ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

“23•7”特大暴雨引发门头沟区地质灾害发育特征及成因分析

李华东, 邵旭升, 冯少华

李华东,邵旭升,冯少华. “23•7”特大暴雨引发门头沟区地质灾害发育特征及成因分析[J]. 中国地质灾害与防治学报,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202412022
引用本文: 李华东,邵旭升,冯少华. “23•7”特大暴雨引发门头沟区地质灾害发育特征及成因分析[J]. 中国地质灾害与防治学报,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202412022
LI Huadong,SHAO Xusheng,FENG Shaohua. Development characteristics and mechanism of geological hazards in Mentougou District triggered by “23•7” torrential rain[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202412022
Citation: LI Huadong,SHAO Xusheng,FENG Shaohua. Development characteristics and mechanism of geological hazards in Mentougou District triggered by “23•7” torrential rain[J]. The Chinese Journal of Geological Hazard and Control,2025,36(0): 1-9. DOI: 10.16031/j.cnki.issn.1003-8035.202412022

“23•7”特大暴雨引发门头沟区地质灾害发育特征及成因分析

详细信息
    作者简介:

    李华东(1984—),男,湖北麻城人,地质工程专业,硕士,高级工程师,主要从事工程地质、水文地质及岩土工程方面的工作。E-mail:sccdut@qq.com

  • 中图分类号: P694

Development characteristics and mechanism of geological hazards in Mentougou District triggered by “23•7” torrential rain

  • 摘要:

    “23•7”特大暴雨引发了1963年以来海河流域最大的洪水灾害,同时诱发了大量地质灾害,造成了房屋损毁、交通中断、人员伤亡和巨大的经济财产损失,北京市门头沟区受灾严重。本文基于灾后详细的地质灾害调查,共统计门头沟区新增地质灾害点353处,类型包括崩塌、滑坡、泥石流、地面塌陷等。分析了形成地质灾害的主要原因,包括降雨量大、坡面冲刷强、排水不畅、切坡修建房屋、房屋修建挤占河(沟)道、坡面防护差、岩土体松散破碎、坡面堆放杂物等。提出了山区村镇建设中防灾减灾的建议,要尊重自然,还河(沟)道生态空间,充分发挥弯曲河道的缓冲和生态屏障作用;要重视建设场地的选址及灾害评估,提高地质灾害防治工程的设计质量和防护等级;在类似的山区流域中要加强对地质灾害的调查、识别、风险评估、预警和防治,避免暴雨引起的地质灾害在类似的流域中再次发生。

    Abstract:

    The “23•7” torrential rain triggered the largest flood disaster in the Haihe River Basin since 1963, and led to numerous geological disasters, causing house damage, traffic disruption, and resulting in casualties and significant economic and property losses. The Mentougou District in Beijing has been severely affected by the disaster. Based on a detailed investigation of geological disasters after the torrential rain, this study counted a total of 353 new geological hazards in Mentougou District, including collapse, landslide, debris flow, and ground subsidence. The main contributing factors to the formation of geological hazards were analyzed, including heavy rainfall, intense slope erosion, inadequate drainage, slope cutting for construction, building on riverbanks or ditches, poor slope protection, loose and fractured rock and soil, and the accumulation of debris on slopes. Suggestions for hazards prevention and reduction in the construction of villages and towns have been proposed. These include following natural laws, restoring ecological space to rivers and ditches, and maximizing the buffering and ecological barrier functions of meandering rivers. Further emphasis should be placed on site selection and disaster risk assessment, along with improving the design quality and protective measures for geological disaster prevention projects. In similar Mountainous watersheds, it is necessary to strengthen the investigation, identification, risk assessment, early warning, and prevention of geological disasters to avoid the recurrence of such disasters in future rainstorm events.

  • 矿产开采诱发的地面塌陷现象十分普遍,加强对矿区地面塌陷研究已成为矿区可持续发展的重要课题之一。矿区地面塌陷与区域地质背景、矿床特征、开采方式和深度、采空区处置措施、水文地质条件等密切相关[1-2]。应城石膏矿位于湖北省云梦应城盆地的西北缘,面积约30 km2,距今已有近400年开采历史。1949年以前多为老窿开采,1960—1970年,老窿塌陷发育最多,2013—2016年,采空塌陷发育最多,早期的老窿型开采和后期的规模化开采相续形成了应城矿区地面塌陷。矿区内多处地面塌陷,表现为陷坑和地面不均匀沉降,造成道路和管线破坏、房屋开裂、农田毁坏等,对当地居民生产生活、道路和管道基础设施安全运营等造成了较大的影响。针对膏盐矿区地面塌陷,何伟等[3]根据采动岩层内冒落带、裂隙带和弯曲带的“三带”理论,结合实测资料,建立数值模型,对地下开采诱发的地表变形进行了分析。刘硕等[4] 基于Hoek-Brown 强度准则,建立数值仿真模型,结合山东肥城某石膏矿工程实践,评价了硬石膏采房群的整体稳定性。夏开宗等[5]针对采用房柱法开采石膏矿体,将石膏矿柱简化为满足西原模型的黏弹塑性体流变模型,建立了石膏矿矿柱−护顶层支撑体系的流变力学体模型,认为矿柱的塑性大变形流变特性对采空区的失稳起着至关重要的作用。陈乐求等[6]针对矿柱法开采石膏矿体,开展了石膏矿采空区充填加固技术的试验研究。刘轩廷等[7]针对充填开采法矿区,在考虑了充填体对间柱侧压作用的基础上,建立了顶板−间柱支撑体系的力学模型,探究了充填体作用下支撑体系的破坏机制。魏军才[8] 对邵东县城石膏矿老采空区地面变形的成因进行了分析,认为顶板岩性、地质构造是地面变形的基础条件,不规范开采是导致地面变形的主要诱发因素,地面不断加载及地下水动力作用加剧了地面变形的产生。郑怀昌等[9] 通过对石膏矿采空区顶板大面积冒落情况的调查,发现矿区水文地质和工程地质对顶板的冒落有很大影响,冒落也多集中于丰雨季,认为隔离矿柱对控制顶板大面积冒落及向相邻采空区扩展作用重大。章求才等[10]针对衡山石膏矿经过多年开采,于2009 年发生了大面积地面塌陷,分析了顶板破断机理及其影响因素。郑怀昌等[11]结合岩体力学的相关理论和数值模拟技术,认为石膏矿柱流变特性使其强度变低,采区扩大,石膏矿柱应力增大,诱发了石膏矿采场顶板冒落及大规模采空区顶板冒落。张向阳[12] 基于 Kachanov 蠕变损伤理论对采空区顶板的蠕变损伤过程进行了解析分析,采空区顶板的蠕变损伤断裂经历断裂孕育和裂隙扩展两个阶段。贺桂成等[13]采用FLAC3D对衡山县石膏矿闭坑前后空区引发的地面塌陷机理进行了分析,认为闭坑后矿柱不足以支承上覆围岩压力而引起采空区顶板垮落,形成垮落拱,最终在地表形成“漏斗型”塌陷区。Castellanza等[14] 针对废弃矿山遗留矿柱会受到风化作用的特性,根据膏岩试验数据拟合结果,建立风化模型对矿柱失稳时间预测。

    上述工作为膏盐矿区地面塌陷地质灾害研究奠定了较好的基础,然而,仍然存在有不足之处:对诱发石膏矿地面塌陷地质灾害成因机制的分析还存在不足,尤其是老窿对地面塌陷地质灾害影响的成因机制分析成果较少,由于不同区域的石膏矿,受膏组成矿特征、开采历史、开采方式等影响,地面塌陷地质灾害特征和成因机制具有明显的差异性,还需要结合实际情况进一步开展研究。

    为此,针对应城石膏矿区开展野外补充调查、工程地质测绘,进一步掌握矿区地质灾害的实际情况,采取内外动力多因子关联分析法和地质分析法,基于采动岩层内冒落带、裂隙带和弯曲带的“三带”理论,分析地面塌陷类型及发育分布规律,研究采空型地面塌陷地质灾害的主要影响因素,对老窿型和采空型地面塌陷的成因机制进行分析,对石膏矿风险管理和安全评估、监测预警体系构建具有一定的参考意义。

    应城市地处鄂中丘陵与江汉平原的过渡地带,整体地势为西北高,东南低,地貌类型按成因划分为河流冲积平原和丘陵两类。应城石膏矿位于湖北省云应盆地的西北缘,应城市现有10个膏矿开采区,矿区主要分布于丘陵地区,主要开采膏组为G-1—G-3、G-5和G-7—G-11,开采矿区分布如图1所示。矿区目前主要开采的含矿层位是谢家湾下含矿层和谢家湾上含矿层,谢家湾下含矿层含纤维石膏膏组五层G-1—G-5,总厚15.90~91.10 m;谢家湾上含矿层含纤维石膏膏组八层G-6—G-13,总厚23.92~181.51 m。

    图  1  矿区地形地貌及矿区分布图
    Figure  1.  The distribution map of landforms in the mining area

    应城石膏矿膏组矿体总体产状比较平缓,一般倾角为6°~8°,部分倾角近于或大于10°,与较深色的围岩接触界线较为明显,接触面较平整,极易从接触界面与围岩分开,其产状与围岩大体一致,见图2(a),局部与围岩有极微小角度斜交,见图2(b),在红色地层中,有时穿过层理插入不同围岩中,见图2(c)。

    图  2  应城市石膏矿膏组成矿特征
    Figure  2.  The characteristics of gypsum composition in Yingcheng City

    膏组矿体主要是薄层状、似层状纤维石膏矿层,厚度稳定,一般为2~25 cm,最厚可达47 cm左右,延长较远,相邻两个膏组间距8~17 m。矿体围岩以泥质粉砂岩和泥质石膏岩为主,单轴抗压强度为2.5~20.7 MPa,岩石强度较低,属软岩、极软岩。

    根据调查,应城市膏矿开采区共发育有27处地面塌陷,主要分布于城北街道办事处和杨岭镇境内(图1),规模以小—中型为主,其中小型11处,中型16处,如图3b所示。

    图  3  应城市膏矿区塌陷规模等级分布图及典型塌陷坑
    Figure  3.  The grade distribution and typical collapse pit in the mining area in Yingcheng City

    由于私人无序开采,导致矿区内留下许多废弃的井筒、巷道,截至1960年已形成大小老窿约240处,私人矿井开采面大都呈扇形展布且开采层埋深浅,一般小于100 m,由于开采深度较浅,采空区顶板变形对地面的影响较大,上覆岩体破坏后容易在地面产生塌陷坑。应城市老窿型塌陷共18处,陷坑整体呈NE向分布,与坑道展布方向基本一致,在地表多呈近圆形或不规则状,一般上大下小,上口直径2~2.5 m,大者达5 m,坑深2~3 m,大者达10 m,表现为直径大小和深度不等的陷坑单体或群体,主要发育在浅埋采空区和老窿分布范围内,如柳林村邓湾南塌陷点(图3a中CB-TX0003),为椭圆形塌陷单坑,发育在老窿周边,邹郭村黄花山水库塌陷点(图3a中CB-TX0012),为圆形单坑,地下开采深度仅35 m。

    采空型地面塌陷主要表现为地面不均匀沉陷,其变形强度较低,主要表现为地基下沉,地面房屋和道路出现开裂变形、农田毁坏等。应城市采空型塌陷共9处,其变形通常较为缓慢,但通过逐年累积,这些破坏日趋严重,部分房屋已成为危房,直接影响居民住户的居住和生产生活条件。有的裂缝贯穿墙体,严重危及房屋整体安全(图3c)。另外,区内由于不均匀地面沉降使部分农田出现倾斜,失水现象较为严重。这类变形在矿区分布十分普遍,主要出现在深埋采空区范围内或陷坑周边。

    通过调查和统计分析,应城市企业规模化开采形成采空区面积约16 km2,由于历史开采形成的老窿大约240处,应城市老窿及规模化开采采空区空间分布如图4所示,统计分析表明,下方为规模化开采采空区的老窿共128个,其中发生老窿型塌陷共18处,占比约12.5%;下方无规模化开采采空区的老窿共112个,未发生老窿型地面塌陷,说明老窿型地面塌陷与下方大范围采空区密切相关。

    图  4  地面塌陷与老窿及采空区空间分布
    Figure  4.  The spatial distribution of collapse and old holes and goaf

    通过统计分析,应城市共发育9处采空型地面塌陷,其中6处地面塌陷采深采厚比小于60,2处地面塌陷采深采厚比为60~80,1处地面塌陷采深采厚比为80~100,该处地面塌陷发育于李咀石膏矿区,虽然采深采厚比较大,推测是由于其他扰动因素的增强,或者李咀石膏矿区的开矿时间比较早,回填率较低,导致了该地面塌陷的发育(图5)。随着采深采厚比的减小,采空区地面塌陷逐渐增多,且采空型塌陷主要发育在采深采厚比小于60的区域,且采深采厚比越小,地面塌陷越容易发育,地表变形越强烈,塌陷影响越大。

    图  5  采空型地面塌陷与采深采厚比分布图
    Figure  5.  The distribution of ground collapse and mining depth to thickness ratio

    石膏矿开采工作面初次来压后,在其不断推进过程中,上覆岩体的破坏主要可分为三带:冒落带、断裂带和弯曲带。冒落带是采出空间顶板岩层在自重力作用下垮塌,堆积在采空区,形成冒落带;断裂带随着井下石膏矿采区的扩大而逐步向上发展,当到一定范围时,断裂带高度达到最大;弯曲带即弯曲下沉带,位于断裂带之上直至地表,弯曲带中的岩体移动基本上是成层的、整体性移动。

    充水型老窿塌陷下方规模化开采巷道采空区多有充填且埋深较深,下方规模化开采采空区冒裂带向上发展,但由于规模化开采采空区与老窿埋深间隔较大,冒落带、断裂带之和小于两者之间埋深间隔,规模化采空区并未与老窿连通(图6)。老窿采空后,采区内是半充填状态,或局部未充填状态,闭坑后,洞口被回填,但回填土并没有填满采区,仅填满老窿竖井,地下水通过透水的竖井回填土以及裂隙不断流入采空区,直至采空区完全饱水。采空区内的石膏层与泥岩夹层是隔水层,此时,老窿采空区内是饱水的,老窿回填后经过多年的沉积压密作用下处于相对平衡状态,老窿塌陷地表变形表现为小水坑常年积水无明显变化、周边地表无明显变形及农田无漏水现象,如图3a中CB-TX0003所示柳林村邓湾南地面塌陷点。

    图  6  充水型老窿型地面塌陷成因示意图
    Figure  6.  The genetic diagram of ground collapse with water filled old holes

    不充水型老窿塌陷下方存在规模化开采巷道采空区,且下方规模化开采采空区与老窿埋深间隔较小,冒落带、断裂带之和远大于两者之间埋深间隔,规模化采空区直接与老窿连通(图7),大都表现为老窿洞口缓慢塌陷,具有发展性。由于老窿底部与规模化采空区连通,地下水的流动带动土中的细颗粒运移,导致老窿内负压,竖井中的土体向下垮落变形,慢慢扩展到地表,表现为地表塌陷坑持续扩大。此外,由于部分膏矿企业持续对规模化开采采空区进行抽水,老窿内的积水被疏干后,连接第四系潜水层、承压含水层以及基岩裂隙水与规模化开采采空区的通道,地下水缓慢的在此通道中不断的流动,从地表通过老窿到采空区,再被抽出到地表,老窿中回填的细颗粒也不断地发生移动,导致此类塌陷,经回填后一段时间还会再次产生塌陷,如图8所示新建街社区三矿2号地面塌陷点。

    图  7  不充水型老窿型地面塌陷成因示意图
    Figure  7.  The genetic diagram of ground collapse with water unfilled old holes
    图  8  新建街社区三矿2号地面塌陷
    Figure  8.  The ground collapse No.2 in Xinjian street community

    应城石膏矿规模化开采形成的采空区,开采深度较深,这种采空区造成的塌陷一般表现为地面的不均匀沉降,弯曲带影响地表,伴随地面下沉的一些表现形式为房屋裂缝、地表裂缝变形、农田失水等现象,影响范围一般比较大,如新建街社区三矿1号地面塌陷点。

    房柱法开采导致的采空区失稳主要表现为矿柱和顶板的破坏垮落。采用房柱式采矿过程中,随着矿石不断采出和矿柱侧向应力的逐渐消减,采场上覆岩层的应力转移到矿柱上,使矿柱应力增加并产生压缩变形。当矿山企业闭坑后,由于矿柱被回采破坏导致矿柱强度降低,个别或局部矿柱破坏从而引起顶板冒落。该采场顶板及上覆岩层压应力逐渐转移到相邻矿柱,导致相邻矿柱也相继遭到破坏,顶板冒落范围进一步扩大,从而引起采空区顶板垮落并通过三带影响逐渐传递到地面,地表主要见地面沉降、隆起和建筑物开裂等,如柳林村邓湾北地面塌陷点(图9)。

    图  9  矿柱破坏型采空塌陷成因机制
    Figure  9.  The formation mechanism of goaf collapse caused by pillar failure

    长壁式充填法开采的采空区主要采用矸石充填,将开采洗选过程中产生的矸石固体废物作为骨料充填入采空区,进而改善采场围岩变形和覆岩沉降程度,有效控制地表沉陷。因此采空区充填体的充填率及其强度对上覆岩层的运动状态起着至关重要的作用,不同充填率会导致上覆岩层运移结构形态和特征都存在明显区别。当采空区充填率低时,充填体不能对顶板下沉起到支撑作用,随着采空区范围的扩大,采空区顶板逐渐垮落破碎,与采空区固体充填体相互混合形成新的支撑体,直到采空区充填体被压密实,支撑体的压缩和采空区顶板的下沉达到平衡状态。此过程中采空区顶板随开采范围的扩大发生持续破断,形成的冒落带、断裂带及弯曲带随着工作面的推进而不断向上覆岩层传递,直到这种变形发展到地面,地表主要表现为建筑物开裂、地表裂缝等,如新建街社区三矿1号地面塌陷点(图10)。

    图  10  弯曲沉降型采空塌陷成因机制
    Figure  10.  The formation mechanism of bending goaf collapse

    (1)地面塌陷主要表现两种形式:一种是塌陷坑,在地表多呈近圆形或不规则状,表现为直径大小和深度不等的陷坑单体或群体,主要发育在浅埋采空区和老窿分布范围内;另一种是地面不均匀沉陷,其变形强度较低,主要表现为地基下沉,地面房屋、道路等地物出现开裂变形、农田毁坏。

    (2)地面塌陷发育规律:老窿型地面塌陷与下方大范围采空区密切相关,当老窿下方存在规模化开采采空区且埋深较浅时,老窿与采空区连通,老窿井口附近形成地面塌陷;采空型地面塌陷的发生则受采深采厚比的影响较大,随着采深采厚比的减小,采空区地面塌陷逐渐增多,且采空型地面塌陷主要发育在采深采厚比小于60的区域。

    (3)老窿型地面塌陷包含充水型和不充水型两种类型,充水型老窿塌陷下方规模化开采巷道采空区多有充填且埋深较深,冒裂带未影响至老窿,老窿与大范围采空区不连通,塌陷后表现为小水坑常年积水且塌陷趋于稳定;不充水型老窿塌陷下方存在规模化开采巷道采空区,且由于冒裂带的影响与老窿采空区连通,塌陷后表现为地表塌陷坑持续扩大,或者人工充填后一段时间又再次塌陷,重复回填又塌陷。

    (4)采空型地面塌陷主要与矿柱破坏和充填率相关。矿柱破坏主要是矿柱在闭坑前被回采导致强度降低,局部破坏垮塌,采空区顶板垮落并通过三带影响逐渐传递到地面,主要表现为地面沉陷、隆起和建筑物开裂等;在充填率低的情况下,上覆岩土体在重力作用下,逐渐形成冒落带、断裂带以及弯曲带并随着工作面的推进而不断向上覆岩层传递,直至变形发展到地面,主要表现为建筑物开裂、地表裂缝等。

  • 图  1   “23•7”特大暴雨北京市降水量分布图

    Figure  1.   Distribution of precipitation in Beijing during the "23•7" torrential rain

    图  2   暴雨后地质灾害点分布图

    Figure  2.   Distribution of geological hazards after rainstorm

    图  3   暴雨前后各乡镇/街道地质灾害发育对比图

    Figure  3.   Comparison of geological hazards development in Towns/Streets before and after rainstorm

    图  4   大台街道西洼村、斋堂镇新兴村受损房屋

    Figure  4.   Damaged houses in Xiwa Village in Datai Street and Xinxing Village in Zhaitang Town

    图  5   清水镇达摩庄村、王平镇西马各庄村

    Figure  5.   Damozhuang Village in Qingshui Town and Ximagezhuang Village in Wangping Town

    图  6   东辛房街道西山印工地及西山炮楼地基冲刷情况

    Figure  6.   Scouring of the Xishanyin construction site and Xishanpaolou foundation in Dongxinfang Street

    图  7   坡面冲刷及基坑淤积地质剖面

    Figure  7.   Geological profile of slope erosion and foundation pit sedimentation

    图  8   雁翅镇高台村路基冲刷、王平镇南港村房基冲刷

    Figure  8.   Subgrade erosion in Gaotai Village in Yanchi Town and scouring of house foundation in Nangang Village in Wangping Town

    图  9   完工后的拦挡坝和排导槽[20]

    Figure  9.   Retaining dam and guide groove after completion

    图  10   暴雨后的拦挡坝和排导槽

    Figure  10.   Retaining dam and guide groove after rainstorm

    图  11   清水镇江水河村、上清水村

    Figure  11.   Jiang Shuihe and Shangqingshui Village in Qingshui Town

    图  12   清水镇梁家庄村干砌石墙垮塌、雁翅镇泗水村挡墙无排水孔

    Figure  12.   Dry stone wall collapse in Liangjiazhuang Village in Qingshui Town and Retaining wall without drainage holes in Sishui Village in Yanchi Town

    图  13   王平镇南港村沟道内房屋及被泥石流淤埋的房屋

    Figure  13.   Houses in the gully buried by debris flow in Nangang Village in Wangping Town

    图  14   潮白河流域示意图

    Figure  14.   Schematic diagram of Chaobaihe watershed

    表  1   门头沟区“23•7”暴雨前后地质灾害隐患点统计表

    Table  1   Statistics of geological hazards before and after the “23•7” torrential rain in Mentougou District

    乡镇隐患点数崩塌滑坡泥石流地面塌陷
    暴雨前暴雨后新增暴雨前暴雨后新增暴雨前暴雨后新增暴雨前暴雨后新增暴雨前暴雨后新增
    城子街道31112
    大台街道878797216
    大峪街道26112112
    东辛房街道1225117
    军庄镇1341021211
    龙泉镇5841552871323
    妙峰山镇1715917053214
    清水镇213401953421642
    潭柘寺镇1564714724373163
    王平镇1263811129128121
    雁翅镇27072262581678
    永定镇1981522611
    斋堂镇2002717121165131
    总计133035312222607335153507
    下载: 导出CSV

    表  2   暴雨前、后各类地质灾害统计表

    Table  2   Statistics of various geological hazards before and after rainstorm

    灾害类型 暴雨前潜在发育 暴雨后形成 触发比例/%
    崩塌 1222 260 21.28
    滑坡 7 33 471.43
    泥石流 51 53 103.92
    地面塌陷 50 7 14.00
    合计 1330 353 26.54
    下载: 导出CSV
  • [1] 邵月红,刘玲,刘俊杰,等. 海河流域近60 a降水极值的频率分析及时空分布特征[J]. 大气科学学报,2020,43(2):381 − 391. [SHAO Yuehong,LIU Ling,LIU Junjie,et al. Frequency analysis and its spatiotemporal characteristics of precipitation extremes in the Haihe River Basin during 1951—2010[J]. Transactions of Atmospheric Sciences,2020,43(2):381 − 391. (in Chinese with English abstract)]

    SHAO Yuehong, LIU Ling, LIU Junjie, et al. Frequency analysis and its spatiotemporal characteristics of precipitation extremes in the Haihe River Basin during 1951—2010[J]. Transactions of Atmospheric Sciences, 2020, 43(2): 381 − 391. (in Chinese with English abstract)

    [2] 王晓欣,姜大膀,郎咸梅. CMIP5多模式预估的1.5 °C升温背景下中国气温和降水变化[J]. 大气科学,2019,43(5):1158 − 1170. [WANG Xiaoxin,JIANG Dabang,LANG Xianmei. Temperature and precipitation changes over China under a 1.5 °C global warming scenario based on CMIP5 models[J]. Chinese Journal of Atmospheric Sciences,2019,43(5):1158 − 1170. (in Chinese with English abstract)]

    WANG Xiaoxin, JIANG Dabang, LANG Xianmei. Temperature and precipitation changes over China under a 1.5 °C global warming scenario based on CMIP5 models[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1158 − 1170. (in Chinese with English abstract)

    [3] 张建云,王银堂,贺瑞敏,等. 中国城市洪涝问题及成因分析[J]. 水科学进展,2016,27(4):485 − 491. [ZHANG Jianyun,WANG Yintang,HE Ruimin,et al. Discussion on the urban flood and waterlogging and causes analysis in China[J]. Advances in Water Science,2016,27(4):485 − 491. (in Chinese with English abstract)]

    ZHANG Jianyun, WANG Yintang, HE Ruimin, et al. Discussion on the urban flood and waterlogging and causes analysis in China[J]. Advances in Water Science, 2016, 27(4): 485 − 491. (in Chinese with English abstract)

    [4] 陆婷婷,崔晓鹏. 北京两次特大暴雨过程观测对比[J]. 大气科学,2022,46(1):111 − 132. [LU Tingting,CUI Xiaopeng. Observational comparison of two torrential rainfall events in Beijing[J]. Chinese Journal of Atmospheric Sciences,2022,46(1):111 − 132. (in Chinese with English abstract)]

    LU Tingting, CUI Xiaopeng. Observational comparison of two torrential rainfall events in Beijing[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(1): 111 − 132. (in Chinese with English abstract)

    [5] 余锡平,单楷越. 华北平原极端暴雨洪水事件共性机制探讨及对策建议[J]. 中国水利,2023(18):24 − 28. [YU Xiping,SHAN Kaiyue. Common mechanisms and disaster prevention strategies for catastrophic rainfall and flooding events in the North China Plain[J]. China Water Resources,2023(18):24 − 28. (in Chinese with English abstract)]

    YU Xiping, SHAN Kaiyue. Common mechanisms and disaster prevention strategies for catastrophic rainfall and flooding events in the North China Plain[J]. China Water Resources, 2023(18): 24 − 28. (in Chinese with English abstract)

    [6] 李裕宏. 北京“63•8” 特大暴雨洪水回顾与启示[J]. 北京水务,2008(4):57 − 59. [LI Yuhong. Review and enlightenment of the “63•8” torrential rain and flood in Beijing[J]. Beijing Water,2008(4):57 − 59. (in Chinese)]

    LI Yuhong. Review and enlightenment of the “63•8” torrential rain and flood in Beijing[J]. Beijing Water, 2008(4): 57 − 59. (in Chinese)

    [7] 王海芝,曾庆利,许冰,等. 北京“7•21” 特大暴雨诱发的地质灾害类型及其特征分析[J]. 中国地质灾害与防治学报,2022,33(2):125 − 132. [WANG Haizhi,ZENG Qingli,XU Bing,et al. Types and characteristics of geological disasters induced by the “7•21” rainstorm in Beijing[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):125 − 132. (in Chinese with English abstract)]

    WANG Haizhi, ZENG Qingli, XU Bing, et al. Types and characteristics of geological disasters induced by the “7•21” rainstorm in Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 125 − 132. (in Chinese with English abstract)

    [8] 孙继松,何娜,王国荣,等. “7•21” 北京大暴雨系统的结构演变特征及成因初探[J]. 暴雨灾害,2012,31(3):218 − 225. [SUN Jisong,HE Na,WANG Guorong,et al. Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012[J]. Torrential Rain and Disasters,2012,31(3):218 − 225. (in Chinese with English abstract)]

    SUN Jisong, HE Na, WANG Guorong, et al. Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012[J]. Torrential Rain and Disasters, 2012, 31(3): 218 − 225. (in Chinese with English abstract)

    [9] 代文佳. 北京遭遇历史罕见特大暴雨,因灾死亡33人,18人失踪[EB/OL]. 北京:新京报,2023(2023-08-09)[2024-01-15]. [DAI Wenjia. Beijing suffered a rare torrential rain in history,and 33 people died and 18 people were missing due to the disaster[EB/OL]. Beijing:BJNEWS,2023(2023-08-09)[2024-01-15].]

    DAI Wenjia. Beijing suffered a rare torrential rain in history, and 33 people died and 18 people were missing due to the disaster[EB/OL]. Beijing: BJNEWS, 2023(2023-08-09)[2024-01-15].

    [10] 孟生勇,江兴元,杨义,等. 降雨诱发堆积体滑坡水土响应与稳定性时空演化试验研究[J]. 水文地质工程地质,2023,50(1):104 − 112. [MENG Shengyong,JIANG Xingyuan,YANG Yi,et al. An experimental study of spatial-temporal evolution of water-soil response and stability of a rainfall-induced accumulation landslide[J]. Hydrogeology & Engineering Geology,2023,50(1):104 − 112. (in Chinese with English abstract)]

    MENG Shengyong, JIANG Xingyuan, YANG Yi, et al. An experimental study of spatial-temporal evolution of water-soil response and stability of a rainfall-induced accumulation landslide[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 104 − 112. (in Chinese with English abstract)

    [11] 曲雪妍,李媛,房浩,等. 基于时空维度耦合的地质灾害发育程度评价研究[J]. 水文地质工程地质,2022,49(1):137 − 145. [QU Xueyan,LI Yuan,FANG Hao,et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology,2022,49(1):137 − 145. (in Chinese with English abstract)]

    QU Xueyan, LI Yuan, FANG Hao, et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 137 − 145. (in Chinese with English abstract)

    [12] 南赟,翟淑花,李岩,等. 北京地区“23•7” 特大暴雨型地质灾害特征及预警成效分析[J]. 中国地质灾害与防治学报,2024,35(2):66 − 73. [NAN Yun,ZHAI Shuhua,LI Yan,et al. Analysis on the characteristics of geological disasters and effectiveness of early warning duiring heavy rainfall on “23•7” in Beijing[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):66 − 73. (in Chinese with English abstract)]

    NAN Yun, ZHAI Shuhua, LI Yan, et al. Analysis on the characteristics of geological disasters and effectiveness of early warning duiring heavy rainfall on “23•7” in Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 66 − 73. (in Chinese with English abstract)

    [13] 顾福计,钱龙,王梦洁,等. 太行山河北段 “23•7” 强降雨引发的地质灾害规律研究[J]. 中国地质灾害与防治学报,2024,35(2):55 − 65. [GU Fuji,QIAN Long,WANG Mengjie,et al. Analysis of geological hazards caused by the “23•7” heavy rainfall in the northern section of Taihang Mountain in Hebei Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):55 − 65. (in Chinese with English abstract)]

    GU Fuji, QIAN Long, WANG Mengjie, et al. Analysis of geological hazards caused by the “23•7” heavy rainfall in the northern section of Taihang Mountain in Hebei Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 55 − 65. (in Chinese with English abstract)

    [14] 杜晓鹤,何秉顺,徐卫红,等. 海河“23•7” 流域性特大洪水蓄滞洪区运用复盘及系统治理绿色发展的思考[J]. 中国防汛抗旱,2023,33(9):31 − 38. [DU Xiaohe,HE Bingshun,XU Weihong,et al. Retrospective operation in the “23•7” extreme flood storage and detention area of the Haihe River Basin and reflection on systematic governance and green development[J]. China Flood & Drought Management,2023,33(9):31 − 38. (in Chinese with English abstract)]

    DU Xiaohe, HE Bingshun, XU Weihong, et al. Retrospective operation in the “23•7” extreme flood storage and detention area of the Haihe River Basin and reflection on systematic governance and green development[J]. China Flood & Drought Management, 2023, 33(9): 31 − 38. (in Chinese with English abstract)

    [15] 刘家宏,梅超,王佳,等. 北京市门头沟流域“23•7” 特大暴雨洪水过程分析[J]. 中国防汛抗旱,2023,33(9):50 − 55. [LIU Jiahong,MEI Chao,WANG Jia,et al. Flood survey of“23 · 7” heavy rain in Mentougou Watershed of Beijing[J]. China Flood & Drought Management,2023,33(9):50 − 55. (in Chinese with English abstract)]

    LIU Jiahong, MEI Chao, WANG Jia, et al. Flood survey of“23 · 7” heavy rain in Mentougou Watershed of Beijing[J]. China Flood & Drought Management, 2023, 33(9): 50 − 55. (in Chinese with English abstract)

    [16] 中华人民共和国水利部. 水利部召开海河“23•7”流域性特大洪水防御情况新闻发布会[EB/OL]. 北京,2023(2023-08-21) [2024-01-15]. [Ministry of Water Resources of the People’s Republic of China. The Ministry of Water Resources held a press conference on the prevention of the "23•7" catastrophic flood in the Haihe River basin[EB/OL]. Beijing,2023(2023-08-21) [2024-01-15].]

    Ministry of Water Resources of the People’s Republic of China. The Ministry of Water Resources held a press conference on the prevention of the "23•7" catastrophic flood in the Haihe River basin[EB/OL]. Beijing, 2023(2023-08-21) [2024-01-15].

    [17] 冉淑红. 北京市门头沟区地质灾害隐患特征[J]. 城市地质,2013,8(3):30 − 34. [RAN Shuhong. The characteristics of geological disasters in Mentougou of Beijing[J]. Urban Geology,2013,8(3):30 − 34. (in Chinese with English abstract)]

    RAN Shuhong. The characteristics of geological disasters in Mentougou of Beijing[J]. Urban Geology, 2013, 8(3): 30 − 34. (in Chinese with English abstract)

    [18] 郭英. 北京门头沟区斜坡类突发地质灾害特征及影响因素分析[J]. 城市地质,2023,18(3):1 − 8. [GUO Ying. Characteristics and impact factors of abrupt slope geological disasters in Mentougou District,Beijing[J]. Urban Geology,2023,18(3):1 − 8. (in Chinese with English abstract)]

    GUO Ying. Characteristics and impact factors of abrupt slope geological disasters in Mentougou District, Beijing[J]. Urban Geology, 2023, 18(3): 1 − 8. (in Chinese with English abstract)

    [19] 北京市规划和自然资源委员会. 2023年门头沟区突发地质灾害隐患点统计表[EB/OL]. 北京,2023(2023-05-26)[2024-01-15]. [Beijing Municipal Commission of Planning and Natural Resources. Statistical table of sudden geological disasters in Mentougou District in 2023[EB/OL]. Beijing,2023(2023-05-26)[2024-01-15].]

    Beijing Municipal Commission of Planning and Natural Resources. Statistical table of sudden geological disasters in Mentougou District in 2023[EB/OL]. Beijing, 2023(2023-05-26)[2024-01-15].

    [20] 马燊,安振宇,郭映虹. 保一方平安!门头沟王平镇这个特大型泥石流隐患治理工程完工[EB/OL]. 北京,2023(2020-08-04)[2024-01-15]. [MA Shen,AN Zhenyu,GUO Yinghong. Ensuring Safety:a control project of potential extra-large debris flow was completed in Wangping Town,Mentougou District,Beijing[EB/OL]. Beijing,2023(2020-08-04)[2024-01-15].]

    MA Shen, AN Zhenyu, GUO Yinghong. Ensuring Safety: a control project of potential extra-large debris flow was completed in Wangping Town, Mentougou District, Beijing[EB/OL]. Beijing, 2023(2020-08-04)[2024-01-15].

    [21] 孔锋,王一飞,吕丽莉,等. 北京“7•21” 特大暴雨洪涝特征与成因及对策建议[J]. 人民长江,2018,49(增刊1):15 − 19. [KONG Feng,WANG Yifei,LYU Lili,et al. Characteristics,mechanism,and countermeasures of “July 21” torrential rain and flood in Beijing[J]. Yangtze River,2018,49(Sup 1):15 − 19. (in Chinese)]

    KONG Feng, WANG Yifei, LYU Lili, et al. Characteristics, mechanism, and countermeasures of “July 21” torrential rain and flood in Beijing[J]. Yangtze River, 2018, 49(Sup 1): 15 − 19. (in Chinese)

    [22] 北京市规划和自然资源委员会. 市地勘院复盘总结汛期地质灾害应对工作[EB/OL]. 北京,2023(2023-09-15)[2024-01-15]. [Beijing Municipal Commission of Planning and Natural Resources. A review and summary of the geological disaster response during the flood season by the Municipal Geological Exploration Institute[EB/OL]. Beijing,2023(2023-09-15)[2024-01-15].]

    Beijing Municipal Commission of Planning and Natural Resources. A review and summary of the geological disaster response during the flood season by the Municipal Geological Exploration Institute[EB/OL]. Beijing, 2023(2023-09-15)[2024-01-15].

    [23] 刁凡超. 张建云院士:要给洪水出路和空间,蓄滞洪区需加强排水设施建设[EB/OL]. 北京,2023(2023-08-19)[2024-01-15]. [DIAO Fanchao. Academician ZHANG Jianyun:Providing an Outlet and Space for Floods,Strengthening Drainage Facility Construction in Flood Storage and Discharge Areas[EB/OL]. Beijing,2023(2023-08-19)[2024-01-15].]

    DIAO Fanchao. Academician ZHANG Jianyun: Providing an Outlet and Space for Floods, Strengthening Drainage Facility Construction in Flood Storage and Discharge Areas[EB/OL]. Beijing, 2023(2023-08-19)[2024-01-15].

图(14)  /  表(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  8
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-12-11
  • 录用日期:  2024-12-12
  • 网络出版日期:  2025-01-14

目录

/

返回文章
返回