ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

台风暴雨型滑坡降雨指数预警阈值研究以福州市永泰县为例

王浩, 傅奕萱, 郭朝旭, 黄瑛瑛, 柳侃

王浩,傅奕萱,郭朝旭,等. 台风暴雨型滑坡降雨指数预警阈值研究−以福州市永泰县为例[J]. 中国地质灾害与防治学报,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202412029
引用本文: 王浩,傅奕萱,郭朝旭,等. 台风暴雨型滑坡降雨指数预警阈值研究−以福州市永泰县为例[J]. 中国地质灾害与防治学报,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202412029
WANG Hao,FU Yixuan,GUO Chaoxu,et al. Research on the early warning threshold for typhoon rainstorm-induced landslides based on rainfall index: A case study of Yongtai County, Fuzhou[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202412029
Citation: WANG Hao,FU Yixuan,GUO Chaoxu,et al. Research on the early warning threshold for typhoon rainstorm-induced landslides based on rainfall index: A case study of Yongtai County, Fuzhou[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-11. DOI: 10.16031/j.cnki.issn.1003-8035.202412029

台风暴雨型滑坡降雨指数预警阈值研究——以福州市永泰县为例

基金项目: 国家自然科学基金(42477165,U2005205);福建省科技厅项目(2022Y4002,2024Y0042)
详细信息
    作者简介:

    王 浩(1978—),男,教授,博士生导师,主要从事地质灾害防治方面的研究。E-mail:h_wang@126.com

    通讯作者:

    郭朝旭(1987—)男,高级工程师,主要从事地质灾害防治方面的研究。E-mail:guochaoxu177@163.com

  • 中图分类号: P692.22

Research on the early warning threshold for typhoon rainstorm-induced landslides based on rainfall index: A case study of Yongtai County, Fuzhou

  • 摘要:

    我国东南丘陵地区极端降雨频繁,滑坡灾害多发、突发、群发,确定滑坡降雨预警阈值是区域防灾减灾工作的关键。基于前期有效降雨量和激发降雨量构建的经验性统计指标——降雨指数(R′),已被成功应用于日本广岛地区滑坡灾害的预警预报。福建沿海丘陵地区与日本广岛地区的孕灾环境十分相似,因此,以福州市永泰县为研究区,借鉴广岛的经验开展类似的研究具有重要的应用意义。通过统计分析“海葵”“尼伯特”典型台风暴雨型滑坡事件的历史降雨及灾情数据,确定降雨指数(R′)模型的关键参数,开展典型降雨过程和滑坡灾害点反演验证,提出适用于永泰县的降雨预警阈值。结果表明:(1)确定了前期有效降雨量基准值R1=120 mm、激发降雨量基准值r1=135 mm、降雨权重因子a=2.5及有效降雨折减系数α=0.85等R′模型的关键参数值;(2)提出R′=156 mm为永泰县台风暴雨型滑坡降雨预警阈值,该阈值可实现“尼伯特”台风降雨诱发滑坡的完全预警,也能对单点滑坡提前预警,推荐的提前预警时间为30 min。基于降雨指数(R′)模型及其确定的降雨阈值在永泰县台风暴雨型滑坡预警中显示出良好的适用性,可供我国东南沿海类似地区的地质灾害气象预警借鉴。

    Abstract:

    In the southeastern hilly regions of China, extreme rainfall frequently triggers landslide disasters, characterized by their rapid occurrence and clustering. Establishing effective rainfall thresholds for early warning systems is crucial for regional disaster prevention and mitigation. The empirical rainfall index R′, which is based on antecedent effective rainfall and triggering rainfall, has been successfully utilized for early warnings and forecasting of landslide disasters in Hiroshima, Japan. Considering the strong similarities in disaster-prone environments between the coastal-hilly areas of Fujian Province and Hiroshima Prefecture, applying this methodology in Yongtai County, Fuzhou, is of significant practical value. This study involved statistical analysis of historical rainfall and disaster data from typical typhoon-induced rainstorm events, such as the Typhoons Haikui and Nepartak. Key parameters of the R′ model were established, and typical rainfall processes and landslide disaster points were analyzed for inverse verification, to propose a rainfall warning threshold suitable for Yongtai County. The results show that: 1) key parameters for the R′ model are determined, including the baseline values for antecedent rainfall (R1)=120 mm, triggering rainfall (r1)=135 mm, a rainfall weight factor (a)=2.5, and an effective rainfall reduction coefficient (α)=0.85. 2) a rainfall warning threshold of R′=156mm was proposed for typhoon rainstorm-induced landslides in Yongtai County. This threshold has proven effective in fully predicting landslides triggered triggered by Typhoon Nepartak, and it can also provide early warning for isolated landslide events, with a recommended lead time of 30 minutes. The rainfall index R′ model and its established threshold demonstrate excellent applicability for early warnings of typhoon rainstorm-induced landslides in Yongtai County, serving as a valuable reference for meteorological early warnings of geological disasters in similar coastal areas across southeastern China.

  • 近年来,中国建设开发了数十座软岩露天煤矿,在开采过程中采场及排土场均发生过一定规模的滑坡,对于采场底帮顺倾软岩边坡与顺倾软基底内排土场边坡滑坡灾害尤为严重。滑坡灾害直接影响剥采排工程的发展,造成人员伤害和设备损毁及地貌景观破坏,严重制约着露天矿的安全高效生产[1-2],边坡稳定性治理问题已成为边坡工程领域亟待解决的难题之一。

    目前国内外学者们应用不同理论对其展开大量有意义的研究,成果丰硕。王东等[3]综合运用极限平衡法及数值模拟法,分析了不同压帮高度下边坡稳定性变化规律,提出了逆倾软岩边坡变形的治理措施;刘子春等[4]以扎尼河露天矿为背景,通过分析扩帮、内排压角等治理措施的基础上,提出了一种条带式开采技术的边坡治理方案;陈毓等[5]采用ANSYS对黑山露天矿内排土场边坡稳定性和破坏机理进行了分析,揭示了内排土场滑坡模式为“坐落滑移式”滑动,运用削坡治理技术来保证内排土场稳定性;唐文亮等[6]系统分析了露天矿内排土场滑坡影响因素,提出了预留煤柱的滑坡治理方法;李伟[7]揭示了阴湾排土场边坡变形破坏机理并结合数值模拟法和极限平衡法,分析了内排不同压脚方案下边坡稳定性,提出了阴湾排土场滑坡治理措施;王刚等[8]基于有限元数值模拟法和极限平衡法,分析了边坡破坏机理并对边坡进行了稳定性计算,提出了削坡减载的治理措施。软岩露天煤矿采场边坡稳定性治理最经济有效的方式是内排追踪压帮,内排土场稳定是前提,但现有方法均是单一针对采场或排土场边坡稳定性分析和治理,未能同时兼顾采场与内排土场边坡的稳定性,对工程实际的指导性不强。

    本文以贺斯格乌拉南露天煤矿首采区南帮为工程背景,在兼顾采场与内排土场边坡稳定性的基础上,提出了露天煤矿顺倾软岩边坡内排追踪压帮治理工程,为深入研究顺倾软岩露天煤矿边坡稳定性治理方法提供新的参考。

    贺斯格乌拉南露天煤矿设计生产能力为15 Mt/a,首采区南帮地层自上而下主要发育第四系、2煤组、2煤组与3煤组间夹石、3煤组、3煤组底板和盆地基底火山岩,含煤岩系主要以泥岩为主,全区可采的有2-1、3-1煤层,第四系以粉砂质黏土为主,局部夹黄-浅灰色细砂及含砾粗砂层,岩性较差,首采区土层赋存较薄,且其地层中多赋存软弱夹层,主要以3-1、3-4煤底板弱层主,属于典型的顺倾软岩边坡,岩土体物理力学指标如表1所示,典型工程地质剖面如图1所示。

    表  1  岩土体物理力学指标
    Table  1.  Physical and mechanical parameters of rock mass
    岩体名称内摩擦角/(°)黏聚力/kPa容重/(kN·m−3弹性模量/MPa泊松比
    砂岩26.006519.6350.42
    粉质黏土14.062219.8460.38
    29.008512.1400.35
    泥岩20.004019.4750.36
    排弃物14.492019.0600.40
    弱层6.00019.1200.42
    回填岩石20.004019.0
    下载: 导出CSV 
    | 显示表格
    图  1  典型工程地质剖面图
    Figure  1.  Typical geological cross-section profile of the sliding area

    影响顺倾软岩露天煤矿采场边坡稳定性的主控因素是弱层及其暴露长度,采用追踪压帮方式治理该类边坡稳定性时,可忽略软弱夹层为底界面的切层-顺层组合滑动模式[9-10],仅考虑剪胀破坏模式。由于贺斯格乌拉南露天矿边坡体内赋存软弱夹层,主要以3-1、3-4煤底板弱层为主,顺倾角度大,岩质松软,对于此类边坡,浅部可通过平盘参数进行重新设计,深部必须利用三维效应,实现稳定性控制。可采用刚体极限平衡法中的剩余推力法对浅层边坡进行稳定性计算[11-12]。该方法的优点是可以用来计算求解给定任意边坡潜在滑面的稳定系数,并且可以考虑在复杂外力作用下的不同抗剪参数滑动岩体对边坡稳定性的影响。稳定系数求解公式为:

    $$ {P_i} = \frac{{{W_i}\sin {\alpha _i}({W_i}\sin {\alpha _i}\tan {\varphi _i}) + {C_i}{L_i}}}{{{F_{\rm{s}}}}} + {\phi _i}{p_{i - 1}} $$ (1)
    $$ {\phi _i} = \frac{{\cos ({\alpha _{i - 1}} - {\alpha _i})\tan {\varphi _i}\sin ({\alpha _{i - 1}} - {\alpha _i})}}{{{F_{\rm{s}}}}} $$ (2)

    式中:${P_i}$——第$i$条块的剩余推力/kN;

    $ {W_i} $——第$i$条块的重量/(N·m−3);

    $\alpha_i$——第$i$条块的滑面倾角/(°);

    ${\varphi _i}$——第$i$条块的推力传递系数;

    ${C_i}$——第$i$条块的滑面黏聚力/kPa;

    ${L_i}$——第$i$条块的底面长度/m;

    ${\phi _i}$——第$i$条块的滑面摩擦角/(°);

    ${F_{\rm{s}}}$——稳定性系数。

    依据《煤炭工业露天矿设计规范》(GB 50197―2015)[13]综合考虑贺斯格乌拉南露天煤矿首采区南帮边坡服务年限、地质条件与力学参数的可靠性、潜在滑坡危害程度等,确定安全储备系数为1.2。

    由于南帮压覆大量煤层,在保证安全前提下,为实现最大限度回采压覆的煤炭资源,需要对边坡形态重新设计。本文选取典型剖面为研究对象,浅层边坡形态按照40 m运输平盘、15 m保安平盘进行设计,深部利用横采内排三维支挡效应回采采场底帮深部压覆煤炭资源。通过上述情况对浅层边坡进行了分析,边坡稳定性计算结果如图2所示。

    图  2  浅层边二维坡稳定性计算结果
    Figure  2.  Calculation results of two-dimensional slope stability of the shallow side

    分析图2可知,浅部边坡形态可按照40 m运输平盘、15 m保安平盘进行设计,由于弱层上部存在煤岩支挡,边坡潜在滑坡模式为以圆弧为侧界面、3-1煤底板弱层为底界面、沿边坡坡脚处剪出,此时,浅层边坡能满足安全储备系数1.2的要求。

    基于浅层边坡二维稳定性分析结果可知,实现深部稳定性控制,必须借助横采工作帮与内排土场的双重支挡作用进行压煤回采,因此提出了利用横采内排三维支挡效应回采采场深部压覆煤炭资源[14]。本文借助FLAC3D数值模拟软件,分析不同降深角度和不同追踪距离条件下的边坡三维稳定性,以期获得最优的边坡空间形态参数。

    (1) 模型的建立

    考虑到FLAC3D建模较为复杂,采用CAD与Rhino相结合的方法,首先在CAD中对剖面进行整理,然后在Rhino软件中进行模型成体与网格划分的处理,并用Griddle将网格导出,生成精细的六面体网格模型[1517],最后导入采用于FLAC3D进行数值模拟计算。为尽可能凸显边坡稳定性的三维效应,以南帮断面形态设计边坡为数值模拟对象,共计建立15种工况模型,模型如图3,追踪距离分别为50,100,200,300,400 m。为避免边界效应,在模型的底部和两侧分别施加水平和垂直位移约束,加载方式为重力加载[18]

    图  3  三维数值模拟模型
    Figure  3.  Three-dimensional numerical simulation model

    (2) 计算结果分析

    由于计算结果过多,本文仅列举降深角度α=29°,追踪距离50,200,400 m工况下边坡位移云图(切割位置为沿模型走向中间处),如图4所示。南帮边坡三维稳定性计算结果如图5所示。

    图  4  数值模拟结果
    Figure  4.  Numerical simulation results at different tracking distance
    图  5  追踪距离与边坡稳定系数的关系曲线
    Figure  5.  Relationship curve between tracking distance and slope stability coefficient

    分析图4图5可知,追踪距离50 m时,三维支挡效应显著,边坡深部位移明显小于上部,发生以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层-剪出滑动,稳定系数大于1.2。当追踪距离大于50 m时,通过对比分析不同深部边坡角(α)条件下的数值模拟结果可知,深部边坡角对边坡稳定性系数影响较小,随着追踪距离的增加,边坡的破坏模式过渡为以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层滑动,并且此时边坡的稳定性不满足安全储备系数1.2要求。因此,内排土场追踪距离需控制在50 m以内,深部边坡角设计为29°。

    露天矿内排土场边坡稳定的主控因素是软弱基底,软弱基底分为自身软弱岩土层和受外界条影响转变为软弱岩土层2种类型。排土场下沉是软弱基底内排土场失稳的特征,主要现象是含有纵向强烈挤压区,基底上部岩层隆起,地面出现滑坡等[1921]。在保证采场南帮安全的前提下降深至3-1煤底板,须借助横采工作帮与内排土场的双重支挡作用,内排土场稳定是前提[22]。由于内排土场基底为3-1、3-4煤底板弱层,顺倾角度较大,按照内排土场设计参数,其稳定性无法满足安全储备系数的要求[23]。从提供基底强度角度出发,采用破坏弱层回填岩石的方式提高内排土场边坡稳定性。按照排土台阶高度24 m、平盘宽度60 m、坡面角33°对不同内排压帮标高边坡稳定性进行试算,确定内排最小压帮标高为+844水平,因此本文分析了内排基于+844水平的压帮高度下内排土场基底不同的处理方式时的边坡稳定性计算结果如图67所示,边坡稳定性与破坏弱层回填岩石范围关系曲线如图8所示。

    图  6  3-1煤层内排基底不同处理方式下边坡稳定性计算结果
    Figure  6.  Calculation results of slope stability under different treatment methods of inner row basement (3-1)

    分析图6图8可知,当内排基于+844的压帮高度,内排基底3-1底板弱层完全破坏并回填岩石,破坏3-4底板弱层并回填岩石倾向长度达60 m时,内排土场及其与采场南帮复合边坡稳定性均可满足安全系数1.2要求。边坡稳定性随破坏底板弱层回填岩石范围的增大呈正指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。采用破坏弱层回填岩石的基底处理方法,既保证了边坡的稳定又规避了过渡处理基底的生产成本。

    图  7  3-4煤层内排基底不同处理方式下边坡稳定性计算结果
    Figure  7.  Calculation results of slope stability under different treatment methods of inner row basement (3-4)
    图  8  边坡稳定性与破坏弱层回填岩石范围关系曲线
    Figure  8.  Relationship curve between slope stability and the extent of backfill rocks in the weak layer

    (1) 弱层暴露长度是露天矿顺倾软岩边坡稳定性的主控因素,据此提出了露天矿顺倾软岩边坡内排追踪压帮治理工程,可最大限度的安全回收边坡压覆煤炭资源。

    (2) 控制采场与内排土场间的追踪距离是改善边坡稳定性的有效途径。随着追踪距离的增加,边坡破坏模式从以圆弧为侧界面、弱层为底界面的切层-顺层-剪出滑动逐渐过渡为以圆弧为侧界面、弱层为底界面的切层-顺层滑动。

    (3) 内排土场及其与采场构成的复合边坡稳定性随破坏底板弱层回填岩石范围的增大呈指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。

    (4) 贺斯格乌拉南露天煤矿首采区南帮浅部边坡留设40 m运输平盘、15 m保安平盘,底帮深部边坡角29°,追踪距离控制在50 m之内时可满足安全要求;内排基底弱层完全破坏并回填岩石倾向长度60 m时可满足安全需求。

  • 图  1   永泰县地理位置及“海葵”台风灾害点分布

    Figure  1.   Geographical location of Yongtai County and distribution of disaster points triggered by Typhoon Haikui

    图  2   “海葵”台风灾后遥感影像

    Figure  2.   Post-disaster remote sensing imagery of Typhoon Haikui

    图  3   “尼伯特”台风灾害点分布

    Figure  3.   Distribution of disaster points triggered by Typhoon Nepartak

    图  4   “尼伯特”台风灾后遥感影像

    Figure  4.   Post-disaster remote sensing imagery of Typhoon Nepartak

    图  5   降雨指数(R′)的定义

    Figure  5.   Definition of the rainfall index R

    图  6   一次降雨过程划分示意图

    Figure  6.   Schematic diagram of a single rainfall event division

    图  7   灾害点Rwrw关系图与极限降雨量曲线变化图(2023年“海葵”台风)

    Figure  7.   Rwrw relationship of disaster points and threshold rainfall curve change (Typhoon Haikui, 2023)

    图  8   降雨预警阈值分析验证流程图

    Figure  8.   Flowchart of the rainfall warning threshold analysis and validation process

    图  9   降雨指数R′计算结果(2023年“海葵”台风)

    Figure  9.   Calculation results of the rainfall index R′ (Typhoon Haikui, 2023)

    图  10   永泰县清凉镇3-1号滑坡现场照片

    Figure  10.   Site photograph of Landslide No. 3-1 in Qingliang Town, Yongtai County

    图  11   永泰县清凉镇3-1号滑坡的降雨指数R′动态变化

    Figure  11.   Dynamic changes in the rainfall index R′ for Landslide No. 3-1 in Qingliang Town, Yongtai County

    图  12   灾害点Rw-rw关系图(2016年“尼伯特”台风)

    Figure  12.   Rw-rw relationship of disaster points (Typhoon Nepartak, 2016)

    图  13   降雨指数(R′)计算结果(2016年“尼伯特”台风)

    Figure  13.   Calculation results of the rainfall index R′ (Typhoon Nepartak, 2016)

    图  14   灾害点重叠区的滑坡示意图

    Figure  14.   Landslides of disaster points in the overlap zone

    图  15   灾害点重叠区滑坡的降雨指数(R′)计算结果

    Figure  15.   Calculation results of the rainfall index R′ for landslide in the disaster points overlap zone

    表  1   福州市永泰县与日本广岛县孕灾环境对比

    Table  1   Comparison of disaster-prone environments between Yongtai County, Fuzhou and Hiroshima Prefecture, Japan

    地区 福州市永泰县 日本广岛县
    地质历史 寒武纪到第四纪 前寒武纪到第四纪
    构造特征 地处华南构造板块的边缘,构造板块活动相对缓和,地震、火山活动少 地处环太平洋地震带,构造板块活动多而剧烈,地震、火山活动多发
    岩石类型 以凝灰岩和玄武岩为主的长英质火山岩与中酸性花岗岩分布广泛,花岗岩在该地区的岩石类型中占主导 以玄武岩、安山岩和流纹岩为主的长英质火山岩与中酸性花岗岩分布广泛,大部分地区都覆盖着严重风化的花岗岩
    土体特性 丘陵和低山地区广泛分布红壤,具有较强的风化性,排水性较好,但遇强降雨时易受侵蚀;部分丘陵地带分布黄壤,其水分保持能力强,稳定性较差;河谷地带和沿河区域,冲积土和砂土较为常见,该土粒度较大,渗透性较强,暴雨后易发生水土流失;土层厚度一般在40−90 cm 在低山丘陵地带,尤其是靠近河流、湖泊的地区,常见黏土沉积;在沿海及河流流域,基岩顶部常见有1~2 m厚的砂土和砾石沉积物,其具有较好的排水性,但遇强降雨易发水土流失和滑坡;山区岩石风化层较为发育,风化土层一般较松散
    地形地貌 以丘陵和山地为主;西南部山脉连绵起伏,东北部地势相对平缓,县内以中低山区为主;没有海岸线地貌 以丘陵和山地为主;西部和北部山脉纵深,中部有较低丘陵地区,平原带多位于东南部的濑户内海沿岸;海岸地貌错综复杂,地形变化更加剧烈
    植被特征 森林植被覆盖率76.8%;境内主要植被为马尾松、杉木、国外松等常绿针叶林,辅以壳斗科、樟科、山茶科、木兰科和杜英科等常绿阔叶树种 森林植被覆盖率73%,境内主要分布为栎树、竹柏等常绿阔叶林;桦树、红枫等落叶阔叶林;以及杉树、松树等针叶林
    气候特征 亚热带季风气候,7—9月台风活跃 温带季风气候,7—9月台风活跃
    降水特征 降水丰富,年降水量14002000 mm,春夏季节雨量集中,台风多伴随短时极端强降雨 降水丰富,年降水量15002000 mm,夏秋季降水集中,台风暴雨更为频繁且强烈
    下载: 导出CSV

    表  2   福州市永泰县与日本广岛县历史灾情对比

    Table  2   Comparison of historical disaster data between Yongtai County, Fuzhou and Hiroshima Prefecture, Japan

    地区 永泰县 广岛县
    灾害时间 2016年7月 2023年9月 2014年8月 2018年7月
    灾害成因 台风暴雨 台风暴雨 台风暴雨 台风暴雨
    灾害形式 滑坡、
    泥石流
    滑坡、
    泥石流
    泥石流、
    边坡崩塌
    泥石流、
    边坡坍塌
    峰值雨强/(mm·h−1 100 88 126 70
    下载: 导出CSV

    表  3   有效降雨折减系数与滑坡发生的相关性分析

    Table  3   Correlation analysis between the effective rainfall reduction coefficient and landslide occurrence

    有效降雨折减系数 α=0.6 α=0.65 α=0.7 α=0.75 α=0.8 α=0.85 α=0.9 α=0.95
    相关系数(r 0.6159 0.6065 0.6037 0.5968 0.5888 0.6181 0.5847 0.5562
    下载: 导出CSV
  • [1] 自然资源部. 中国国土资源公报[EB]. 北京:自然资源部,2014—2017. [Ministry of Natural Resources. China land and resources bulletin[EB].Beijing:Ministry of Natural Resources,2014-2017. (in Chinese)]

    Ministry of Natural Resources. China land and resources bulletin[EB].Beijing: Ministry of Natural Resources, 2014-2017. (in Chinese)

    [2] 自然资源部. 地质勘查和地质灾害防治活动监督检查情况的通报[EB]. 北京:自然资源部,2020—2022. [Ministry of Natural Resources. Inspection report on the supervision of geological exploration and geological disaster prevention activities[EB]. Beijing:Ministry of Natural Resources,2020-2022. (in Chinese)]

    Ministry of Natural Resources. Inspection report on the supervision of geological exploration and geological disaster prevention activities[EB]. Beijing: Ministry of Natural Resources, 2020-2022. (in Chinese)

    [3] 自然资源部. 中国自然资源统计公报[EB]. 北京:自然资源部,2022. [Ministry of Natural Resources. China natural resources statistical bulletin[EB]. Beijing:Ministry of Natural Resources,2022. (in Chinese)]

    Ministry of Natural Resources. China natural resources statistical bulletin[EB]. Beijing: Ministry of Natural Resources, 2022. (in Chinese)

    [4] 豆红强,简文彬,王浩,等. 高植被覆盖区台风暴雨型滑坡成灾机制及预警模型研究综述[J]. 自然灾害学报,2023,32(2):1 − 15. [DOU Hongqiang,JIAN Wenbin,WANG Hao,et al. Review of failure mechanism and early warning model of landslides induced by typhoon and associated rainstorm in high vegetation coverage area[J]. Journal of Natural Disasters,2023,32(2):1 − 15. (in Chinese with English abstract)]

    DOU Hongqiang, JIAN Wenbin, WANG Hao, et al. Review of failure mechanism and early warning model of landslides induced by typhoon and associated rainstorm in high vegetation coverage area[J]. Journal of Natural Disasters, 2023, 32(2): 1 − 15. (in Chinese with English abstract)

    [5] 伍宇明,兰恒星,高星,等. 台风暴雨型滑坡降雨阈值曲线研究——以福建地区为例[J]. 工程地质学报,2014,22(2):255 − 262. [WU Yuming,LAN Hengxing,GAO Xing,et al. Rainfall threshold of storm-induced landslides in typhoon areas:A case study of Fujian Province[J]. Journal of Engineering Geology,2014,22(2):255 − 262. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2014.02.015

    WU Yuming, LAN Hengxing, GAO Xing, et al. Rainfall threshold of storm-induced landslides in typhoon areas: A case study of Fujian Province[J]. Journal of Engineering Geology, 2014, 22(2): 255 − 262. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2014.02.015

    [6] 刘谢攀,殷坤龙,肖常贵,等. 基于I-D-R阈值模型的滑坡气象预警[J]. 地球科学,2024,49(3):1039 − 1051. [LIU Xiepan,YIN Kunlong,XIAO Changgui,et al. Meteorological early warning of landslide based on I-D-R threshold model[J]. Earth Science,2024,49(3):1039 − 1051. (in Chinese with English abstract)]

    LIU Xiepan, YIN Kunlong, XIAO Changgui, et al. Meteorological early warning of landslide based on I-D-R threshold model[J]. Earth Science, 2024, 49(3): 1039 − 1051. (in Chinese with English abstract)

    [7]

    CAINE N. The rainfall intensity - duration control of shallow landslides and debris flows[J]. Geografiska Annaler:Series A,Physical Geography,1980,62(1/2):23 − 27.

    [8] 戴丛蕊,黄玮,李蒙,等. 云南降雨型滑坡县级预警雨量阈值分析[J]. 气象科技,2015,43(4):675 − 680. [DAI Congrui,HUANG Wei,LI Meng,et al. County-level rainfall warning thresholds for rainfall-induced landslides in Yunnan[J]. Meteorological Science and Technology,2015,43(4):675 − 680. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-6345.2015.04.019

    DAI Congrui, HUANG Wei, LI Meng, et al. County-level rainfall warning thresholds for rainfall-induced landslides in Yunnan[J]. Meteorological Science and Technology, 2015, 43(4): 675 − 680. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-6345.2015.04.019

    [9]

    PERUCCACCI S,BRUNETTI M T,GARIANO S L,et al. Rainfall thresholds for possible landslide occurrence in Italy[J]. Geomorphology,2017,290:39 − 57. DOI: 10.1016/j.geomorph.2017.03.031

    [10] 胡磊,胡玉乾,孙鹏,等. 藏东南地区降雨型滑坡致灾阈值及滑坡危险性量化分析[J]. 灾害学,2021,36(4):194 − 199. [HU Lei,HU Yuqian,SUN Peng,et al. A quantitative analysis of disaster threshold and landslide risk of rainfall-type landslide in southeast Tibet[J]. Journal of Catastrophology,2021,36(4):194 − 199. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-811X.2021.04.032

    HU Lei, HU Yuqian, SUN Peng, et al. A quantitative analysis of disaster threshold and landslide risk of rainfall-type landslide in southeast Tibet[J]. Journal of Catastrophology, 2021, 36(4): 194 − 199. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-811X.2021.04.032

    [11] 龚泉冰,殷坤龙,肖常贵,等. 基于I-D阈值的滑坡气象预警双指标模型[J]. 地质科技通报,2024,43(1):262 − 274. [GONG Quanbing,YIN Kunlong,XIAO Changgui,et al. Double-index model of landslide meteorological warning based on the I-D threshold[J]. Bulletin of Geological Science and Technology,2024,43(1):262 − 274. (in Chinese with English abstract)]

    GONG Quanbing, YIN Kunlong, XIAO Changgui, et al. Double-index model of landslide meteorological warning based on the I-D threshold[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 262 − 274. (in Chinese with English abstract)

    [12]

    NAKAI S,SASAKI Y,KAIBORI M,et al. Rainfall index for warning and evacuation against sediment-related disaster:Reexamination of rainfall index Rf,and proposal of R’[J]. Soils and Foundations,2006,46(4):465 − 475. DOI: 10.3208/sandf.46.465

    [13] 吴益平,张秋霞,唐辉明,等. 基于有效降雨强度的滑坡灾害危险性预警[J]. 地球科学,2014,39(7):889 − 895. [WU Yiping,ZHANG Qiuxia,TANG Huiming,et al. Landslide hazard warning based on effective rainfall intensity[J]. Earth Science,2014,39(7):889 − 895. (in Chinese with English abstract)]

    WU Yiping, ZHANG Qiuxia, TANG Huiming, et al. Landslide hazard warning based on effective rainfall intensity[J]. Earth Science, 2014, 39(7): 889 − 895. (in Chinese with English abstract)

    [14] 黄发明,曹中山,姚池,等. 基于决策树和有效降雨强度的滑坡危险性预警[J]. 浙江大学学报(工学版),2021,55(3):472 − 482. [HUANG Faming,CAO Zhongshan,YAO Chi,et al. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of Zhejiang University (Engineering Science),2021,55(3):472 − 482. (in Chinese with English abstract)] DOI: 10.3785/j.issn.1008-973X.2021.03.007

    HUANG Faming, CAO Zhongshan, YAO Chi, et al. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(3): 472 − 482. (in Chinese with English abstract) DOI: 10.3785/j.issn.1008-973X.2021.03.007

    [15]

    SASAKI Y,MORIWAKI T,KANO S,et al. Characteristics of precipitation induced slope failure disaster in Hiroshima Prefecture of June 29,1999 and rainfall index for warning against slope failure disaster[J]. Soils Found,2001,49(7):16 − 18 (in Japanese).

    [16] 李玉娟. 福建永泰晚白垩世早期辉石闪长岩年代学与岩石地球化学特征及其地质意义[J]. 福建地质,2023,42(4):251 − 260. [LI Yujuan. Chronology,geochemical characteristics and geological significance of early pyroxene diorite from the Late Cretaceous of Yongtai County,Fujian Province[J]. Geology of Fujian,2023,42(4):251 − 260. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-3970.2023.04.001

    LI Yujuan. Chronology, geochemical characteristics and geological significance of early pyroxene diorite from the Late Cretaceous of Yongtai County, Fujian Province[J]. Geology of Fujian, 2023, 42(4): 251 − 260. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-3970.2023.04.001

    [17] 李良林,周汉文,陈植华,等. 福建沿海晚中生代花岗质岩石成因及其地质意义[J]. 地质通报,2013,32(7):1047 − 1062. [LI Lianglin,ZHOU Hanwen,CHEN Zhihua,et al. Petrogenesis of the Late Mesozoic granitic rocks in southeast coastal areas of Fujian Province and its geological significance[J]. Geological Bulletin of China,2013,32(7):1047 − 1062. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-2552.2013.07.010

    LI Lianglin, ZHOU Hanwen, CHEN Zhihua, et al. Petrogenesis of the Late Mesozoic granitic rocks in southeast coastal areas of Fujian Province and its geological significance[J]. Geological Bulletin of China, 2013, 32(7): 1047 − 1062. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2013.07.010

    [18] 林祥钿,李文曲,金庆志. 福州—永泰区域地质构造及其对热田控制作用的初步探讨[J]. 福建地质,1988,7(3):221 − 228. [LIN Xiangdian,LI Wenqu,JIN Qingzhi. A prelim discussion on the regional geological structure in Fuzhou—Yongtai area and its control to geothermal fields[J]. Geology of Fujian,1988,7(3):221 − 228. (in Chinese with English abstract)]

    LIN Xiangdian, LI Wenqu, JIN Qingzhi. A prelim discussion on the regional geological structure in Fuzhou—Yongtai area and its control to geothermal fields[J]. Geology of Fujian, 1988, 7(3): 221 − 228. (in Chinese with English abstract)

    [19] 叶龙珍,柳侃,黄国平,等. 福建重大地质灾害特征及其影响因素[J]. 中国地质灾害与防治学报,2015,26(1):98 − 102. [YE Longzhen,LIU Kan,HUANG Guoping,et al. The characteristics and influence factors of catastrophic geological disaster in Fujian Province[J]. The Chinese Journal of Geological Hazard and Control,2015,26(1):98 − 102. (in Chinese with English abstract)]

    YE Longzhen, LIU Kan, HUANG Guoping, et al. The characteristics and influence factors of catastrophic geological disaster in Fujian Province[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1): 98 − 102. (in Chinese with English abstract)

    [20]

    WAKITA K. Geology and tectonics of Japanese Islands:A review–the key to understanding the geology of Asia[J]. Journal of Asian Earth Sciences,2013,72:75 − 87.

    [21]

    WATAKABE T,MATSUSHI Y. Lithological controls on hydrological processes that trigger shallow landslides:Observations from granite and hornfels hillslopes in Hiroshima,Japan[J]. Catena,2019,180:55 − 68.

    [22]

    TSUCHIDA T,MORIWAKI T,NAKAI S,et al. Investigation and consideration on landslide zoning of multiple slope failures and debris flows of 2014 disaster in Hiroshima,Japan[J]. Soils and Foundations,2019,59(4):1085 − 1102.

    [23]

    HASHIMOTO R,TSUCHIDA T,MORIWAKI T,et al. Hiroshima prefecture geo-disasters due to western Japan torrential rainfall in July 2018[J]. Soils and Foundations,2020,60(1):283 − 299.

    [24] 盛逸凡,李远耀,徐勇,等. 基于有效降雨强度和逻辑回归的降雨型滑坡预测模型[J]. 水文地质工程地质,2019,46(1):156 − 162. [SHENG Yifan,LI Yuanyao,XU Yong,et al. Prediction of rainfall-type landslides based on effective rainfall intensity and logistic regression[J]. Hydrogeology & Engineering Geology,2019,46(1):156 − 162. (in Chinese with English abstract)]

    SHENG Yifan, LI Yuanyao, XU Yong, et al. Prediction of rainfall-type landslides based on effective rainfall intensity and logistic regression[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 156 − 162. (in Chinese with English abstract)

    [25] 张添锋,郭朝旭. 福建山区泥石流临界降雨阈值[J]. 山地学报,2021,39(5):701 − 709. [ZHANG Tianfeng,GUO Chaoxu. Rainfall threshold of debris flow in Fujian mountainous area,China[J]. Mountain Research,2021,39(5):701 − 709. (in Chinese with English abstract)]

    ZHANG Tianfeng, GUO Chaoxu. Rainfall threshold of debris flow in Fujian mountainous area, China[J]. Mountain Research, 2021, 39(5): 701 − 709. (in Chinese with English abstract)

    [26]

    CROZIER M J. Landslides:Causes,Consequences and Environment[M]. London:Croom Helm,1986:185 − 189.

    [27] 潘华利,欧国强,黄江成,等. 缺资料地区泥石流预警雨量阈值研究[J]. 岩土力学,2012,33(7):2122 − 2126. [PAN Huali,OU Guoqiang,HUANG Jiangcheng,et al. Study of rainfall threshold of debris flow forewarning in data lack areas[J]. Rock and Soil Mechanics,2012,33(7):2122 − 2126. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2012.07.031

    PAN Huali, OU Guoqiang, HUANG Jiangcheng, et al. Study of rainfall threshold of debris flow forewarning in data lack areas[J]. Rock and Soil Mechanics, 2012, 33(7): 2122 − 2126. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2012.07.031

    [28] 高珊,刘爱鸣,黄志刚,等. 福建省强降水诱发地质灾害特征分析[J]. 福建地质,2010,29(增刊1):64 − 71. [GAO Shan,LIU Aiming,HUANG Zhigang,et al. The character analysis on heavy rainfall inducing geological hazards in Fujian Province[J]. Geology of Fujian,2010,29(Sup 1):64 − 71. (in Chinese)]

    GAO Shan, LIU Aiming, HUANG Zhigang, et al. The character analysis on heavy rainfall inducing geological hazards in Fujian Province[J]. Geology of Fujian, 2010, 29(Sup 1): 64 − 71. (in Chinese)

  • 期刊类型引用(1)

    1. 管少杰,吕进国,王康,张砚力. 露天矿下伏采空区距坡脚水平距离对边坡稳定性的影响. 工矿自动化. 2025(02): 113-120 . 百度学术

    其他类型引用(0)

图(15)  /  表(3)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-12-18
  • 修回日期:  2025-03-10
  • 录用日期:  2025-03-25
  • 网络出版日期:  2025-03-26

目录

/

返回文章
返回