.3~0.35 1 −0.812 46
    0.35~0.4 5 −0.240 92
    0.4~0.45 8 0.624 582
    0.45~0.54 1 −0.419 16
    岩土体类型 3.151 116 第四系堆积层 32 2.366 056
    硬岩岩组 5 −0.510 91
    软岩岩组 3 −0.748 48
    软硬互层 4 −0.785 06
    斜坡结构 1.191 694 顺向坡 9 0.988 524
    逆向坡 4 −0.095 07
    斜交坡 25 −0.203 17
    水平坡 6 0.743 289
    距道路距离/m 2.492 95 0~50 22 0.727 403
    50~100 9 1.631 703
    100~150 2 −0.640 56
    150~200 7 0.437 25
    200~250 3 −0.091 47
    下载: 导出CSV 
    | 显示表格

    根据表5FR值计算结果与分区内的滑坡统计,滑坡主要分布在距道路距离为0~100 m的区间范围内,150~200 m的区域范围次之,因此将距道路距离分为≤100 m、100~200 m、>200 m共三级。在植被覆盖度区间划分中,滑坡主要分布在NDVI值为0.2~0.3区间的区域上,最终将植被覆盖度分为≤0.2、0.2~0.3、>0.3共三级。结合岩土体类型、植被覆盖度和与道路距离这3个关键因素在大周镇的空间分布差异,利用ArcGIS软件将研究区划分为不同空间校准区,具体结果为:①第四系堆积层-高植被覆盖度-路网分布密集、②泥岩-高植被覆盖度-路网分布中等、③泥砂互层-中等植被覆盖度-路网分布密集、④泥砂互层-低植被覆盖度-路网分布稀疏、⑤砂岩-中等植被覆盖度-路网分布密集、⑥砂岩-中等植被覆盖度-路网分布稀疏,共6个不同的校准区域(图8)。

    图  8  校准区划分结果图
    Figure  8.  Calibration area division result diagram

    基于空间标定区域的划分,对每个区域分别采用SINMAP模型进行滑坡危险性评价。根据研究区的野外调查和相关室内土工试验结果,并结合各个校准区的特性确定各子区域岩土体密度、内摩擦角、黏聚力等物理力学参数,并完成参数标定。比集水面积、地形坡度、坡向、T/R参数值的获得和传统SINMAP模型计算方法一致。

    表6的模型参数输入到改进后的SINMAP模型中,计算得到四种降雨工况下研究区滑坡灾害的危险性结果(图9)。

    表  6  改进SINMAP模型计算参数
    Table  6.  Improved SINMAP model calculation parameters
    校准区域 g/(m·s−2 含水率
    /%
    c/kPa $ \varphi $/(°) ρ/(kg·m−3
    下限 上限 下限 上限
    ①第四系堆积层-
    高植被覆盖度-
    路网分布密集
    9.79 10 10 20 16 28 1990
    ②泥岩-高植被
    覆盖度-路网
    分布中等
    9.79 10 14 22 22 30 2190
    ③泥砂互层-
    中等植被覆盖度-
    路网分布密集
    9.79 10 15 24 15 30 2280
    ④泥砂互层-
    低植被覆盖度-
    路网分布稀疏
    9.79 10 15 26 15 40 2280
    ⑤砂岩-中等
    植被覆盖度-
    路网分布密集
    9.79 10 18 30 26 30 2460
    ⑥砂岩-中等
    植被覆盖度-
    路网分布稀疏
    9.79 10 18 35 26 35 2460
    下载: 导出CSV 
    | 显示表格
    图  9  改进SINMAP模型四种工况下滑坡灾害危险分区图
    Figure  9.  Improved SINMAP model hazard zoning map of landslide disasters under four working conditions

    通过对比不同降雨工况下不同滑坡危险等级面积占比可以发现,随着降雨强度的增大,研究区危险性等级面积同样不断扩大。工况一下,极高危险区和高危险区面积占研究区百分比为5.06%,工况二下极高危险区和高危险区面积占研究区百分比为9.22%,增长了4.16%,工况三比工况二增加了18.74%,工况四比工况三增加了8.3%。随着降雨量的不断增长,高-极高危险区逐步从易汇集雨水的沟谷地区、砂岩坡度较陡的区域向山脊、道路以及库岸、河流河道两侧等坡度较缓的地区延伸。

    从整体评价结果看,两种不同SINMAP模型结果中,高-极高危险区主要分布在研究区库岸区域、河流河道两侧以及人类工程活动强烈的区域,具有较强的一致性,往往表现为主要交通干道两侧或者建造房屋造成的高陡边坡。

    ROC曲线目前被广泛用于滑坡危险性结果的检验。通过最危险工况下评价结果的ROC曲线分析可知,改进SINMAP模型的AUC(Area Under Curve)=86.8%高于传统SINMAP模型的AUC=73.9%(图10),识别准确度提高了17.46%。表明改进SINMAP模型比传统SINMAP模型在整体上有更可靠的评价结果。

    图  10  ROC精度分析曲线
    Figure  10.  ROC accuracy analysis curve

    在滑坡的局部计算结果上,改进后的SINMAP模型结果具备识别效果好,空间分布较连续,计算结果更符合真实滑坡的实际发育特征的优势(图11)。

    图  11  工况四模拟结果对比图
    Figure  11.  Comparison diagram of simulation results for working condition four

    表7可知,工况四中改进SINMAP模型有81.82%的滑坡点落入模拟结果为中危险等级以上的区域,大于传统SINMAP模型的72.73%;在改进SINMAP模型的最危险工况结果中,八角树滑坡和王家院子滑坡范围内有81.33%和92.27%的区域被识别为中危险区及以上,大于传统SINMAP模型的66.10%和77.91%,表明改进后的SINMAP模型能对滑坡发生的区域进行更有效的识别。

    表  7  改进SINMAP模型4种工况下滑坡灾害危险分区统计表
    Table  7.  Improved SINMAP model landslide hazard zoning statistical table under four working conditions
    工况 危险性分级 滑坡数
    /个
    各危险等级
    面积/m2
    占总滑坡
    比例/%
    占总面积
    比例/%
    工况一 低危险区 14 13 078 258 31.82 53.71
    高危险区 21 10 039 697 47.73 41.23
    中危险区 3 1 142 031 6.82 4.69
    极高危险区 1 90 843 2.27 0.37
    工况二 低危险区 11 8 676 595 25.00 35.63
    中危险区 23 13 428 910 52.27 55.15
    高危险区 9 1 940 453 20.45 7.97
    极高危险区 1 304 871 2.27 1.25
    工况三 低危险区 6 6 139 994 13.64 25.21
    中危险区 22 11 401 591 50.00 46.82
    高危险区 12 5 628 730 27.27 23.12
    极高危险区 4 1 180 514 9.09 4.85
    工况四 低危险区 4 5 579 180 9.09 22.91
    中危险区 21 9 941 706 47.73 40.83
    高危险区 10 6 363 600 22.73 26.13
    极高危险区 9 2 466 343 20.45 10.13
    下载: 导出CSV 
    | 显示表格

    对于典型单体滑坡,如:檬子树滑坡在2007年滑坡后缘出现横向宽约20~30 cm,长约50 m的张拉裂缝,坡体中部房屋受变形影响均有不同程度开裂。传统SINMAP的高危险区结果集中在檬子树滑坡后缘,整体结果较稳定。改进SINMAP的滑坡后缘和中部均出现高危险区,滑坡整体处于较不稳定状态,与实际调查结果相符。据野外实地调查,王大田滑坡中部道路鼓胀,房屋不同程度开裂,近几年来呈变形加重趋势。传统SINMAP结果的高危险区集中在王大田滑坡左右两侧,中部以中低危险区为主。而改进SINMAP的滑坡中部和左右两侧均出现高危险区,与实际调查结果接近,表明改进SINMAP模型的计算结果更加符合真实滑坡的实际发育趋势。

    值得指出,传统SINMAP模型和改进SINMAP模型均对大周镇部分临江涉水滑坡的危险性评价结果偏低。原因为库水位变动引起涉水滑坡地下渗流场变化,降低了滑坡岩土体物理力学强度,减轻了岩体的有效重力,在SINMAP模型参数设置上未考虑涉水滑坡受库水位波动的动态影响,造成危险性评价结果偏低,部分涉水滑坡未能有效识别。

    本文基于万州区大周镇滑坡孕灾条件与滑坡发育特征,对传统的SINMAP模型进行改进,得出如下研究结论:

    (1)统计分析表明,最危险工况下改进SINMAP模型的AUC=86.8%高于传统SINMAP模型的AUC=73.9%,识别准确度提高了12.9%,表明改进SINMAP模型在整体上评价可靠性更强。

    (2)在滑坡灾害区域模拟分析结果上,最危险工况下改进SINMAP模型有81.82%的滑坡点落入模拟结果为中危险等级以上的区域,大于传统SINMAP模型的72.73%,同时对典型灾害点的识别效果更好;改进SINMAP模型的高-极高危险区空间分布位置结果与实际滑坡变形发育区域情况更加符合,可见改进SINMAP模型对滑坡灾害局部区域模拟精度更高。

    (3)总体而言,两种模型预测的高和极高滑坡危险区分布呈现沿水系、道路线状分布和人类工程活动强烈地段点状分布的特点。

  • 图  1   浙江省丽水市松阳县象溪镇下麻厂黄金福房后滑坡:

    注:a为滑坡全貌;b为取样点。

    Figure  1.   Landslide behind Huangjinfu house, Xiama factor, Xiangxi Town, Songyang County, Lishui City, Zhejiang Province

    图  2   SRS-150型环剪装置

    注:a为环剪仪;b为试样槽;c为上盖及剪切刀片。

    Figure  2.   SRS-150 ring shear apparatus

    图  3   全风化花岗残积土试样级配曲线

    Figure  3.   Gradation curve of fully weathered granite residual soil sample

    图  4   试样制备

    注:a为比重试验;b为试验土体;c为烘干;d为配制不同含水率试样;e为试样装入环剪槽。

    Figure  4.   Specimen preparation

    图  5   制备完成后的试样

    Figure  5.   Specimen after preparation

    图  6   剪应力−剪切位移曲线(正应力20 kPa、50 kPa)

    Figure  6.   Shear stress−shear displacement curves (Normal stress: 20 kPa and 50 kPa)

    图  7   抗剪强度与含水率的关系(正应力20 kPa)

    Figure  7.   Relationship between shear strength and water content (normal stress: 20 kPa)

    图  8   抗剪强度与含水率的关系(正应力50 kPa)

    Figure  8.   Relationship between shear strength and water content (normal stress: 50 kPa)

    图  9   剪应力−剪切位移曲线(不同正应力)

    Figure  9.   Shear stress−shear displacement curves (different normal stresses)

    图  10   抗剪强度与正应力的关系

    Figure  10.   Relationship between shear strength and normal stress

    图  12   剪应力−剪切位移曲线(不同相对密实度)

    Figure  12.   Shear stress−shear displacement curves (different relative densities)

    图  13   抗剪强度与相对密实度的关系

    Figure  13.   Relationship between shear strength and relative densities

    图  14   轴向位移−剪切位移曲线(不同相对密实度)

    Figure  14.   Axial displacement−shear displacement curves (different relative densities)

    图  15   剪应力−剪切位移曲线(不同剪切速率)

    Figure  15.   Shear stress−shear displacement curve (different shear rates)

    图  16   抗剪强度与剪切速度的关系

    Figure  16.   Relationship between shear strength and shear velocity

    图  17   轴向位移−剪切位移曲线(不同剪切速率)

    Figure  17.   Axial displacement−shear displacement curve (different shear rates)

    图  18   表观粘度−剪切位移曲线(不同剪切速率)

    Figure  18.   Apparent viscosity−shear displacement curve (different shear rates)

    图  19   土样剪切后剪切带情况

    Figure  19.   Shear band conditions of the soil sample after shearing

    图  11   轴向位移−剪切位移曲线(不同正应力)

    Figure  11.   Axial displacement−shear displacement curve (different normal stresses)

    表  1   同济大学SRS−150型环剪仪主要参数

    Table  1   Main parameters of the SRS−150 ring shear instrument at Tongji University

    主要参数 大小
    剪切盒内径/mm 100
    剪切盒外径/mm 150
    最大装填试样高度/mm 31
    有效试样面积/cm2 98
    剪切速率/(°·min−1 0.001~360
    最大轴向压力/kN 10
    峰值扭矩/(N·m) 250
    轴向位移/mm 0~50
    下载: 导出CSV

    表  2   全风化花岗残积土物理特性

    Table  2   Physical properties of the tested soil

    密度/(g·cm−3 天然含水率/% 比重 最大孔隙比 最小孔隙比
    1.066~1.698 10.451 2.644 1.4776 0.5552
    下载: 导出CSV

    表  3   环剪试验工况表

    Table  3   Ring shear testing conditions

    试验
    编号
    正应力
    /kPa
    剪切速率
    /(°·min−1
    剪切位移
    /mm
    含水率
    /%
    相对密实度
    /%
    R1 20 10 130.8 0 71.83
    R2 50 10 130.8 0 71.83
    R3 100 10 130.8 0 71.83
    R4 150 10 130.8 0 71.83
    R5 20 10 130.8 5 71.83
    R6 20 10 130.8 10 71.83
    R7 20 10 130.8 20 71.83
    R8 20 10 130.8 30 71.83
    T9 50 10 130.8 5 71.83
    T10 50 10 130.8 10 71.83
    T11 50 10 130.8 20 71.83
    T12 50 10 130.8 30 71.83
    T13 50 20 130.8 0 71.83
    T14 50 40 130.8 0 71.83
    T15 50 80 130.8 0 71.83
    T16 50 10 130.8 0 14.68
    T17 50 10 130.8 0 44.53
    下载: 导出CSV
  • [1] 赵建军,王思敬,尚彦军,等. 全风化花岗岩抗剪强度影响因素分析[J]. 岩土力学,2005,26(4):624 − 628. [ZHAO Jianjun,WANG Sijing,SHANG Yanjun,et al. Control factors on shear strength of completely decomposed granite[J]. Rock and Soil Mechanics,2005,26(4):624 − 628. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2005.04.025

    ZHAO Jianjun, WANG Sijing, SHANG Yanjun, et al. Control factors on shear strength of completely decomposed granite[J]. Rock and Soil Mechanics, 2005, 26(4): 624 − 628. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2005.04.025

    [2] 高恺,段红鑫,李华,等. 不同颗粒级配对全风化花岗岩回填土抗剪强度的影响[J]. 地球科学与环境学报,2024,46(5):689 − 701. [GAO Kai,DUAN Hongxin,LI Hua,et al. Effect of different particle grading on shearing strength of completely weathered granite backfill soil[J]. Journal of Earth Science and Environment,2024,46(5):689 − 701. (in Chinese with English abstract)]

    GAO Kai, DUAN Hongxin, LI Hua, et al. Effect of different particle grading on shearing strength of completely weathered granite backfill soil[J]. Journal of Earth Science and Environment, 2024, 46(5): 689 − 701. (in Chinese with English abstract)

    [3] 张素敏,朱永全,高炎,等. 全风化花岗岩流变特性试验研究[J]. 地下空间与工程学报,2016,12(4):904 − 911. [ZHANG Sumin,ZHU Yongquan,GAO Yan,et al. Experimental investigation on rheological properties of completely weathered granite[J]. Chinese Journal of Underground Space and Engineering,2016,12(4):904 − 911. (in Chinese with English abstract)]

    ZHANG Sumin, ZHU Yongquan, GAO Yan, et al. Experimental investigation on rheological properties of completely weathered granite[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(4): 904 − 911. (in Chinese with English abstract)

    [4] 颜波,汤连生,胡辉,等. 花岗岩风化土崩岗破坏机理分析[J]. 水文地质工程地质,2009,36(6):68 − 71. [YAN Bo,TANG Liansheng,HU Hui,et al. The mechanism of disintegration damage of granite weathered soil[J]. Hydrogeology & Engineering Geology,2009,36(6):68 − 71. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-3665.2009.06.015

    YAN Bo, TANG Liansheng, HU Hui, et al. The mechanism of disintegration damage of granite weathered soil[J]. Hydrogeology & Engineering Geology, 2009, 36(6): 68 − 71. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2009.06.015

    [5] 王清,唐大雄,张庆云,等. 中国东部花岗岩残积土物质成分和结构特征的研究[J]. 长春地质学院学报,1991,21(1):73 − 81. [WANG Qing,TANG Daxiong,ZHANG Qingyun,et al. A study on the structure and composition of granite residual soil in the Eastern China[J]. Journal of Jilin University (Earth Science Edition),1991,21(1):73 − 81. (in Chinese with English abstract)]

    WANG Qing, TANG Daxiong, ZHANG Qingyun, et al. A study on the structure and composition of granite residual soil in the Eastern China[J]. Journal of Jilin University (Earth Science Edition), 1991, 21(1): 73 − 81. (in Chinese with English abstract)

    [6] 戴航,晏鄂川,谭延嗣,等. 通城花岗岩残积土的物理力学特性及工程安全性对比研究[J]. 安全与环境工程,2020,27(2):132 − 139. [DAI Hang,YAN Echuan,TAN Yansi,et al. Comparison of physical mechanics and engineering safety characteristics of granite residual soil in Tongcheng County[J]. Safety and Environmental Engineering,2020,27(2):132 − 139. (in Chinese with English abstract)]

    DAI Hang, YAN Echuan, TAN Yansi, et al. Comparison of physical mechanics and engineering safety characteristics of granite residual soil in Tongcheng County[J]. Safety and Environmental Engineering, 2020, 27(2): 132 − 139. (in Chinese with English abstract)

    [7]

    LU Yiwei,SHI Yujie,CHEN Bin,et al. Structural damage characteristics and mechanism of granite residual soil[J]. Applied Rheology,2024,34(1):20240011. DOI: 10.1515/arh-2024-0011

    [8] 王深法,王援高,胡珍珍. 浙江山地滑坡现状及其成因[J]. 山地学报,2000,18(4):373 − 376. [WANG Shenfa,WANG Yuangao,HU Zhenzhen. Actuality of hill sliding and its cause in the mountainous region of Zhejiang Province[J]. Journal of Mountain Research,2000,18(4):373 − 376. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2000.04.016

    WANG Shenfa, WANG Yuangao, HU Zhenzhen. Actuality of hill sliding and its cause in the mountainous region of Zhejiang Province[J]. Journal of Mountain Research, 2000, 18(4): 373 − 376. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2000.04.016

    [9] 詹良通,李鹤,陈云敏,等. 东南沿海残积土地区降雨诱发型滑坡预报雨强-历时曲线的影响因素分析[J]. 岩土力学,2012,33(3):872 − 880. [ZHAN Liangtong,LI He,CHEN Yunmin,et al. Parametric analyses of intensity-duration curve for predicting rainfall-induced landslides in residual soil slope in southeastern coastal areas of China[J]. Rock and Soil Mechanics,2012,33(3):872 − 880. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2012.03.035

    ZHAN Liangtong, LI He, CHEN Yunmin, et al. Parametric analyses of intensity-duration curve for predicting rainfall-induced landslides in residual soil slope in southeastern coastal areas of China[J]. Rock and Soil Mechanics, 2012, 33(3): 872 − 880. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2012.03.035

    [10]

    BAI Huilin,FENG Wenkai,YI Xiaoyu,et al. Group-occurring landslides and debris flows caused by the continuous heavy rainfall in June 2019 in Mibei Village,Longchuan County,Guangdong Province,China[J]. Natural Hazards,2021,108(3):3181 − 3201. DOI: 10.1007/s11069-021-04819-1

    [11]

    BAI Huilin,FENG Wenkai,LI Shuangquan,et al. Flow-slide characteristics and failure mechanism of shallow landslides in granite residual soil under heavy rainfall[J]. Journal of Mountain Science,2022,19(6):1541 − 1557. DOI: 10.1007/s11629-022-7315-8

    [12]

    SEGUÍ C,RATTEZ H,VEVEAKIS M. On the stability of deep-seated landslides. The cases of vaiont (Italy) and shuping (Three Gorges Dam,China)[J]. Journal of Geophysical Research:Earth Surface,2020,125(7):e2019JF005203. DOI: 10.1029/2019JF005203

    [13] 赵建军,王思敬,尚彦军,等. 香港全风化花岗岩饱和直剪试验中的剪胀问题[J]. 工程地质学报,2005,13(1):44 − 48. [ZHAO Jianjun,WANG Sijing,SHANG Yanjun,et al. Dilatation in direct shear tests of Hong Kong completely decomposed granite (cdg)[J]. Journal of Engineering Geology,2005,13(1):44 − 48. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2005.01.007

    ZHAO Jianjun, WANG Sijing, SHANG Yanjun, et al. Dilatation in direct shear tests of Hong Kong completely decomposed granite (cdg)[J]. Journal of Engineering Geology, 2005, 13(1): 44 − 48. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2005.01.007

    [14] 尚彦军,岳中琦,赵建军,等. 全风化花岗岩抗剪强度试验结果对比及影响因素分析[J]. 工程地质学报,2004,12(2):199 − 207. [SHANG Yanjun,YUE Zhongqi,ZHAO Jianjun,et al. Comparison of shearing strengths of the completely decomposed granite and analysis of contributing factors[J]. Journal of Engineering Geology,2004,12(2):199 − 207. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2004.02.015

    SHANG Yanjun, YUE Zhongqi, ZHAO Jianjun, et al. Comparison of shearing strengths of the completely decomposed granite and analysis of contributing factors[J]. Journal of Engineering Geology, 2004, 12(2): 199 − 207. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2004.02.015

    [15] 龙志东,王中文,史斌,等. 花岗岩残积土抗剪强度及其影响因素试验[J]. 长沙理工大学学报(自然科学版),2016,13(3):25 − 31. [LONG Zhidong,WANG Zhongwen,SHI Bin,et al. Experimental research for shear strength and its influencing factors of granite residual soil[J]. Journal of Changsha University of Science & Technology (Natural Science),2016,13(3):25 − 31. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-9331.2016.03.005

    LONG Zhidong, WANG Zhongwen, SHI Bin, et al. Experimental research for shear strength and its influencing factors of granite residual soil[J]. Journal of Changsha University of Science & Technology (Natural Science), 2016, 13(3): 25 − 31. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-9331.2016.03.005

    [16] 许旭堂,简文彬,柳侃. 含水率和干密度对残积土抗剪强度参数的影响[J]. 地下空间与工程学报,2015,11(2):364 − 369. [XU Xutang,JIAN Wenbin,LIU Kan. The influence of water content and dry density on shear strength parameters of residual soil[J]. Chinese Journal of Underground Space and Engineering,2015,11(2):364 − 369. (in Chinese with English abstract)]

    XU Xutang, JIAN Wenbin, LIU Kan. The influence of water content and dry density on shear strength parameters of residual soil[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(2): 364 − 369. (in Chinese with English abstract)

    [17] 郑武略,袁文俊,张富春,等. 卸荷条件下红层花岗岩残积土力学特性试验研究[J/OL]. 岩土工程技术. [2024−12−28](2024-12-18). [ZHENG Wulue,YUAN Wenjun,ZHANG Fuchun,et al. Mechanical properties of redbed granite residual soil under unloading conditions[J/OL]. Geotechnical Technology,1 − 9. [2024−12−28](2024-12-18). http://kns.cnki.net/kcms/detail/11.3813.TU.20241216.1509.004.html. (in Chinese with English abstract)]

    ZHENG Wulue, YUAN Wenjun, ZHANG Fuchun, et al. Mechanical properties of redbed granite residual soil under unloading conditions[J/OL]. Geotechnical Technology, 1 − 9. [2024−12−28](2024-12-18). http://kns.cnki.net/kcms/detail/11.3813.TU.20241216.1509.004.html. (in Chinese with English abstract)

    [18] 马勤国,郭皓公,罗晓晓. 非饱和花岗岩残积土的剪切特性与抗剪强度分析[J]. 华南理工大学学报(自然科学版),2024,52(11):55 − 68. [MA Qinguo,GUO Haogong,LUO Xiaoxiao. Analysis on shear characteristics and shear strength of unsaturated granite residual soil[J]. Journal of South China University of Technology (Natural Science Edition),2024,52(11):55 − 68. (in Chinese with English abstract)]

    MA Qinguo, GUO Haogong, LUO Xiaoxiao. Analysis on shear characteristics and shear strength of unsaturated granite residual soil[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(11): 55 − 68. (in Chinese with English abstract)

    [19] 陈晓平,周秋娟,蔡晓英. 高液限花岗岩残积土的物理特性和剪切特性[J]. 岩土工程学报,2011,33(6):901 − 908. [CHEN Xiaoping,ZHOU Qiujuan,CAI Xiaoying. Physical properties and shear strength characteristics of high liquid limit granite residual soil[J]. Chinese Journal of Geotechnical Engineering,2011,33(6):901 − 908. (in Chinese with English abstract)]

    CHEN Xiaoping, ZHOU Qiujuan, CAI Xiaoying. Physical properties and shear strength characteristics of high liquid limit granite residual soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 901 − 908. (in Chinese with English abstract)

    [20]

    HU Bowen,HU Qizhi,LIU Yiming,et al. Research on the improvement of granite residual soil caused by fly ash and its slope stability under rainfall conditions[J]. Applied Sciences,2024,14(9):3734. DOI: 10.3390/app14093734

    [21] 路昌明,王祚鹏,吴靓,等. 基于环剪试验的蠕变型滑坡滑带力学性质——以甘肃舟曲地区锁儿头滑坡为例[J]. 地球科学与环境学报,2024,46(5):677 − 688. [LU Changming,WANG Zuopeng,WU Liang,et al. Mechanical properties of creep-type landslide slip zone based on ring shear test:A case study of Suo’ertou landslide in Zhouqu area of Gansu,China[J]. Journal of Earth Sciences and Environment,2024,46(5):677 − 688. (in Chinese with English abstract)]

    LU Changming, WANG Zuopeng, WU Liang, et al. Mechanical properties of creep-type landslide slip zone based on ring shear test: A case study of Suo’ertou landslide in Zhouqu area of Gansu, China[J]. Journal of Earth Sciences and Environment, 2024, 46(5): 677 − 688. (in Chinese with English abstract)

    [22] 洪勇,孙涛,栾茂田,等. 土工环剪仪的开发及其应用研究现状[J]. 岩土力学,2009,30(3):628 − 634. [HONG Yong,SUN Tao,LUAN Maotian,et al. Development and application of geotechnical ring shear apparatus:An overview[J]. Rock and Soil Mechanics,2009,30(3):628 − 634. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2009.03.009

    HONG Yong, SUN Tao, LUAN Maotian, et al. Development and application of geotechnical ring shear apparatus: An overview[J]. Rock and Soil Mechanics, 2009, 30(3): 628 − 634. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2009.03.009

    [23] 王振涛. 滑带土长距离剪切强度及对滑坡启动的影响[J]. 人民长江,2015,46(9):51 − 53. [WANG Zhentao. Long- distance shear strength of slide- zone soil and its effect on landslide initiation[J]. Yangtze River,2015,46(9):51 − 53. (in Chinese with English abstract)]

    WANG Zhentao. Long- distance shear strength of slide- zone soil and its effect on landslide initiation[J]. Yangtze River, 2015, 46(9): 51 − 53. (in Chinese with English abstract)

    [24] 吴迪,简文彬,徐超. 残积土抗剪强度的环剪试验研究[J]. 岩土力学,2011,32(7):2045 − 2050. [WU Di,JIAN Wenbin,XU Chao. Research on shear strength of residual soils by ring shear tests[J]. Rock and Soil Mechanics,2011,32(7):2045 − 2050. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2011.07.022

    WU Di, JIAN Wenbin, XU Chao. Research on shear strength of residual soils by ring shear tests[J]. Rock and Soil Mechanics, 2011, 32(7): 2045 − 2050. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2011.07.022

    [25]

    WANG Tengfei,YIN Kunlong,LI Yuanyao,et al. Interpretation of the reactivation of slow-moving landslides based on ring shear tests and monitoring[J]. Natural Hazards,2022,114(3):2991 − 3013. DOI: 10.1007/s11069-022-05502-9

    [26]

    RAJ BHAT D. Shear rate effect on residual strength of typical clay soils[J]. Innovative Infrastructure Solutions,2021,7(1):36.

    [27]

    WANG Yanchao,CONG Lu. Effects of water content and shearing rate on residual shear stress[J]. Arabian Journal for Science and Engineering,2019,44(10):8915 − 8929. DOI: 10.1007/s13369-019-03922-7

    [28]

    ZHU Rongsen,XIE Wanli,LIU Qiqi,et al. Shear behavior of sliding zone soil of loess landslides via ring shear tests in the South Jingyang Plateau[J]. Bulletin of Engineering Geology and the Environment,2022,81(6):244. DOI: 10.1007/s10064-022-02719-7

    [29]

    YUAN Weina,FAN Wen,JIANG Chengcheng,et al. Experimental study on the shear behavior of loess and paleosol based on ring shear tests[J]. Engineering Geology,2019,250:11 − 20. DOI: 10.1016/j.enggeo.2019.01.007

    [30] 中华人民共和国建设部. 岩土工程勘察规范:GB 50021—2001[S]. 北京:中国建筑工业出版社,2004. [Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering:GB 50021—2001[S]. Beijing:China Architecture & Building Press,2004. (in Chinese)]

    Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021—2001[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)

    [31] 吴仕川. 花岗岩风化带的野外划分方法[J]. 土工基础,2013,27(6):105 − 106. [WU Shichuan. Field classification of granite weathering zone[J]. Soil Engineering and Foundation,2013,27(6):105 − 106. (in Chinese with English abstract)]

    WU Shichuan. Field classification of granite weathering zone[J]. Soil Engineering and Foundation, 2013, 27(6): 105 − 106. (in Chinese with English abstract)

    [32] 陈敬业,王钧,宫清华,等. 植被增渗效应对花岗岩残积土浅层滑坡的影响机理研究[J]. 水文地质工程地质,2023,50(3):115 − 124. [CHEN Jingye,WANG Jun,GONG Qinghua,et al. Influence mechanism of vegetation infiltration effect on shallow landslides of granite residual soil[J]. Hydrogeology & Engineering Geology,2023,50(3):115 − 124. (in Chinese with English abstract)]

    CHEN Jingye, WANG Jun, GONG Qinghua, et al. Influence mechanism of vegetation infiltration effect on shallow landslides of granite residual soil[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 115 − 124. (in Chinese with English abstract)

    [33] 孙强,张泰丽,伍剑波,等. 植被对台风暴雨型滑坡发育的促进作用[J]. 中国地质调查,2022,9(4):66 − 73. [SUN Qiang,ZHANG Taili,WU Jianbo,et al. Promoting effect of vegetation on the landslide induced by typhoon rainstorm[J]. Geological Survey of China,2022,9(4):66 − 73. (in Chinese with English abstract)]

    SUN Qiang, ZHANG Taili, WU Jianbo, et al. Promoting effect of vegetation on the landslide induced by typhoon rainstorm[J]. Geological Survey of China, 2022, 9(4): 66 − 73. (in Chinese with English abstract)

    [34]

    KIMURA S,NAKAMURA S,VITHANA S B,et al. Shearing rate effect on residual strength of landslide soils in the slow rate range[J]. Landslides,2014,11(6):969 − 979. DOI: 10.1007/s10346-013-0457-6

    [35]

    LI Y R,WEN B P,AYDIN A,et al. Ring shear tests on slip zone soils of three giant landslides in the Three Gorges Project area[J]. Engineering Geology,2013,154:106 − 115. DOI: 10.1016/j.enggeo.2012.12.015

    [36]

    WANG Gonghui,SUEMINE A,SCHULZ W H. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides,Tokushima Prefecture,Japan[J]. Earth Surface Processes and Landforms,2010,35(4):407 − 416. DOI: 10.1002/esp.1937

    [37]

    VALLEJO L E. Interpretation of the limits in shear strength in binary granular mixtures[J]. Canadian Geotechnical Journal,2001,38(5):1097 − 1104. DOI: 10.1139/t01-029

    [38]

    SADREKARIMI A,OLSON S M. Shear band formation observed in ring shear tests on sandy soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(2):366 − 375. DOI: 10.1061/(ASCE)GT.1943-5606.0000220

    [39]

    DOU Hongqiang,XIE Senhua,CHEN Feng,et al. Study on shear characteristics and a mechanics model of granite residual soil–rock interface[J]. Bulletin of Engineering Geology and the Environment,2023,82(6):212. DOI: 10.1007/s10064-023-03220-5

    [40]

    TANG Chaosheng,SHI Bin,LIU Chun,et al. Experimental characterization of shrinkage and desiccation cracking in thin clay layer[J]. Applied Clay Science,2011,52(1/2):69 − 77.

    [41]

    TAKE W A,BOLTON M D. Seasonal ratcheting and softening in clay slopes,leading to first-time failure[J]. Géotechnique,2011,61(9):757 − 769.

    [42]

    MORBIDELLI R,CORRADINI C,SALTALIPPI C,et al. Initial soil water content as input to field-scale infiltration and surface runoff models[J]. Water Resources Management,2012,26(7):1793 − 1807. DOI: 10.1007/s11269-012-9986-3

    [43]

    DENG Yusong,DUAN Xiaoqian,DING Shuwen,et al. Suction stress characteristics in granite red soils and their relationship with the collapsing gully in South China[J]. Catena,2018,171:505 − 522. DOI: 10.1016/j.catena.2018.07.043

    [44]

    MA Penghui,PENG Jianbing,NAN Yalin,et al. The shear behavior of the slip zone loess and landslide mechanism[J]. Journal of Asian Earth Sciences,2023,257:105833. DOI: 10.1016/j.jseaes.2023.105833

    [45] 陈剑平,刘经,王清,等. 含水率对分散性土抗剪强度特性影响的微观解释[J]. 吉林大学学报(地球科学版),2021,51(3):792 − 803. [CHEN Jianping,LIU Jing,WANG Qing,et al. Microscopic interpretation of water content influence on shear strength of dispersive soil[J]. Journal of Jilin University (Earth Science Edition),2021,51(3):792 − 803. (in Chinese with English abstract)]

    CHEN Jianping, LIU Jing, WANG Qing, et al. Microscopic interpretation of water content influence on shear strength of dispersive soil[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 792 − 803. (in Chinese with English abstract)

    [46] 刘寒冰,张互助,王静. 冻融及含水率对压实黏质土力学性质的影响[J]. 岩土力学,2018,39(1):158 − 164. [LIU Hanbing,ZHANG Huzhu,WANG Jing. Effect of freeze-thaw and water content on mechanical properties of compacted clayey soil[J]. Rock and Soil Mechanics,2018,39(1):158 − 164. (in Chinese with English abstract)]

    LIU Hanbing, ZHANG Huzhu, WANG Jing. Effect of freeze-thaw and water content on mechanical properties of compacted clayey soil[J]. Rock and Soil Mechanics, 2018, 39(1): 158 − 164. (in Chinese with English abstract)

    [47] 黄淙葆,代张音,高威挺,等. 贵州公路旁边坡滑带土抗剪强度特性研究[J]. 地质与资源,2023,32(3):366 − 372. [HUANG Congbao,DAI Zhangyin,GAO Weiting,et al. Shear strength characteristics of soil in the sliding zone on highway slope in Guizhou province[J]. Geology and Resources,2023,32(3):366 − 372. (in Chinese)]

    HUANG Congbao, DAI Zhangyin, GAO Weiting, et al. Shear strength characteristics of soil in the sliding zone on highway slope in Guizhou province[J]. Geology and Resources, 2023, 32(3): 366 − 372. (in Chinese)

    [48]

    DAI Mingjie,CUI Deshan,CHEN Qiong,et al. Reactivated mechanism of a slow-moving landslide with two shear zones based on ring shear test and in situ monitoring[J]. Landslides,2024,21(11):2617 − 2634. DOI: 10.1007/s10346-024-02320-x

    [49]

    LI Zhe,LI Juqiang,HAN Meng,et al. Investigating the shear strength characteristics of slip zone soil based on in situ multiple shear tests[J]. KSCE Journal of Civil Engineering,2023,27(9):3793 − 3807. DOI: 10.1007/s12205-023-2095-4

    [50]

    XIAO Yang,YUAN Zhengxin,DESAI C S,et al. Effects of load duration and stress level on deformation and particle breakage of carbonate sands[J]. International Journal of Geomechanics,2020,20(7):06020014.

    [51]

    YU Fangwei. Particle breakage and the drained shear behavior of sands[J]. International Journal of Geomechanics,2017,17(8):04017041.

    [52]

    LAI Zhiqiang,VALLEJO L E,ZHOU Wei,et al. Collapse of granular columns with fractal particle size distribution:Implications for understanding the role of small particles in granular flows[J]. Geophysical Research Letters,2017,44(24):12181 − 9.

    [53]

    LIN Qiwen,CHENG Qiangong,LI Kun,et al. Contributions of rock mass structure to the emplacement of fragmenting rockfalls and rockslides:Insights from laboratory experiments[J]. Journal of Geophysical Research (Solid Earth),2020,125(4):e2019JB019296. DOI: 10.1029/2019JB019296

    [54]

    DAVIES T R H. Spreading of rock avalanche debris by mechanical fluidization[J]. Rock Mechanics,1982,15(1):9 − 24. DOI: 10.1007/BF01239474

图(19)  /  表(3)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  4
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-29
  • 修回日期:  2025-03-01
  • 网络出版日期:  2025-03-17

目录

/

返回文章
返回