Study on the sensitivity of disaster-breeding conditions for rainfall-induced cluster landslides in granite areas: Case study of Beiliu City in southeast Guangxi
-
摘要:
近年来,极端强降雨在我国南方全强风化花岗岩地区诱发了多起群发性滑坡事件,造成了严重的损失。由于区域性的极端气候、厚层风化花岗岩与不规范切坡等因素,群发滑坡频频发生。但滑坡发育特征及孕灾条件尚不明确,给地质灾害监测和防治带来挑战。文章以广西北流市花岗岩地区为研究区,采用现场调查、遥感解译与XG-boost模型,探讨了降雨型群发滑坡的发育特征、时空分布规律、破坏模式和孕灾条件敏感性。结果表明,区内两起暴雨事件共引发滑坡
1670 处,以中小规模为主,占总数量的72.57%。群发滑坡集中发育于高程<300 m、坡度>75°的切坡地形下,表现出分布范围广、规模小、数量多、即雨即滑、爆发性强的特点,主要形成剪切滑移型、滑塌型及流滑型(碎屑流)三类破坏模式。距居民点距离(概率贡献为22.22%)、坡度(15.25%)、高程(14.47%)及植被覆盖度(12.01%)是诱发花岗岩地区降雨型群发滑坡的主要孕灾条件。本研究可为花岗岩地区降雨型群发滑坡的研究提供依据,在防控减灾方面具有重要意义。Abstract:In recent years, extreme heavy rainfall has triggered numerous cluster landslide events in the fully weathered granite areas of southern China, causing severe losses. Factors such as regional extreme weather, thick weathered granite layers, and non-standard slope cutting practices have led to frequent occurences of cluster landslides. However, the developmental characteristics and conditions conductive to these landslides are not well-understood, posing challenges to geological disaster monitoring and prevention. This paper focuses on the granite area of Beiliu City in Guangxi as the study area. The study discuss the developmental characteristics, spatiotemporal distribution patterns, failure modes, and sensitivity of disaster-breeding conditions of rainfall-induced cluster landslides through an integrated approach combining field investigations, remote sensing interpretation, and XG-boost modeling. The results show that two rainstorm events in the area triggered 1,670 landslides, mainly of small to medium scale, accounting for 72.57% of the total occurrences. The cluster landslides primarily developed in cut slopes with elevations less than 300 meters and slope angles greater than 75°, exhibiting characteristics of wide spatial distribution, small individual scale, high frequency, immediate response to rainfall, and strong explosiveness. Three main types of failure modes were identified: shear-sliding, toppling-sliding, and flow-sliding (debris flow). The primary disaster-breeding conditions were identified as distance to residential areas (proportion contribution of 22.22%), slope (15.25%), elevation (14.47%), and normalized difference vegetation index (12.01%) in the granite areas. This study provides a basis for the research of rainfall-induced cluster landslides in granite areas and is of great significance in disaster prevention and mitigation.
-
Keywords:
- granite area /
- extreme rainfall /
- cluster landslides /
- failure modes /
- disaster-pregnant conditions
-
0. 引 言
近年来,中国建设开发了数十座软岩露天煤矿,在开采过程中采场及排土场均发生过一定规模的滑坡,对于采场底帮顺倾软岩边坡与顺倾软基底内排土场边坡滑坡灾害尤为严重。滑坡灾害直接影响剥采排工程的发展,造成人员伤害和设备损毁及地貌景观破坏,严重制约着露天矿的安全高效生产[1-2],边坡稳定性治理问题已成为边坡工程领域亟待解决的难题之一。
目前国内外学者们应用不同理论对其展开大量有意义的研究,成果丰硕。王东等[3]综合运用极限平衡法及数值模拟法,分析了不同压帮高度下边坡稳定性变化规律,提出了逆倾软岩边坡变形的治理措施;刘子春等[4]以扎尼河露天矿为背景,通过分析扩帮、内排压角等治理措施的基础上,提出了一种条带式开采技术的边坡治理方案;陈毓等[5]采用ANSYS对黑山露天矿内排土场边坡稳定性和破坏机理进行了分析,揭示了内排土场滑坡模式为“坐落滑移式”滑动,运用削坡治理技术来保证内排土场稳定性;唐文亮等[6]系统分析了露天矿内排土场滑坡影响因素,提出了预留煤柱的滑坡治理方法;李伟[7]揭示了阴湾排土场边坡变形破坏机理并结合数值模拟法和极限平衡法,分析了内排不同压脚方案下边坡稳定性,提出了阴湾排土场滑坡治理措施;王刚等[8]基于有限元数值模拟法和极限平衡法,分析了边坡破坏机理并对边坡进行了稳定性计算,提出了削坡减载的治理措施。软岩露天煤矿采场边坡稳定性治理最经济有效的方式是内排追踪压帮,内排土场稳定是前提,但现有方法均是单一针对采场或排土场边坡稳定性分析和治理,未能同时兼顾采场与内排土场边坡的稳定性,对工程实际的指导性不强。
本文以贺斯格乌拉南露天煤矿首采区南帮为工程背景,在兼顾采场与内排土场边坡稳定性的基础上,提出了露天煤矿顺倾软岩边坡内排追踪压帮治理工程,为深入研究顺倾软岩露天煤矿边坡稳定性治理方法提供新的参考。
1. 边坡工程地质条件分析
贺斯格乌拉南露天煤矿设计生产能力为15 Mt/a,首采区南帮地层自上而下主要发育第四系、2煤组、2煤组与3煤组间夹石、3煤组、3煤组底板和盆地基底火山岩,含煤岩系主要以泥岩为主,全区可采的有2-1、3-1煤层,第四系以粉砂质黏土为主,局部夹黄-浅灰色细砂及含砾粗砂层,岩性较差,首采区土层赋存较薄,且其地层中多赋存软弱夹层,主要以3-1、3-4煤底板弱层主,属于典型的顺倾软岩边坡,岩土体物理力学指标如表1所示,典型工程地质剖面如图1所示。
表 1 岩土体物理力学指标Table 1. Physical and mechanical parameters of rock mass岩体名称 内摩擦角/(°) 黏聚力/kPa 容重/(kN·m−3) 弹性模量/MPa 泊松比 砂岩 26.00 65 19.6 35 0.42 粉质黏土 14.06 22 19.8 46 0.38 煤 29.00 85 12.1 40 0.35 泥岩 20.00 40 19.4 75 0.36 排弃物 14.49 20 19.0 60 0.40 弱层 6.00 0 19.1 20 0.42 回填岩石 20.00 40 19.0 − − 2. 采场底帮浅层边坡二维稳定性分析
影响顺倾软岩露天煤矿采场边坡稳定性的主控因素是弱层及其暴露长度,采用追踪压帮方式治理该类边坡稳定性时,可忽略软弱夹层为底界面的切层-顺层组合滑动模式[9-10],仅考虑剪胀破坏模式。由于贺斯格乌拉南露天矿边坡体内赋存软弱夹层,主要以3-1、3-4煤底板弱层为主,顺倾角度大,岩质松软,对于此类边坡,浅部可通过平盘参数进行重新设计,深部必须利用三维效应,实现稳定性控制。可采用刚体极限平衡法中的剩余推力法对浅层边坡进行稳定性计算[11-12]。该方法的优点是可以用来计算求解给定任意边坡潜在滑面的稳定系数,并且可以考虑在复杂外力作用下的不同抗剪参数滑动岩体对边坡稳定性的影响。稳定系数求解公式为:
$$ {P_i} = \frac{{{W_i}\sin {\alpha _i}({W_i}\sin {\alpha _i}\tan {\varphi _i}) + {C_i}{L_i}}}{{{F_{\rm{s}}}}} + {\phi _i}{p_{i - 1}} $$ (1) $$ {\phi _i} = \frac{{\cos ({\alpha _{i - 1}} - {\alpha _i})\tan {\varphi _i}\sin ({\alpha _{i - 1}} - {\alpha _i})}}{{{F_{\rm{s}}}}} $$ (2) 式中:
${P_i}$ ——第$i$ 条块的剩余推力/kN;$ {W_i} $ ——第$i$ 条块的重量/(N·m−3);$\alpha_i$ ——第$i$ 条块的滑面倾角/(°);${\varphi _i}$ ——第$i$ 条块的推力传递系数;${C_i}$ ——第$i$ 条块的滑面黏聚力/kPa;${L_i}$ ——第$i$ 条块的底面长度/m;${\phi _i}$ ——第$i$ 条块的滑面摩擦角/(°);${F_{\rm{s}}}$ ——稳定性系数。依据《煤炭工业露天矿设计规范》(GB 50197―2015)[13]综合考虑贺斯格乌拉南露天煤矿首采区南帮边坡服务年限、地质条件与力学参数的可靠性、潜在滑坡危害程度等,确定安全储备系数为1.2。
由于南帮压覆大量煤层,在保证安全前提下,为实现最大限度回采压覆的煤炭资源,需要对边坡形态重新设计。本文选取典型剖面为研究对象,浅层边坡形态按照40 m运输平盘、15 m保安平盘进行设计,深部利用横采内排三维支挡效应回采采场底帮深部压覆煤炭资源。通过上述情况对浅层边坡进行了分析,边坡稳定性计算结果如图2所示。
分析图2可知,浅部边坡形态可按照40 m运输平盘、15 m保安平盘进行设计,由于弱层上部存在煤岩支挡,边坡潜在滑坡模式为以圆弧为侧界面、3-1煤底板弱层为底界面、沿边坡坡脚处剪出,此时,浅层边坡能满足安全储备系数1.2的要求。
3. 采场底帮深部边坡稳定性三维效应分析
基于浅层边坡二维稳定性分析结果可知,实现深部稳定性控制,必须借助横采工作帮与内排土场的双重支挡作用进行压煤回采,因此提出了利用横采内排三维支挡效应回采采场深部压覆煤炭资源[14]。本文借助FLAC3D数值模拟软件,分析不同降深角度和不同追踪距离条件下的边坡三维稳定性,以期获得最优的边坡空间形态参数。
(1) 模型的建立
考虑到FLAC3D建模较为复杂,采用CAD与Rhino相结合的方法,首先在CAD中对剖面进行整理,然后在Rhino软件中进行模型成体与网格划分的处理,并用Griddle将网格导出,生成精细的六面体网格模型[15 − 17],最后导入采用于FLAC3D进行数值模拟计算。为尽可能凸显边坡稳定性的三维效应,以南帮断面形态设计边坡为数值模拟对象,共计建立15种工况模型,模型如图3,追踪距离分别为50,100,200,300,400 m。为避免边界效应,在模型的底部和两侧分别施加水平和垂直位移约束,加载方式为重力加载[18]。
(2) 计算结果分析
由于计算结果过多,本文仅列举降深角度α=29°,追踪距离50,200,400 m工况下边坡位移云图(切割位置为沿模型走向中间处),如图4所示。南帮边坡三维稳定性计算结果如图5所示。
分析图4、图5可知,追踪距离50 m时,三维支挡效应显著,边坡深部位移明显小于上部,发生以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层-剪出滑动,稳定系数大于1.2。当追踪距离大于50 m时,通过对比分析不同深部边坡角(α)条件下的数值模拟结果可知,深部边坡角对边坡稳定性系数影响较小,随着追踪距离的增加,边坡的破坏模式过渡为以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层滑动,并且此时边坡的稳定性不满足安全储备系数1.2要求。因此,内排土场追踪距离需控制在50 m以内,深部边坡角设计为29°。
4. 内排土场压帮边坡稳定性分析与治理
露天矿内排土场边坡稳定的主控因素是软弱基底,软弱基底分为自身软弱岩土层和受外界条影响转变为软弱岩土层2种类型。排土场下沉是软弱基底内排土场失稳的特征,主要现象是含有纵向强烈挤压区,基底上部岩层隆起,地面出现滑坡等[19 − 21]。在保证采场南帮安全的前提下降深至3-1煤底板,须借助横采工作帮与内排土场的双重支挡作用,内排土场稳定是前提[22]。由于内排土场基底为3-1、3-4煤底板弱层,顺倾角度较大,按照内排土场设计参数,其稳定性无法满足安全储备系数的要求[23]。从提供基底强度角度出发,采用破坏弱层回填岩石的方式提高内排土场边坡稳定性。按照排土台阶高度24 m、平盘宽度60 m、坡面角33°对不同内排压帮标高边坡稳定性进行试算,确定内排最小压帮标高为+844水平,因此本文分析了内排基于+844水平的压帮高度下内排土场基底不同的处理方式时的边坡稳定性计算结果如图6—7所示,边坡稳定性与破坏弱层回填岩石范围关系曲线如图8所示。
分析图6—图8可知,当内排基于+844的压帮高度,内排基底3-1底板弱层完全破坏并回填岩石,破坏3-4底板弱层并回填岩石倾向长度达60 m时,内排土场及其与采场南帮复合边坡稳定性均可满足安全系数1.2要求。边坡稳定性随破坏底板弱层回填岩石范围的增大呈正指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。采用破坏弱层回填岩石的基底处理方法,既保证了边坡的稳定又规避了过渡处理基底的生产成本。
5. 结 论
(1) 弱层暴露长度是露天矿顺倾软岩边坡稳定性的主控因素,据此提出了露天矿顺倾软岩边坡内排追踪压帮治理工程,可最大限度的安全回收边坡压覆煤炭资源。
(2) 控制采场与内排土场间的追踪距离是改善边坡稳定性的有效途径。随着追踪距离的增加,边坡破坏模式从以圆弧为侧界面、弱层为底界面的切层-顺层-剪出滑动逐渐过渡为以圆弧为侧界面、弱层为底界面的切层-顺层滑动。
(3) 内排土场及其与采场构成的复合边坡稳定性随破坏底板弱层回填岩石范围的增大呈指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。
(4) 贺斯格乌拉南露天煤矿首采区南帮浅部边坡留设40 m运输平盘、15 m保安平盘,底帮深部边坡角29°,追踪距离控制在50 m之内时可满足安全要求;内排基底弱层完全破坏并回填岩石倾向长度60 m时可满足安全需求。
-
-
[1] 许强,徐繁树,蒲川豪,等. 2024年4月广东韶关江湾镇极端降雨诱发群发性滑坡初步分析[J]. 武汉大学学报(信息科学版),2024,49(8):1264 − 1274. [XU Qiang,XU Fanshu,PU Chuanhao,et al. Preliminary analysis of extreme rainfall-induced cluster landslides in Jiangwan township,Shaoguan,Guangdong,April 2024[J]. Geomatics and Information Science of Wuhan University,2024,49(8):1264 − 1274. (in Chinese with English abstract)] XU Qiang, XU Fanshu, PU Chuanhao, et al. Preliminary analysis of extreme rainfall-induced cluster landslides in Jiangwan township, Shaoguan, Guangdong, April 2024[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1264 − 1274. (in Chinese with English abstract)
[2] 陈博,张灿灿,李振洪,等. 福建龙岩市2024年“6•16”特大暴雨诱发滑坡发育特征及其调控因子分析[J]. 武汉大学学报(信息科学版),2024,49(11):2145 − 2155. [CHEN Bo,ZHANG Cancan,LI Zhenhong,et al. Developmental characteristics and controlling factors of landslides triggered by extreme rainfalls on 16 June 2024 in Longyan,Fujian Province[J]. Geomatics and Information Science of Wuhan University,2024,49(11):2145 − 2155. (in Chinese with English abstract)] CHEN Bo, ZHANG Cancan, LI Zhenhong, et al. Developmental characteristics and controlling factors of landslides triggered by extreme rainfalls on 16 June 2024 in Longyan, Fujian Province[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2145 − 2155. (in Chinese with English abstract)
[3] 何娜,潘宏坚,吴秋菊. 基于GIS的山地地质灾害气象预警研究——以广西陆川县为例[J]. 南方自然资源,2022(10):40 − 47. [HE Na,PAN Hongjian,WU Qiuju. Study on meteorological early warning of geological disasters in mountainous areas based on GIS:A case study of Luchuan County,Guangxi[J]. NanFang ZiRan ZiYuan,2022(10):40 − 47. (in Chinese with English abstract)] HE Na, PAN Hongjian, WU Qiuju. Study on meteorological early warning of geological disasters in mountainous areas based on GIS: A case study of Luchuan County, Guangxi[J]. NanFang ZiRan ZiYuan, 2022(10): 40 − 47. (in Chinese with English abstract)
[4] YANG Hongjuan,YANG Taiqiang,ZHANG Shaojie,et al. Rainfall-induced landslides and debris flows in Mengdong Town,Yunnan Province,China[J]. Landslides,2020,17(4):931 − 941. DOI: 10.1007/s10346-019-01336-y
[5] ROY P,MARTHA T R,VINOD KUMAR K,et al. Cluster landslides and associated damage in the Dima Hasao District of Assam,India due to heavy rainfall in May 2022[J]. Landslides,2023,20(1):97 − 109. DOI: 10.1007/s10346-022-01977-6
[6] BENZ S A,BLUM P. Global detection of rainfall-triggered landslide clusters[J]. Natural Hazards and Earth System Sciences,2019,19(7):1433 − 1444. DOI: 10.5194/nhess-19-1433-2019
[7] 吴善百. 广西东南部花岗岩残积土降雨型滑坡的起动机理研究[D]. 南宁:广西大学,2020. [WU Shanbai. Study on starting mechanism of rainfall landslide in granite residual soil in southeast Guangxi[D]. Nanning:Guangxi University,2020. (in Chinese with English abstract)] WU Shanbai. Study on starting mechanism of rainfall landslide in granite residual soil in southeast Guangxi[D]. Nanning: Guangxi University, 2020. (in Chinese with English abstract)
[8] 翁峻择. 桂东南地区压实花岗岩风化土崩解特性研究[D]. 桂林:桂林理工大学,2023. [WENG Junze. Study on disintegration characteristics of compacted granite weathered soil in southeast Guangxi[D]. Guilin:Guilin University of Technology,2023. (in Chinese with English abstract)] WENG Junze. Study on disintegration characteristics of compacted granite weathered soil in southeast Guangxi[D]. Guilin: Guilin University of Technology, 2023. (in Chinese with English abstract)
[9] 白慧林. 花岗岩残积土滑坡降雨启动机理与预警模型研究[D]. 成都:成都理工大学,2022. [BAI Huilin. Study on rainfall initiation mechanism and early warning model of granite residual soil landslide[D]. Chengdu:Chengdu University of Technology,2022. (in Chinese with English abstract)] BAI Huilin. Study on rainfall initiation mechanism and early warning model of granite residual soil landslide[D]. Chengdu: Chengdu University of Technology, 2022. (in Chinese with English abstract)
[10] 陈立华,羊汉平,廖丽萍,等. 容县2010年6月滑坡灾害降雨阈值研究[J]. 自然灾害学报,2023,32(1):228 − 235. [CHEN Lihua,YANG Hanping,LIAO Liping,et al. Study on the rainfall threshold of the landslide disaster in Rong County in June 2010[J]. Journal of Natural Disasters,2023,32(1):228 − 235. (in Chinese with English abstract)] CHEN Lihua, YANG Hanping, LIAO Liping, et al. Study on the rainfall threshold of the landslide disaster in Rong County in June 2010[J]. Journal of Natural Disasters, 2023, 32(1): 228 − 235. (in Chinese with English abstract)
[11] TAN Delin,XU Xiaoliang,WANG Lehua,et al. Deformation evolution and failure mechanism of rainfall-induced granite residual soil landsliding event in Northern Guangdong,China[J]. Landslides,2025,22(3):925 − 941. DOI: 10.1007/s10346-024-02403-9
[12] 李荣华,江思义,李春玲,等. 基于GIS的北流市地质灾害气象预警研究[J]. 西部探矿工程,2024,36(7):13 − 15. [LI Ronghua,JIANG Siyi,LI Chunling,et al. Study on meteorological early warning of geological hazards in Beiliu City based on GIS[J]. West-China Exploration Engineering,2024,36(7):13 − 15. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-5716.2024.07.005 LI Ronghua, JIANG Siyi, LI Chunling, et al. Study on meteorological early warning of geological hazards in Beiliu City based on GIS[J]. West-China Exploration Engineering, 2024, 36(7): 13 − 15. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-5716.2024.07.005
[13] 吴秋菊,江思义,李春玲,等. 基于GIS的北流市地质灾害危险性分区评价研究[J]. 贵州地质,2023,40(1):20 − 25. [WU Qiuju,JIANG Siyi,LI Chunling,et al. Evaluation research of geological hazard division based on GIS in Beiliu City[J]. Guizhou Geology,2023,40(1):20 − 25. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-5943.2023.01.003 WU Qiuju, JIANG Siyi, LI Chunling, et al. Evaluation research of geological hazard division based on GIS in Beiliu City[J]. Guizhou Geology, 2023, 40(1): 20 − 25. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-5943.2023.01.003
[14] 李振洪,朱武,余琛,等. 影像大地测量学发展现状与趋势[J]. 测绘学报,2023,52(11):1805 − 1834. [LI Zhenhong,ZHU Wu,YU Chen,et al. Development status and trends of imaging geodesy[J]. Acta Geodaetica et Cartographica Sinica,2023,52(11):1805 − 1834. (in Chinese with English abstract)] DOI: 10.11947/j.AGCS.2023.20230003 LI Zhenhong, ZHU Wu, YU Chen, et al. Development status and trends of imaging geodesy[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1805 − 1834. (in Chinese with English abstract) DOI: 10.11947/j.AGCS.2023.20230003
[15] LIU Haizhi,XU Hui,BAO Hongjun,et al. Application of machine learning classification algorithm to precipitation-induced landslides forecasting[J]. Journal of Applied Meteorological Science,2022,33(3):282 − 292.
[16] 李立丰. 广西地区滑坡灾害的临界降雨量阈值研究[D]. 南宁:广西大学,2020. [LI Lifeng. Study on critical rainfall threshold of landslide disaster in Guangxi[D]. Nanning:Guangxi University,2020. (in Chinese with English abstract)] LI Lifeng. Study on critical rainfall threshold of landslide disaster in Guangxi[D]. Nanning: Guangxi University, 2020. (in Chinese with English abstract)
[17] 梁柱. 机器学习在浅层滑坡敏感性评价中的综合应用与研究[D]. 长春:吉林大学,2021. [LIANG Zhu. Comprehensive application and research of machine learning in sensitivity evaluation of shallow landslide[D]. Changchun:Jilin University,2021. (in Chinese with English abstract)] LIANG Zhu. Comprehensive application and research of machine learning in sensitivity evaluation of shallow landslide[D]. Changchun: Jilin University, 2021. (in Chinese with English abstract)
[18] 陈贺,付有旺. 贡山县进藏通道群发性滑坡地质特征与降雨阈值[J]. 岩石力学与工程学报,2024,43(增刊2):3861 − 3871. [CHEN He,FU Youwang. Geological feature and rainfall threshold of cluster landslides along roads toward Tibet in Gongshan County,Yunnan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(Sup 2):3861 − 3871. (in Chinese with English abstract)] CHEN He, FU Youwang. Geological feature and rainfall threshold of cluster landslides along roads toward Tibet in Gongshan County, Yunnan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(Sup 2): 3861 − 3871. (in Chinese with English abstract)
[19] 刘帅,王涛,曹佳文,等. 基于优化随机森林模型的降雨群发滑坡易发性评价——以西秦岭极端降雨事件为例[J]. 地质通报,2024,43(6):958 − 970. [LIU Shuai,WANG Tao,CAO Jiawen,et al. Susceptibility assessment of precipitation-induced mass landslides based on optimal random forest model:Taking the extreme precipitation event in western Qinling mountains as an example[J]. Geological Bulletin of China,2024,43(6):958 − 970. (in Chinese with English abstract)] DOI: 10.12097/gbc.2023.11.008 LIU Shuai, WANG Tao, CAO Jiawen, et al. Susceptibility assessment of precipitation-induced mass landslides based on optimal random forest model: Taking the extreme precipitation event in western Qinling mountains as an example[J]. Geological Bulletin of China, 2024, 43(6): 958 − 970. (in Chinese with English abstract) DOI: 10.12097/gbc.2023.11.008
[20] CHEN Tianqi,GUESTRIN C,CHEN Tianqi,et al. XGBoost[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13 - 17,2016,San Francisco,California,USA. ACM,2016:785-794.
[21] 赵楠,卢毅敏. 中国地表臭氧浓度估算及健康影响评估[J]. 环境科学,2022,43(3):1235 − 1245. [ZHAO Nan,LU Yimin. Estimation of surface ozone concentration and health impact assessment in China[J]. Environmental Science,2022,43(3):1235 − 1245. (in Chinese with English abstract)] ZHAO Nan, LU Yimin. Estimation of surface ozone concentration and health impact assessment in China[J]. Environmental Science, 2022, 43(3): 1235 − 1245. (in Chinese with English abstract)
[22] 刘云,康卉君. 江西崩塌滑坡泥石流灾害空间时间分布特征分析[J]. 中国地质灾害与防治学报,2020,31(4):107 − 112. [LIU Yun,KANG Huijun. Spatial-temporal distribution of landslide,rockfall and debris flow hazards in Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):107 − 112. (in Chinese with English abstract)] LIU Yun, KANG Huijun. Spatial-temporal distribution of landslide, rockfall and debris flow hazards in Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 107 − 112. (in Chinese with English abstract)
[23] 方宏宇. 广东龙川县“6•12” 群发型浅层滑坡发育特征及成因机理研究[D]. 成都:成都理工大学,2021. [FANG Hongyu. Study on the development characteristics and genetic mechanism of “6•12” group-type shallow landslide in Longchuan County,Guangdong Province[D]. Chengdu:Chengdu University of Technology,2021. (in Chinese with English abstract)] FANG Hongyu. Study on the development characteristics and genetic mechanism of “6•12” group-type shallow landslide in Longchuan County, Guangdong Province[D]. Chengdu: Chengdu University of Technology, 2021. (in Chinese with English abstract)
[24] 邓祖保,龚恩德. 山地公园群发地质灾害致灾因子分析及防治建议[J]. 地质灾害与环境保护,2024,35(3):55 − 60. [DENG Zubao,GONG Ende. Analysis of the factors inducing group geological disasters in a mountain park and suggestions for control measures[J]. Journal of Geological Hazards and Environment Preservation,2024,35(3):55 − 60. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-4362.2024.03.008 DENG Zubao, GONG Ende. Analysis of the factors inducing group geological disasters in a mountain park and suggestions for control measures[J]. Journal of Geological Hazards and Environment Preservation, 2024, 35(3): 55 − 60. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-4362.2024.03.008
[25] 穆启超,王万迁,王琦,等. 贵州松桃长冲组滑坡形成机理分析[J]. 中国地质灾害与防治学报,2023,34(3):40 − 47. [MU Qichao,WANG Wanqian,WANG Qi,et al. Analysis of the formation mechanism of landslide in Changchong group,Songtao,Guizhou[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):40 − 47. (in Chinese with English abstract)] MU Qichao, WANG Wanqian, WANG Qi, et al. Analysis of the formation mechanism of landslide in Changchong group, Songtao, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 40 − 47. (in Chinese with English abstract)
[26] 郭飞,王秀娟,陈玺,等. 基于不同模型的赣南地区小型削方滑坡易发性评价对比分析[J]. 中国地质灾害与防治学报,2022,33(6):125 − 133. [GUO Fei,WANG Xiujuan,CHEN Xi,et al. Comparative analyses on susceptibility of cutting slope landslides in southern Jiangxi using different models[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):125 − 133. (in Chinese with English abstract)] GUO Fei, WANG Xiujuan, CHEN Xi, et al. Comparative analyses on susceptibility of cutting slope landslides in southern Jiangxi using different models[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 125 − 133. (in Chinese with English abstract)
-
期刊类型引用(1)
1. 管少杰,吕进国,王康,张砚力. 露天矿下伏采空区距坡脚水平距离对边坡稳定性的影响. 工矿自动化. 2025(02): 113-120 . 百度学术
其他类型引用(0)