ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

2024年4月20日广东韶关暴雨事件触发的浅层滑坡编目与分布特征分析

黄远东, 许冲, 刘毅, 何祥丽, 邵霄怡, 赵斌滨, 孔小昂

黄远东,许冲,刘毅,等. 2024年4月20日广东韶关暴雨事件触发的浅层滑坡编目与分布特征分析[J]. 中国地质灾害与防治学报,2025,36(2): 1-15. DOI: 10.16031/j.cnki.issn.1003-8035.202412019
引用本文: 黄远东,许冲,刘毅,等. 2024年4月20日广东韶关暴雨事件触发的浅层滑坡编目与分布特征分析[J]. 中国地质灾害与防治学报,2025,36(2): 1-15. DOI: 10.16031/j.cnki.issn.1003-8035.202412019
HUANG Yuandong,XU Chong,LIU Yi,et al. Inventory and distribution character of shallow landslides triggered by heavy rain event in Shaoguan, Guangdong Province on April 20, 2024[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-15. DOI: 10.16031/j.cnki.issn.1003-8035.202412019
Citation: HUANG Yuandong,XU Chong,LIU Yi,et al. Inventory and distribution character of shallow landslides triggered by heavy rain event in Shaoguan, Guangdong Province on April 20, 2024[J]. The Chinese Journal of Geological Hazard and Control,2025,36(2): 1-15. DOI: 10.16031/j.cnki.issn.1003-8035.202412019

2024年4月20日广东韶关暴雨事件触发的浅层滑坡编目与分布特征分析

基金项目: 国家电网公司总部科技项目(5500-202455159A-1-1-ZN)
详细信息
    作者简介:

    黄远东(1999—),男,四川绵阳人,固体地球物理学专业,博士研究生,主要从事地质灾害防治研究工作。E-mail:hyd1640@126.com

    通讯作者:

    许 冲(1982—),男,河南周口人,地质工程专业,博士,研究员,主要从事地质灾害基础理论研究与风险的研究。 E-mail:chongxu@ninhm.ac.cn

  • 中图分类号: P642.22

Inventory and distribution character of shallow landslides triggered by heavy rain event in Shaoguan, Guangdong Province on April 20, 2024

  • 摘要:

    文章研究针对2024年4月广东韶关极端暴雨事件,基于降雨前后高分辨率遥感影像,采用目视解译法提取滑坡边界,并结合实地调查进行验证。最终构建了详细的滑坡编目库(6310处浅层滑坡),并对其分布特征、几何形态及控制因素进行系统分析。分析结果显示此次滑坡分布具有显著的空间聚集性,高密度区域呈北东—南西方向集中,面积多集中在102~103 m2的小规模范围内。滑坡的几何形态特征揭示了其流动性与起始高差及长宽比之间的密切关系。在控制因素分析中,结果表明高程、坡度、坡向、地形湿度指数等自然地形因子显著影响滑坡的分布与规模。此外,人为活动和河流水动力过程在滑坡触发中也起到关键作用。研究成果不仅深化了对极端降雨触发滑坡机制的理解,还为区域性滑坡防灾减灾和早期预警体系建设提供了科学依据。

    Abstract:

    This study addresses the extreme rainfall event in Shaoguan, Guangdong Province, in April 2024. Utilizing high-resolution remote sensing imagery before and after the rainfall, landslide boundary were delineated through visual interpretation and verified by field validation. A detailed landslide inventory of 6 310 shallow landslides was constructed. The spatial distribution, geometric characteristics, and controlling factors of these landslides were systematically analyzed. Key Results include: (1) Spatial Distribution: The landslides demonstrated significant spatial clustering, with high-density regions concentrated along a northeast-southwest axis. Most landslides were small-scale, ranging from 102 to 103m2. (2) Geometric Characteristics: The analysis revealed a strong correlation between landslide mobility, initiating elevation differences, and the aspect ratios. (3) Controlling Factors: Natural terrain factors such as elevation, slope gradient, aspect, and the topographic wetness index (TWI) significantly influenced landslide distribution and scale. Additionally, human activities and riverine dynamics also played critical roles in triggering these landslides. This study not only deepens the understanding of landslide mechanisms triggered by extreme rainfall, but also provides a scientific basis for regional landslide disaster prevention, mitigation, and early warning system development.

  • 随着全球气候变暖和极端天气事件的增多,暴雨引发的地质灾害在全球范围内发生频率显著提升,并造成了严重后果[14]。尤其是在山地和丘陵地区,降雨诱发的浅层滑坡不仅频率增加,其破坏性也日益显著[58]。这类滑坡通常具有较高流动性,在短时间内沿坡面快速滑移扩展,造成大面积地表破坏,对区域环境和人类活动构成了重大威胁。浅层滑坡不仅常导致道路阻断和基础设施受损,甚至直接危及人类生命安全[912]。目前,研究者主要围绕滑坡的编目建立[1314]、空间分布[15]、滑坡评价[1619]、诱发机制[2024]和监测预警[2530]等方向开展了广泛研究。其中,详细且精确的滑坡数据编目是所有研究的重要基础。滑坡数据编目的主要方法包括基于遥感影像的目视解译法、自动化提取法以及基于地面调查的人工标注法等。目视解译法具有精度高的优势,但耗时较长,且对解译者经验依赖较大[3133];自动化提取法则能够处理大范围区域的滑坡识别,但在复杂地形条件下容易受到误差干扰[3436];地面调查法虽然精确,但难以覆盖大范围区域,因此在时效性上存在较大局限性。

    2024年4月发生在中国广东省韶关市的极端暴雨事件在短时间内引发了大量浅层滑坡,并造成区域内广泛的基础设施破坏[37]。尽管已有研究关注到了这次事件并初步对滑坡分布进行了解译。但是受限于时效性,滑坡编目的完整性和精确度有待进一步提高。因此,本研究利用降雨前后的高分辨率卫星影像,结合GIS平台进行目视解译,同时辅以实地调查数据进行验证,最终构建了此次事件诱发的详细滑坡编目库。考虑到降雨型滑坡的失稳过程不仅由单一因素决定,而是多种因素综合作用的结果,本研究在分析滑坡分布时,纳入了地形、地质构造等九类环境控制因素。此外,还通过数理统计分析探索了各个控制因素与滑坡分布的关系。研究结果不仅为强降雨诱发滑坡的易发性研究提供了重要参考,也为区域内滑坡防治措施的制定提供了科学依据。

    2024年4月中旬以来,广东省大部分地区遭受持续性暴雨侵袭,特别是在4月16日—22日期间,暴雨和特大暴雨覆盖了包括韶关在内的多个区域,极端降水过程给当地造成了严重影响。据广东省气象服务中心发布,4月1日—30日,广东全省平均雨量497.4 mm,打破4月雨量历史纪录,较常年同期(176.8 mm)显著偏多181%。其中韶关市4月平均雨量是常年3.96倍,为增幅最大(https://weibo.com/2015316631/OcokI8rmB)。图1展示了4月以来韶关市区气象站点数据,其中多日降雨量超过100 mm,最大单日降雨量接近200 mm,累计降雨量更是接近1000 mm。

    图  1  4月以来韶关市日降雨量分布图
    Figure  1.  Daily rainfall distribution map of Shaoguan City since April

    广东省韶关市武江区江湾镇位于粤北地区,地处华南褶皱系的南岭构造带内,区域地形以山地和丘陵为主(图2),整体呈现四周高、中间低的地貌特征。区域内河网发育,水系分布广泛。地质构造复杂,基岩主要由花岗岩和片麻岩组成,上覆地层则以第四纪松散堆积物和风化残积土为主[3839]。受长期构造活动和强降水影响,该地区成为地质灾害高发区,特别是在暴雨等极端天气条件下,滑坡和泥石流等灾害频率显著增加[40]。在2024年4月的极端暴雨事件中,江湾镇作为粤北暴雨中心之一,降雨量远超常年均值,极端降水引发了大量山体滑坡灾害,导致多条道路中断,房屋倒塌,基础设施严重受损,给区域经济和居民生活带来了巨大影响。

    图  2  研究区位置及概况图
    Figure  2.  Location and overview map of the study area

    已有研究表明,降雨诱发的浅层滑坡在遥感影像上通常表现为显著的色调变化和纹理特征差异。本研究利用高分辨率光学遥感卫星影像,采用人工目视解译的方法提取滑坡数据。具体而言,基于Planet卫星3月和4月的月度合成影像(空间分辨率为3 m),通过对比降雨前后多时相影像,能够精准识别此次暴雨触发的滑坡位置与边界,同时有效剔除非此次降雨事件引发的滑坡,从而确保数据的高精度和时效性。

    图3所示,图3(a)(b)展示了同一区域在降雨前后的遥感影像,滑坡区域在降雨后显现出明显的地表裸露特征,其边界以黄色线条标注。类似地,图3(c)(d)为另一处区域的影像对比,也清晰反映了降雨导致的滑坡发生范围。为进一步验证遥感解译结果,本研究结合了灾害发生后的现场调查,如图3(e)(f)所示。图3(e)拍摄于现场滑坡点,图3(f)记录了另一处滑坡现场,照片显示了滑坡坡面破坏和周边环境的具体情况。通过实地观测的滑坡特征,对遥感影像上降雨滑坡的解译标准进行调整优化,尽可能保证数据的可靠性和准确性。

    图  3  滑坡前后遥感影像对比图及实地滑坡调查图
    Figure  3.  Comparison of remote sensing images before and after the landslide and field landslide investigation

    影响因子的选择方面,我们考虑了相关的研究成果和经验,包括已有文献中对降雨触发滑坡分布规律和易发性的分析[4145],同时也参考了研究区域的具体情况[41, 4648]。对所选因子进行了相关性分析,参考Pearson相关系数和统计意义对高度相关且冗余的因子进行剔除。例如研究区范围较小,所涉及的岩性较为单一(花岗岩残积土为主),就本研究范围而言,其统计价值相对有限,因此后续未进一步分析。值得一提的是,尽管岩性在统计分析层面暂未凸显关键作用,但鉴于具有较强代表性,因此该区域是开展物理模型试验的理想研究区。最终我们选取高程、坡度、坡向、剖面曲率、相对坡位指数、地形湿度指数、土地利用类型、距离道路距离和距离河流距离纳入分析范围。

    对于影响因子的计算,本研究采用了30 m分辨率的数字高程模型(digital elevation model,DEM)数据,其具体来源为Copernicus DEM(https://doi.org/10.5270/ESA-c5d3d65),直接反映了高程信息。基于GIS软件的表面分析功能计算DEM中的坡度、坡向和剖面曲率。基于地形分析功能,计算获得相对坡位指数和地形湿度指数。土地利用类型数据来源于中国科学院发布的30 m分辨率GLC_FCS30D数据(https://zenodo.org/records/8239305),本文对其进行了分类和重分类,以方便后续分析。水系和道路数据则基于自然资源部发布的全国1∶100万基础地理信息(https://www.webmap.cn/)。本文对水系和道路进行距离分析,确定各研究区各点位置到水体及道路的实际距离,得到距离数据。上述因子最终均以30 m分辨率的栅格TIFF 格式导出并进行后续分析。具体研究区的因子分布如图4所示,其中图4(g)的土地利用类型在表1中具体列出,提供了各影响因子的地理位置和分布情况。

    图  4  研究区环境因子
    Figure  4.  Environmental factors in the study area
    表  1  土地利用类型编号
    Table  1.  Land use type codes
    编号具体类型
    10雨养耕地
    11草本植被覆盖
    20灌溉耕地
    51开阔常绿阔叶林
    52封闭常绿阔叶林
    61开阔落叶阔叶林
    62封闭落叶阔叶林
    71开阔常绿针叶林
    72封闭常绿针叶林
    120灌木地
    121常青灌木地
    180湿地
    190不透水面
    210水体
    下载: 导出CSV 
    | 显示表格

    尽管部分因子分辨率与遥感影像分辨率(3 m)存在差异,但二者的适用目的并不相同:高分辨率影像用于精准解译滑坡边界与位置,确定滑坡区域。而因子数据旨在提取区域尺度的控制因素(如坡度、地形湿度指数等),揭示滑坡分布与地形因子的普遍规律。因子分辨率的精度可能会在一定程度上导致结果的偏差。但受限于数据获取限制与难度,文中所采用的数据已是目前研究区公开可获取的高分辨率的因子数据。此外,本研究关注的是区域尺度滑坡分布与地形因子的统计规律,而非单点精度,因此分析结果仍具有代表性和可靠性。

    解译结果表明,此次降雨事件在研究区范围内共计触发6310处浅层滑坡。图5展示了2024年4月韶关暴雨事件后,在研究区内解译的滑坡分布与密度情况。滑坡密度图以栅格单元为统计单元,1 km为搜索半径,计算得到滑坡的数量密度。直观呈现了滑坡的空间分布特征和密集区域。从滑坡数量地理分布来看,呈现显著的空间聚集性。在图5标注的1、2、3、4四个区域,滑坡密度明显高于周围区域,达到了每平方千米分布有近150个滑坡。这些高密度区域整体呈现北东—南西的趋势。

    图  5  滑坡编目展示
    Figure  5.  Landslide inventory display

    图5(b)(c)子图为图5(a)中标注的1和2区域的放大图,图3(b)(d)为图5(a)中标注的3和4区域的放大图,展示了滑坡在遥感影像上的具体形态特征。结合实地调查发现,上述高密度区域均位于省道S520(江湾段)两侧。

    此次降雨事件触发的滑坡的总面积达到5.85 km2,其中最大面积为22368.6 m2图6展示了滑坡面积-滑坡密度图。并用对数正态分布函数进行拟合。随着滑坡面积的增加,滑坡密度先增加然后逐渐减少。这意味着小型规模的滑坡更为常见,集中在102~103 m2,而大型滑坡则相对较少。具体的统计结果表明,有3853处滑坡面积在102~103 m2,占总滑坡数量的66.7%,这些滑坡的总面积达到1.72 km2,占滑坡总面积的29.9%。

    图  6  滑坡面积-滑坡密度图
    Figure  6.  Landslide area-density graph

    在滑坡流动性分析中,滑坡的几何形态参数是反映其运动特征的关键指标[4951]。根据国际工程地质与环境协会(IAEG)滑坡术语专委会(C37-Landslide Nomenclature)工作组的研究成果,选择开源测量工具ALPA对滑坡几何形态参数进行提取[52]图7(a)展示了降雨滑坡面积与滑行距离之间的关系。通过频率直方图显示,最大滑行距离为311.62 m,大部分滑坡的滑行距离在75 m以下,占比80.84%,共有4672处。其中,滑行距离在25~50 m之间的滑坡有2137处,占比37%。散点图的横坐标为滑坡面积(A)纵坐标(L),数据点通过颜色变化表示密度。采用幂律拟合模型得到的曲线(式1),其R2值为0.78,清晰地展示了滑坡面积与滑行距离之间的正相关趋势,并提供95%置信区间和预测区间。直方图的纵坐标与散点图保持一致,进一步支持所观察到的趋势。

    图  7  区域滑坡形态特征统计
    Figure  7.  Statistical chart of regional landslide morphological characteristics
    $$ L=\mathrm{lg}A^{3.72} $$ (1)

    式中:L——滑行距离/m;

    A——滑坡面积/m2

    图7b 显示了滑坡面积(A)与滑坡长宽比(ε)之间的关系。直方图表明,ε值最高可达16.49,主要集中在1~4,占比67.23%,共有3 885处滑坡。尽管两者之间存在一定相关性,但由于数据复杂性,无法用单一数学模型准确拟合。因此,研究采用包络线(式2)描述总体趋势,绝大多数滑坡散点位于包络线以下,高密度区域集中在面积102~103 m2ε值在1~4,表明这类滑坡更为常见。随着面积增大,长宽比通常增高,这反映出较大滑坡往往形状更为延展;同时,数据的高度分散性提示,不同滑坡之间的几何变异性源自多种因素,如地形特征、地质构造和环境条件。

    $$ \varepsilon=4.05\mathrm{lg}A-4.97 $$ (2)

    式中:ε——滑坡长宽比;

    A——滑坡面积/m2

    图7(c)展示了滑坡(L)与高差(H)之间的关系。大部分滑坡的高差为20 m以下,包括3183处滑坡,占比55.08%,最大滑坡高程达到132.49 m。采取线性模型得到的拟合线表明滑行距离与高差呈显著正相关(式3),拟合模型的R2为0.63。这表明随着高差的增加,滑坡的滑行距离也趋于增加。这意味着,较高的滑坡起始点往往导致更远的滑行距离。这种关系与滑坡的动力学过程相关,其中高差提供了更多的势能,从而增加了滑坡体的动能和流动性。

    $$ H=0.41L+1.19 $$ (3)

    式中:H——滑坡高差/m;

    A——滑坡面积/m2

    图7(d)展示了滑坡的H/L与滑坡面积(A)之间的关系。在滑坡动力学研究中,H/L是衡量滑坡能量转化与运动特性的重要指标之一。从理论上讲,当H/L值较小时,意味着在相对较小的高差下能够实现较长的滑行距离,这表明滑坡体在运动过程中能够更有效地将重力势能转化为动能,并且在运动过程中受到的阻力相对较小。因此在一些研究中,该指标也被用于反映滑坡的流动性[5356]。此次事件触发的滑坡的H/L主要分布在0.2~0.6,包括3563处滑坡,占比61.65%,呈现出区域浅层滑坡的强流动性特征。

    在散点图中,大部分滑坡均位于我们得到的包络线之下(式4)。在这之中,滑坡的H/L与面积之间存在一定的负相关关系。这意味着,随着滑坡面积的增加,H/L有减小的趋势。

    $$ H/L=-0.63\mathrm{lg}A+2.67 $$ (4)

    式中:H——滑坡高差/m;

    L——滑行距离/m;

    A——滑坡面积/m2

    滑坡数量和滑坡总面积在不同高程区间内的分布存在显著差异,见图8(a)。滑坡主要集中在海拔150~350 m,其中200~250 m区间内的滑坡数量(1369个)和滑坡总面积(约1.446 3×106 m2)达到峰值。从总体趋势来看,滑坡数量和总面积在150~350 m呈现快速增加,随后在350 m以上逐渐减少。在500 m以上的高海拔区域,滑坡数量和总面积显著下降。

    图  8  滑坡与控制因素关系分析
    Figure  8.  Analysis of the relationship between landslides and controlling factors

    坡度是影响滑坡发生的重要地形因子,直接决定了地表重力分量、降雨汇流速度以及土壤稳定性等关键特性。一般来说,坡度较大的区域更容易因降雨诱发滑坡,因为陡峭的坡面使得抗剪力不足以抵抗重力和孔隙水压力的增大[5758]。从统计分析结果来看,见图8(b),滑坡主要集中在坡度16°~28°,其中20°~24°区间的滑坡数量(1228个)和滑坡总面积(约1.183 1×106 m2)均达到峰值。本文分析该现象主要由以下原因导致:从图4(b)可以看出,在研究区范围内,高坡度区间面积占比非常小,尽管在理论上应存在更高的滑坡概率,但实际的滑坡数量和面积受限于其实际面积的局限。此外,在其他广东省区域的降雨滑坡研究中,包括韶关市[37]、揭西县[14]、陆河县[59]、龙川县[10, 60]的研究中,都存在滑坡主要分布于坡度45°以下范围的结论。综合现有研究,研究区基岩主要由花岗岩和片麻岩组成,上覆地层以第四纪松散堆积物和风化残积土为主,其他区域具有相似的岩性组成。关于此类岩性的滑坡失稳机制研究中提到,降雨过程中,由于降雨强度远高于花岗岩残土渗透系数,强降雨主要影响边坡浅表层,未入渗的雨水产生地表径流,通过浅表面滑动破坏。在斜坡浅表饱和区产生饱和渗流场,并演变成分布不均匀的特征,即在斜坡中下部饱和区厚度大于上部饱和区的厚度,因此坡体中下部变形破坏较多,对应坡度较缓的区域[6061]。此外广东省对坡度大于25°的区域规定了林木采伐限制,也是该现象的支持原因之一[7]

    已有研究表明,山区迎风坡地带往往具有更高的降雨量[6264],因此能够接收更多降雨的水动力影响以及其坡面汇水能力增强,因此相对其他坡向,迎风坡滑坡分布更为集中[33, 65]。本研究中,滑坡数量和面积在东坡(E)和东南坡(SE)上达到峰值,其中东坡滑坡数量为1082个,总面积为96.78×104 m2,东南坡滑坡数量为1026个,总面积为95.97×104 m2。此外,南坡(S)滑坡数量为976个,总面积略高于东坡和东南坡,达到97.20×104 m2。相较之下,北坡(N)、西北坡(NW)和东北坡(NE)的滑坡数量和总面积显著较少,见图8(c)。这同样与周边其他地区的研究具有相似的趋势[10, 14]。广东省属于亚热带季风气候,副热带高压、暖湿夏季风、北方冷空气和台风是影响广东省整体降雨情况的关键因素[64]。4月为华南前汛期阶段[66],南海夏季风还未暴发,因此偏南的暖湿气流是该地区的主导风向[6768]。因此该现象符合暴雨期间山体迎风坡向滑坡分布远多于背风坡向的规律。

    剖面曲率用于描述地表在沿坡面垂直于坡度方向的曲率特征。它反映了地表在沿坡面的切线方向上的弯曲程度,通常用此曲率来表征流体在重力作用下在表面上的向下加速和减速,因此可以反映降雨地表径流的汇集或分散程度[6970]。剖面曲率为0~0.005内滑坡总面积最大,约为200.65×104 m2,而滑坡数量在−0.005至0区间最高,为2 057个,见图8(d)。在更典型的凹形地形中(剖面曲率为−0.01至−0.005)中,滑坡数量较多,共计904个,但其滑坡总面积较小,约66.92×104 m2。这表明凹形地形更易形成小规模滑坡,可能是由于汇水作用增强了局部水动力条件,导致坡体局部失稳而触发较多小型滑坡。而在典型凸形地形(剖面曲率为0.005至0.01)中,滑坡数量减少,为734个,但滑坡总面积更大,约为94.54×104 m2,说明凸形地形虽然滑坡数量较少,但倾向于形成规模更大的滑坡。这可能是因为凸形地形的水分分散条件较好,土壤水分更易沿坡体流失,从而需要更大的外界触发条件(如强降雨或高坡度)才能导致滑坡,而一旦触发,滑坡的规模则更大。

    地形湿度指数主要用于评估土壤湿度的空间分布影响[7172]。从统计结果来看,见图8(e),地形湿度指数值在4至5的区间内,滑坡数量和总面积均达到峰值,分别为2 695个和约283.64×104m2。这表明该区间是滑坡的高发区。

    相对坡位指数通常是滑坡发生的起点位置。图8(f)表明,滑坡主要集中在相对坡位指数值接近0的区间(−0.2~0.2),对应斜坡中部区域。其中相对坡位指数为0~0.2的区间滑坡总面积最大,约为1.338 2×106 m2,滑坡数量为1301个;而在相对坡位指数为−0.2~0的区间滑坡数量最多,为1340个,总面积为1.181 5×106 m2

    河流在降水诱发滑坡中扮演着重要角色,其主要影响机制包括水动力侵蚀作用、地下水位变化以及河流汇流对边坡稳定性的影响。距离河流的远近直接决定了河流对坡体侵蚀和潜在滑坡影响的强弱[7374]。从统计结果来看,见图8(g),滑坡数量和滑坡总面积随距离河流的增加而呈现显著递减趋势。距离河流100 m以内的区域内滑坡最为集中,滑坡数量为1396个,总面积约为1.277 8×106 m2。这表明河流附近的边坡因受侵蚀和冲刷作用影响较大,坡体稳定性显著降低,成为滑坡的高发区域。

    道路是影响滑坡发生的重要人为因素,其主要作用包括对坡体的直接切割、排水系统的改变以及地质结构的扰动。道路施工和交通荷载会显著降低坡体的稳定性。图8(h)显示,在距离道路100 m内的区域,滑坡数量为904个,总面积约为78.16×104 m2,距离道路100~200 m的区域滑坡数量有所减少,为740个,但滑坡总面积略有增加,达到约81.71×104 m2。随着距离的增加,滑坡数量和面积逐步减少。尽管研究区土地利用类型丰富,但是实际上滑坡主要集中分布的土地利用类型较少。因此我们对原有细分的类型进行了合并。图8(i)显示,阔叶林区域滑坡最多,数量达到4102个,总面积约为3.802 9×106 m2,占总滑坡分布的绝大多数。此外耕地区域滑坡数量为378个,总面积约为32.36×104 m2。这也反映了此次降雨时间对农业经济的严重影响。

    近年来,随着全球气候变暖和极端天气事件的日益频繁,强降雨诱发的地质灾害正呈现出更高的发生频率和更大的破坏性[3, 7576]。相关研究中,滑坡编目数据库的完善与标准化是未来的重要研究方向。在我国西南山区,研究者对2017年6月8日,重庆西部平行岭谷地区的暴雨事件进行分析,得到滑坡487处[15]。得到2023年7月4日重庆万州暴雨触发滑坡946处[77]。在黄土高原地区,研究表明2013年天水地区强降雨过程中触发黄土滑坡54000[7879]。在东南沿海地区,相关研究区域涉及了福建[8081]、广东[10, 14, 37]、浙江[65, 8283]和安徽[8485]多省。图9展示了部分具有明确滑坡数量和面积的研究。降雨滑坡的规模效应在本研究中有所体现,但尚需更广泛的数据支撑。图9中的拟合趋势线表明,滑坡数量与滑坡面积之间存在明显的线性正相关关系。但是区域之间的差异性依然存在。这种差异可能与区域降雨强度、地形地貌特征以及土地利用类型等控制因素密切相关。未来研究应结合遥感解译与地质调查,进一步揭示不同区域滑坡触发的主控因素及其对滑坡规模的影响。例如量化降雨强度-历时与滑坡规模的关系,将是下一步研究的重要方向。

    图  9  我国近年部分强降雨事件触发滑坡情况,数据来源公开发表的论文[10, 1415, 37, 8082, 8586]
    Figure  9.  Recent landslide events triggered by heavy rainfall in China, data sourced from published papers[10, 1415, 37, 8082, 8586].

    气候变化对极端降雨事件的驱动作用需要更多关注。近年来,东南沿海地区受台风和梅雨季节的影响,极端降雨事件愈发频繁[8788]。台风-暴雨-滑坡灾害链效应也逐步加剧,图中多个东南沿海省份的事件的时间分布也体现了这一趋势。这表明未来可能需要更多地将气象预报与滑坡灾害防控相结合,构建动态监测和实时预警体系,从而减少极端天气带来的损失。此外,尽管当前降雨触发滑坡数据库的研究逐步丰富,但在滑坡定义、编目精度和分类方法上可能存在一定的差异。为提高研究的对比性和适用性,未来应推动滑坡数据库的标准化和开放共享,从而为更高效的滑坡灾害预测模型提供基础。

    (1)滑坡空间分布特征。本次暴雨诱发的浅层滑坡总计6310处,滑坡分布密度在北东—南西向的某些区域显著升高,表现出强烈的空间聚集性。滑坡总面积达5.85 km2,单个滑坡面积以102~103 m2的小规模为主,占比66.7%。大面积滑坡相对较少,主要分布在局部高坡度区域。

    (2)滑坡形态特征。滑坡的几何形态特征表明,滑行距离与滑坡面积呈幂律相关,滑坡长宽比主要集中在1~4,占比67.23%。滑坡高差大多数小于20 m,但高差较大的滑坡通常具有更长的滑行距离。滑坡的H/L主要分布在0.2~0.6,反映了浅层滑坡的高流动性特征,且滑坡规模增大时H/L呈下降趋势。

    (3)控制因素分析。滑坡的发生受到多种地形因子和环境条件的综合影响。高程(150~350 m)和坡度(16°~28°)是滑坡的高发区间,其中高程200~250 m和坡度20°~24°的滑坡数量和面积均达到峰值。东坡和东南坡的滑坡数量和面积显著高于其他坡向,这与坡面的降雨汇水能力和水动力条件密切相关。地形湿度指数在4~5区间时滑坡最为集中,表明中等湿度条件下坡体更易失稳。滑坡数量随距离河流和道路的增加显著递减。距河流100 m以内区域滑坡数量最多,为1396处,显示出河流侵蚀作用对边坡稳定性的影响显著。距道路100 m以内的滑坡数量为904处,表明道路施工引发的边坡失稳问题需特别关注。

    本研究通过目视精确解译构建了此次降雨事件触发的详细滑坡编目,统计并揭示了自然因素和人为活动对滑坡触发的影响,为滑坡灾害风险评估提供了重要支持。未来研究需进一步结合动态降雨强度—历时模型与地质条件,深入揭示极端天气背景下滑坡的触发机制与空间规律。同时,建议加强区域性滑坡数据库的标准化建设,并发展基于气象数据的实时监测与预警系统,以应对气候变化带来的地质灾害挑战。

  • 图  1   4月以来韶关市日降雨量分布图

    Figure  1.   Daily rainfall distribution map of Shaoguan City since April

    图  2   研究区位置及概况图

    Figure  2.   Location and overview map of the study area

    图  3   滑坡前后遥感影像对比图及实地滑坡调查图

    Figure  3.   Comparison of remote sensing images before and after the landslide and field landslide investigation

    图  4   研究区环境因子

    Figure  4.   Environmental factors in the study area

    图  5   滑坡编目展示

    Figure  5.   Landslide inventory display

    图  6   滑坡面积-滑坡密度图

    Figure  6.   Landslide area-density graph

    图  7   区域滑坡形态特征统计

    Figure  7.   Statistical chart of regional landslide morphological characteristics

    图  8   滑坡与控制因素关系分析

    Figure  8.   Analysis of the relationship between landslides and controlling factors

    图  9   我国近年部分强降雨事件触发滑坡情况,数据来源公开发表的论文[10, 1415, 37, 8082, 8586]

    Figure  9.   Recent landslide events triggered by heavy rainfall in China, data sourced from published papers[10, 1415, 37, 8082, 8586].

    表  1   土地利用类型编号

    Table  1   Land use type codes

    编号具体类型
    10雨养耕地
    11草本植被覆盖
    20灌溉耕地
    51开阔常绿阔叶林
    52封闭常绿阔叶林
    61开阔落叶阔叶林
    62封闭落叶阔叶林
    71开阔常绿针叶林
    72封闭常绿针叶林
    120灌木地
    121常青灌木地
    180湿地
    190不透水面
    210水体
    下载: 导出CSV
  • [1]

    GARIANO S L,GUZZETTI F. Landslides in a changing climate[J]. Earth-Science Reviews,2016,162:227 − 252. DOI: 10.1016/j.earscirev.2016.08.011

    [2]

    HWANG J,LALL U. Increasing dam failure risk in the USA due to compound rainfall clusters as climate changes[J]. NPJ Natural Hazards,2024,1:27. DOI: 10.1038/s44304-024-00027-6

    [3] 马俊学,高会然,许冲. 北京市昌平区韩台村“23•7” 暴雨山洪泥石流灾害特征分析[J]. 水利水电技术(中英文),2024,55(7):1 − 18. [MA Junxue,GAO Huiran,XU Chong. Characteristics of flash flood-debris flow disaster induced by the ‘23•7’ rainstorm in Hantai Village,Changping District,Beijing[J]. Water Resources and Hydropower Engineering,2024,55(7):1 − 18. (in Chinese with English abstract)]

    MA Junxue, GAO Huiran, XU Chong. Characteristics of flash flood-debris flow disaster induced by the ‘23•7’ rainstorm in Hantai Village, Changping District, Beijing[J]. Water Resources and Hydropower Engineering, 2024, 55(7): 1 − 18. (in Chinese with English abstract)

    [4] 韩帅,刘明军,伍剑波,等. 东南沿海台风暴雨型单体斜坡灾害风险评价——以泰顺仕阳北坡为例[J]. 地质力学学报,2022,28(4):583 − 595. [HAN Shuai,LIU Mingjun,WU Jianbo,et al. Risk assessment of slope disasters induced by typhoon-rainfall in the southeast coastal area,China:A case study of the Shiyang north slope[J]. Journal of Geomechanics,2022,28(4):583 − 595. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2021168

    HAN Shuai, LIU Mingjun, WU Jianbo, et al. Risk assessment of slope disasters induced by typhoon-rainfall in the southeast coastal area, China: A case study of the Shiyang north slope[J]. Journal of Geomechanics, 2022, 28(4): 583 − 595. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2021168

    [5]

    THOMAS M A,MICHAELIS A C,OAKLEY N S,et al. Rainfall intensification amplifies exposure of American Southwest to conditions that trigger postfire debris flows[J]. NPJ Natural Hazards,2024,1:14. DOI: 10.1038/s44304-024-00017-8

    [6] 李艳杰,唐亚明,邓亚虹,等. 降雨型浅层黄土滑坡危险性评价与区划——以山西柳林县为例[J]. 中国地质灾害与防治学报,2022,33(2):105 − 114. [LI Yanjie,TANG Yaming,DENG Yahong,et al. Hazard assessment of shallow loess landslides induced by rainfall:A case study of Liulin County of Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):105 − 114. (in Chinese with English abstract)]

    LI Yanjie, TANG Yaming, DENG Yahong, et al. Hazard assessment of shallow loess landslides induced by rainfall: A case study of Liulin County of Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 105 − 114. (in Chinese with English abstract)

    [7] 麦鉴锋,冼宇阳,刘桂林. 气候变化情景下广东省降雨诱发型滑坡灾害潜在分布及预测[J]. 地球信息科学学报,2021,23(11):2042 − 2054. [MAI Jianfeng,XIAN Yuyang,LIU Guilin. Predicting potential rainfall-triggered landslides sites in Guangdong Province(China)using MaxEnt model under climate changes scenarios[J]. Journal of Geo-Information Science,2021,23(11):2042 − 2054. (in Chinese with English abstract)] DOI: 10.12082/dqxxkx.2021.210182

    MAI Jianfeng, XIAN Yuyang, LIU Guilin. Predicting potential rainfall-triggered landslides sites in Guangdong Province(China)using MaxEnt model under climate changes scenarios[J]. Journal of Geo-Information Science, 2021, 23(11): 2042 − 2054. (in Chinese with English abstract) DOI: 10.12082/dqxxkx.2021.210182

    [8] 张世殊,胡新丽,章广成,等. 西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展[J]. 地质力学学报,2024,30(5):795 − 810. [ZHANG Shishu,HU Xinli,ZHANG Guangcheng,et al. Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China[J]. Journal of Geomechanics,2024,30(5):795 − 810. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2024031

    ZHANG Shishu, HU Xinli, ZHANG Guangcheng, et al. Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China[J]. Journal of Geomechanics, 2024, 30(5): 795 − 810. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2024031

    [9]

    SHAO Xiaoyi,MA Siyuan,XU Chong. Distribution and characteristics of shallow landslides triggered by the 2018 Mw 7.5 Palu earthquake,Indonesia[J]. Landslides,2023,20(1):157 − 175. DOI: 10.1007/s10346-022-01972-x

    [10]

    MA Siyuan,SHAO Xiaoyi,XU Chong. Characterizing the distribution pattern and a physically based susceptibility assessment of shallow landslides triggered by the 2019 heavy rainfall event in Longchuan County,Guangdong Province,China[J]. Remote Sensing,2022,14(17):4257. DOI: 10.3390/rs14174257

    [11] 余淙蔚,柳侃,殷杰,等. 一种适用于逻辑回归模型评价浅层滑坡易发性的网格尺度划分方法——以2019年福建省三明市群发浅层滑坡为例[J]. 山地学报,2022,40(1):106 − 119. [YU Congwei,LIU Kan,YIN Jie,et al. A grid-scale division method applicable to logistic regression models for evaluating the susceptibility of shallow landslides:Taking the 2019 cluster of shallow landslides in Sanming,Fujian as example[J]. Mountain Research,2022,40(1):106 − 119. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1008-2786.2022.1.sdxb202201009

    YU Congwei, LIU Kan, YIN Jie, et al. A grid-scale division method applicable to logistic regression models for evaluating the susceptibility of shallow landslides: Taking the 2019 cluster of shallow landslides in Sanming, Fujian as example[J]. Mountain Research, 2022, 40(1): 106 − 119. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2022.1.sdxb202201009

    [12] 何简吟,邱海军,胡胜,等. 基于TRIGRS模型的浅层滑坡稳定性分析[J]. 第四纪研究,2019,39(5):1222 − 1234. [HE Jianyin,QIU Haijun,HU Sheng,et al. Stability analysis of shallow landslides based on trigrs model[J]. Quaternary Sciences,2019,39(5):1222 − 1234. (in Chinese with English abstract)] DOI: 10.11928/j.issn.1001-7410.2019.05.14

    HE Jianyin, QIU Haijun, HU Sheng, et al. Stability analysis of shallow landslides based on trigrs model[J]. Quaternary Sciences, 2019, 39(5): 1222 − 1234. (in Chinese with English abstract) DOI: 10.11928/j.issn.1001-7410.2019.05.14

    [13]

    GAO Huiran,XU Chong,XIE Chenchen,et al. Landslides triggered by the July 2023 extreme rainstorm in the Haihe River Basin,China[J]. Landslides,2024,21(11):2885 − 2890. DOI: 10.1007/s10346-024-02322-9

    [14]

    XIE Chenchen,HUANG Yuandong,LI Lei,et al. Detailed inventory and spatial distribution analysis of rainfall-induced landslides in Jiexi County,Guangdong Province,China in August 2018[J]. Sustainability,2023,15(18):13930. DOI: 10.3390/su151813930

    [15]

    LIU Jielin,XU Chong. Construction and preliminary analysis of landslide database triggered by heavy storm in the parallel range-valley area of western Chongqing,China,on 8 June 2017[J]. Frontiers in Earth Science,2024,12:1420425. DOI: 10.3389/feart.2024.1420425

    [16]

    SANA E,KUMAR A,ROBSON E,et al. Preliminary assessment of series of landslides and related damage by heavy rainfall in Himachal Pradesh,India,during July 2023[J]. Landslides,2024,21(4):919 − 931. DOI: 10.1007/s10346-023-02209-1

    [17]

    THOMAS J,GUPTA M,SRIVASTAVA P K,et al. Assessment of a dynamic physically based slope stability model to evaluate timing and distribution of rainfall-induced shallow landslides[J]. ISPRS International Journal of Geo-Information,2023,12(3):105. DOI: 10.3390/ijgi12030105

    [18] 吴宏阳,周超,梁鑫,等. 基于XGBoost模型的三峡库区燕山乡滑坡易发性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5):141 − 152. [WU Hongyang,ZHOU Chao,LIANG Xin,et al. Assessment of landslide susceptibility mapping based on XGBoost model:A case study of Yanshan Township[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):141 − 152. (in Chinese with English abstract)]

    WU Hongyang, ZHOU Chao, LIANG Xin, et al. Assessment of landslide susceptibility mapping based on XGBoost model: A case study of Yanshan Township[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 141 − 152. (in Chinese with English abstract)

    [19] 刘帅,何斌,王涛,等. 甘肃积石山县MS6.2地震同震地质灾害发育特征与易发性评价[J]. 地质力学学报,2024,30(2):314 − 331. [LIU Shuai,HE Bin,WANG Tao,et al. Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake,Gansu Province,China[J]. Journal of Geomechanics,2024,30(2):314 − 331. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2024009

    LIU Shuai, HE Bin, WANG Tao, et al. Development characteristics and susceptibility assessment of coseismic geological hazards of Jishishan MS 6.2 earthquake, Gansu Province, China[J]. Journal of Geomechanics, 2024, 30(2): 314 − 331. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2024009

    [20]

    TANYAŞ H,KIRSCHBAUM D,LOMBARDO L. Capturing the footprints of ground motion in the spatial distribution of rainfall-induced landslides[J]. Bulletin of Engineering Geology and the Environment,2021,80(6):4323 − 4345. DOI: 10.1007/s10064-021-02238-x

    [21]

    MARIN R J. Physically based and distributed rainfall intensity and duration thresholds for shallow landslides[J]. Landslides,2020,17(12):2907 − 2917. DOI: 10.1007/s10346-020-01481-9

    [22] 宋琨,陈伦怡,刘艺梁,等. 降雨诱发深层老滑坡复活变形的动态作用机制[J]. 地球科学,2022,47(10):3665 − 3676. [SONG Kun,CHEN Lunyi,LIU Yiliang,et al. Dynamic mechanism of rain infiltration in deep-seated landslide reactivate deformation[J]. Earth Science,2022,47(10):3665 − 3676. (in Chinese with English abstract)]

    SONG Kun, CHEN Lunyi, LIU Yiliang, et al. Dynamic mechanism of rain infiltration in deep-seated landslide reactivate deformation[J]. Earth Science, 2022, 47(10): 3665 − 3676. (in Chinese with English abstract)

    [23] 缪海波,王功辉. 风振影响下乔木坡地暴雨型浅层滑坡演化机制[J]. 地质科技通报,2022,41(2):60 − 70. [MIAO Haibo,WANG Gonghui. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology,2022,41(2):60 − 70. (in Chinese with English abstract)]

    MIAO Haibo, WANG Gonghui. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 60 − 70. (in Chinese with English abstract)

    [24] 史学磊,韩旭东,杨秀元,等. 三峡库区溪沟湾滑坡的诱发因素及前期降雨影响[J]. 地质力学学报,2023,29(2):253 − 263. [SHI Xuelei,HAN Xudong,YANG Xiuyuan,et al. Factors inducing the Xigouwan landslide in the Three Gorges Reservoir area and the influence of antecedent precipitation[J]. Journal of Geomechanics,2023,29(2):253 − 263. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2022049

    SHI Xuelei, HAN Xudong, YANG Xiuyuan, et al. Factors inducing the Xigouwan landslide in the Three Gorges Reservoir area and the influence of antecedent precipitation[J]. Journal of Geomechanics, 2023, 29(2): 253 − 263. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2022049

    [25]

    VILLAÇA C,SANTOS P P,ZÊZERE J L. Modelling the rainfall threshold for shallow landslides considering the landslide predisposing factors in Portugal[J]. Landslides,2024,21(9):2119 − 2133. DOI: 10.1007/s10346-024-02284-y

    [26]

    TIRANTI D,RONCHI C. Climate change impacts on shallow landslide events and on the performance of the regional shallow landslide early warning system of Piemonte (northwestern Italy)[J]. Geohazards,2023,4(4):475 − 496. DOI: 10.3390/geohazards4040027

    [27]

    CAO Yiming,GUO Wei,WU Yuming,et al. An hourly shallow landslide warning model developed by combining automatic landslide spatial susceptibility and temporal rainfall threshold predictions[J]. Journal of Mountain Science,2022,19(12):3370 − 3387. DOI: 10.1007/s11629-022-7370-1

    [28] 李阳春,刘黔云,李潇,等. 基于机器学习的滑坡崩塌地质灾害气象风险预警研究[J]. 中国地质灾害与防治学报,2021,32(3):118 − 123. [LI Yangchun,LIU Qianyun,LI Xiao,et al. Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):118 − 123. (in Chinese with English abstract)]

    LI Yangchun, LIU Qianyun, LI Xiao, et al. Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 118 − 123. (in Chinese with English abstract)

    [29] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报,2020,28(2):360 − 374. [XU Qiang. Understanding the landslide monitoring and early warning:Consideration to practical issues[J]. Journal of Engineering Geology,2020,28(2):360 − 374. (in Chinese with English abstract)]

    XU Qiang. Understanding the landslide monitoring and early warning: Consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360 − 374. (in Chinese with English abstract)

    [30] 陈春利,方志伟. 福建省地质灾害气象预警有效降雨模型研究[J]. 地质力学学报,2023,29(1):99 − 110. [CHEN Chunli,FANG Zhiwei. Research on an effective rainfall model for geological disaster early warning in Fujian Province,China[J]. Journal of Geomechanics,2023,29(1):99 − 110. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2022090

    CHEN Chunli, FANG Zhiwei. Research on an effective rainfall model for geological disaster early warning in Fujian Province, China[J]. Journal of Geomechanics, 2023, 29(1): 99 − 110. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2022090

    [31]

    ZHANG Sen,XU Chong,MENG Zhenjiang,et al. Establishing a landslide traces inventory for the Baota District,Yan’an City,China,using high-resolution satellite images[J]. Land,2024,13(10):1580. DOI: 10.3390/land13101580

    [32]

    SUN Jingjing,SHAO Xiaoyi,FENG Liye,et al. An essential update on the inventory of landslides triggered by the Jiuzhaigou Mw6.5 earthquake in China on 8 August 2017,with their spatial distribution analyses[J]. Heliyon,2024,10(2):e24787. DOI: 10.1016/j.heliyon.2024.e24787

    [33] 刘志中,宋英旭,叶润青. 渝东北2014年“8•31” 暴雨诱发滑坡遥感解译与分析[J]. 自然资源遥感,2021,33(4):192 − 199. [LIU Zhizhong,SONG Yingxu,YE Runqing. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31,2014 based on interpretation of remote sensing images[J]. Remote Sensing for Natural Resources,2021,33(4):192 − 199. (in Chinese with English abstract)]

    LIU Zhizhong, SONG Yingxu, YE Runqing. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 192 − 199. (in Chinese with English abstract)

    [34]

    QI Wenwen,WEI Mengfei,YANG Wentao,et al. Automatic mapping of landslides by the ResU-net[J]. Remote Sensing,2020,12(15):2487. DOI: 10.3390/rs12152487

    [35]

    YANG Zhiqiang,XU Chong,LI Lei. Landslide detection based on ResU-net with transformer and CBAM embedded:Two examples with geologically different environments[J]. Remote Sensing,2022,14(12):2885. DOI: 10.3390/rs14122885

    [36] 李长冬,龙晶晶,刘勇,等. 基于EfficientNet的滑坡遥感图像识别方法——以贵州省毕节市为例[J]. 华南地质,2023,39(3):403 − 412. [LI Changdong,LONG Jingjing,LIU Yong,et al. Landslide remote sensing image recognition based on EfficientNet:Taking Bijie City,Guizhou Province as an example[J]. South China Geology,2023,39(3):403 − 412. (in Chinese with English abstract)] DOI: 10.3969/j.issn.2097-0013.2023.03.001

    LI Changdong, LONG Jingjing, LIU Yong, et al. Landslide remote sensing image recognition based on EfficientNet: Taking Bijie City, Guizhou Province as an example[J]. South China Geology, 2023, 39(3): 403 − 412. (in Chinese with English abstract) DOI: 10.3969/j.issn.2097-0013.2023.03.001

    [37] 许强,徐繁树,蒲川豪,等. 2024年4月广东韶关江湾镇极端降雨诱发群发性滑坡初步分析[J]. 武汉大学学报(信息科学版),2024,49(8):1264 − 1274. [XU Qiang,XU Fanshu,PU Chuanhao,et al. Preliminary analysis of extreme rainfall-induced cluster landslides in Jiangwan township,Shaoguan,Guangdong,April 2024[J]. Geomatics and Information Science of Wuhan University,2024,49(8):1264 − 1274. (in Chinese with English abstract)]

    XU Qiang, XU Fanshu, PU Chuanhao, et al. Preliminary analysis of extreme rainfall-induced cluster landslides in Jiangwan township, Shaoguan, Guangdong, April 2024[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1264 − 1274. (in Chinese with English abstract)

    [38]

    LI Chunlin,WANG Zongxiu,LYU Qingtian,et al. Mesozoic tectonic evolution of the eastern south China block:A review on the synthesis of the regional deformation and magmatism[J]. Ore Geology Reviews,2021,131:104028. DOI: 10.1016/j.oregeorev.2021.104028

    [39]

    SHU Liangshu,YAO Jinlong,WANG Bo,et al. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block[J]. Earth-Science Reviews,2021,216:103596. DOI: 10.1016/j.earscirev.2021.103596

    [40]

    WU Zhibo,LI Hao,YUAN Shaoxiong,et al. Mask R-CNN based landslide hazard identification for 22.6 extreme rainfall induced landslides in the Beijiang River Basin,China[J]. Remote Sensing,2023,15(20):4898. DOI: 10.3390/rs15204898

    [41]

    YANG Liu,CUI Yulong,XU Chong,et al. Application of coupling physics based model TRIGRS with random forest in rainfall induced landslide-susceptibility assessment[J]. Landslides,2024,21(9):2179 − 2193. DOI: 10.1007/s10346-024-02276-y

    [42]

    MONDINI A C,GUZZETTI F,MELILLO M. Deep learning forecast of rainfall-induced shallow landslides[J]. Nature Communications,2023,14(1):2466. DOI: 10.1038/s41467-023-38135-y

    [43] 顾福计,钱龙,王梦洁,等. 太行山河北段“23•7” 强降雨引发的地质灾害规律研究[J]. 中国地质灾害与防治学报,2024,35(2):55 − 65. [GU Fuji,QIAN Long,WANG Mengjie,et al. Analysis of geological hazards caused by the “23•7” heavy rainfall in the northern section of Taihang Mountain in Hebei Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):55 − 65. (in Chinese with English abstract)]

    GU Fuji, QIAN Long, WANG Mengjie, et al. Analysis of geological hazards caused by the “23•7” heavy rainfall in the northern section of Taihang Mountain in Hebei Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 55 − 65. (in Chinese with English abstract)

    [44] 王海芝,曾庆利,许冰,等. 北京“7•21” 特大暴雨诱发的地质灾害类型及其特征分析[J]. 中国地质灾害与防治学报,2022,33(2):125 − 132. [WANG Haizhi,ZENG Qingli,XU Bing,et al. Types and characteristics of geological disasters induced by the “7•21” rainstorm in Beijing[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):125 − 132. (in Chinese with English abstract)]

    WANG Haizhi, ZENG Qingli, XU Bing, et al. Types and characteristics of geological disasters induced by the “7•21” rainstorm in Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 125 − 132. (in Chinese with English abstract)

    [45] 刘佳意,陈春利,付昱凯,等. 降雨诱发的浅表堆积层滑坡成因机理与稳定性预测模型[J]. 水文地质工程地质,2024,51(2):183 − 191. [LIU Jiayi,CHEN Chunli,FU Yukai,et al. Mechanism of rainfall-induced shallow landslide and stability prediction model[J]. Hydrogeology & Engineering Geology,2024,51(2):183 − 191. (in Chinese with English abstract)]

    LIU Jiayi, CHEN Chunli, FU Yukai, et al. Mechanism of rainfall-induced shallow landslide and stability prediction model[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 183 − 191. (in Chinese with English abstract)

    [46] 赵魁. 基于ArcGIS平台的广东云浮云安区地质灾害危害程度分区评价[J]. 中国地质灾害与防治学报,2020,31(3):89 − 95. [ZHAO Kui. The assessment on hazard degree division of geology disaster in Yun’an District based on ArcGIS[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):89 − 95. (in Chinese with English abstract)]

    ZHAO Kui. The assessment on hazard degree division of geology disaster in Yun’an District based on ArcGIS[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 89 − 95. (in Chinese with English abstract)

    [47] 曾新雄,刘佳,赖波,等. 广东珠海市降雨型崩塌滑坡预警阈值研究[J]. 中国地质灾害与防治学报,2024,35(5):141 − 150. [ZENG Xinxiong,LIU Jia,LAI Bo,et al. Study on warning rainfall threshold for rainfall induced collapses and landslide geological hazards in Zhuhai City,Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(5):141 − 150. (in Chinese with English abstract)]

    ZENG Xinxiong, LIU Jia, LAI Bo, et al. Study on warning rainfall threshold for rainfall induced collapses and landslide geological hazards in Zhuhai City, Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 141 − 150. (in Chinese with English abstract)

    [48] 陈敬业,王钧,宫清华,等. 植被增渗效应对花岗岩残积土浅层滑坡的影响机理研究[J]. 水文地质工程地质,2023,50(3):115 − 124. [CHEN Jingye,WANG Jun,GONG Qinghua,et al. Influence mechanism of vegetation infiltration effect on shallow landslides of granite residual soil[J]. Hydrogeology & Engineering Geology,2023,50(3):115 − 124. (in Chinese with English abstract)]

    CHEN Jingye, WANG Jun, GONG Qinghua, et al. Influence mechanism of vegetation infiltration effect on shallow landslides of granite residual soil[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 115 − 124. (in Chinese with English abstract)

    [49]

    LI Langping,LAN Hengxing,STROM A,et al. Landslide length,width,and aspect ratio:Path dependent measurement and a revisit of nomenclature[J]. Landslides,2022,19(12):3009 − 3029. DOI: 10.1007/s10346-022-01935-2

    [50]

    HU Bingli,SU Lijun,ZHANG Chonglei,et al. Mobility characteristics of rainfall triggered shallow landslides in a forest area in Mengdong,China[J]. Landslides,2024,21(9):2101 − 2117. DOI: 10.1007/s10346-024-02267-z

    [51]

    QIU Haijun,SU Lingling,TANG Bingzhe,et al. The effect of location and geometric properties of landslides caused by rainstorms and earthquakes[J]. Earth Surface Processes and Landforms,2024,49(7):2067 − 2079. DOI: 10.1002/esp.5816

    [52]

    LI Langping,LAN Hengxing,STROM A. Automatic generation of landslide profile for complementing landslide inventory[J]. Geomatics,Natural Hazards and Risk,2020,11(1):1000 − 1030. DOI: 10.1080/19475705.2020.1766578

    [53]

    XIAO Shihao,ZHANG Limin,HE Jian,et al. Hypermobility of a catastrophic earthquake-induced loess landslide[J]. Engineering Geology,2024,343:107777. DOI: 10.1016/j.enggeo.2024.107777

    [54]

    ZHAO Bo. Landslides triggered by the 2018 mW 7.5 palu supershear earthquake in Indonesia[J]. Engineering Geology,2021,294:106406. DOI: 10.1016/j.enggeo.2021.106406

    [55]

    ZHAO Bo,SU Lijun,XU Qiang,et al. A review of recent earthquake-induced landslides on the Tibetan Plateau[J]. Earth Science Reviews,2023,244:104534. DOI: 10.1016/j.earscirev.2023.104534

    [56]

    SHAO Xiaoyi,MA Siyuan,XU Chong,et al. Inventory,distribution and geometric characteristics of landslides in Baoshan City,Yunnan Province,China[J]. Sustainability,2020,12(6):2433. DOI: 10.3390/su12062433

    [57]

    SHAO Xiaoyi,MA Siyuan,XU Chong,et al. Landslides triggered by the 2022 Ms 6.8 Luding strike-slip earthquake:An update[J]. Engineering Geology,2024,335:107536. DOI: 10.1016/j.enggeo.2024.107536

    [58]

    MA Siyuan,SHAO Xiaoyi,LI Kai,et al. Landslides triggered by the 30th June 2012 Ms6.6 Hejing earthquake,Xinjiang Province,China[J]. Bulletin of Engineering Geology and the Environment,2024,83(6):256. DOI: 10.1007/s10064-024-03727-5

    [59]

    LI Tao,XIE Chenchen,XU Chong,et al. Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province,China[J]. China Geology,2024,7(2):315 − 329. DOI: 10.31035/cg2024064

    [60]

    FENG Wenkai,BAI Huilin,LAN Bing,et al. Spatial–temporal distribution and failure mechanism of group-occurring landslides in Mibei Village,Longchuan County,Guangdong,China[J]. Landslides,2022,19(8):1957 − 1970. DOI: 10.1007/s10346-022-01904-9

    [61]

    TAN Delin,XU Xiaoliang,WANG Lehua,et al. Deformation evolution and failure mechanism of rainfall-induced granite residual soil landsliding event in Northern Guangdong,China[J]. Landslides,2024:1 — 17.

    [62] 肖柳斯,张华龙,吴乃庚,等. 广东省汛期分钟尺度极端降水的时空分布及持续性特征[J]. 大气科学,2024,48(5):1728 − 1742. [XIAO Liusi,ZHANG Hualong,WU Naigeng,et al. Spatiotemporal distribution and duration characteristics of minute-scale extreme precipitation during flood season in Guangdong Province[J]. Chinese Journal of Atmospheric Sciences,2024,48(5):1728 − 1742. (in Chinese with English abstract)]

    XIAO Liusi, ZHANG Hualong, WU Naigeng, et al. Spatiotemporal distribution and duration characteristics of minute-scale extreme precipitation during flood season in Guangdong Province[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(5): 1728 − 1742. (in Chinese with English abstract)

    [63] 陈芳丽,李明华,姜帅,等. 粤北暴雨中心的降水气候特征分析[J]. 广东气象,2020,42(1):10 − 14. [CHEN Fangli,LI Minghua,JIANG Shuai,et al. An analysis of the climatological characteristics of precipitation in a heavy rain center of northern Guangdong[J]. Guangdong Meteorology,2020,42(1):10 − 14. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-6190.2020.01.003

    CHEN Fangli, LI Minghua, JIANG Shuai, et al. An analysis of the climatological characteristics of precipitation in a heavy rain center of northern Guangdong[J]. Guangdong Meteorology, 2020, 42(1): 10 − 14. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-6190.2020.01.003

    [64] 杨帆,周悦,罗岚扬,等. 广东省降雨时空分布特征分析[J]. 中国防汛抗旱,2023,33(11):46 − 51. [YANG Fan,ZHOU Yue,LUO Lanyang,et al. Analysis of spatiotemporal distribution characteristics of rainfall in Guangdong Province[J]. China Flood & Drought Management,2023,33(11):46 − 51. (in Chinese with English abstract)]

    YANG Fan, ZHOU Yue, LUO Lanyang, et al. Analysis of spatiotemporal distribution characteristics of rainfall in Guangdong Province[J]. China Flood & Drought Management, 2023, 33(11): 46 − 51. (in Chinese with English abstract)

    [65] 孙强,刘明军,张泰丽,等. 诱发台风暴雨型滑坡的降雨阈值研究——以泰顺县为例[J]. 水文地质工程地质,2024,51(4):197 − 205. [SUN Qiang,LIU Mingjun,ZHANG Taili,et al. Rainfall thresholds of typhoon rainstorm induce landslides:A case study over Taishun County[J]. Hydrogeology & Engineering Geology,2024,51(4):197 − 205. (in Chinese with English abstract)]

    SUN Qiang, LIU Mingjun, ZHANG Taili, et al. Rainfall thresholds of typhoon rainstorm induce landslides: A case study over Taishun County[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 197 − 205. (in Chinese with English abstract)

    [66] 周嘉琦,陈世发. 1951—2018年华南前汛期暴雨特征分析——以韶关市为例[J]. 水土保持研究,2021,28(3):163 − 169. [ZHOU Jiaqi,CHEN Shifa. Analysis on characteristics of rainstorm in south China during the previous flood season from 1951 to 2018:Taking Shaoguan City as an example[J]. Research of Soil and Water Conservation,2021,28(3):163 − 169. (in Chinese with English abstract)]

    ZHOU Jiaqi, CHEN Shifa. Analysis on characteristics of rainstorm in south China during the previous flood season from 1951 to 2018: Taking Shaoguan City as an example[J]. Research of Soil and Water Conservation, 2021, 28(3): 163 − 169. (in Chinese with English abstract)

    [67] 汪海恒,张曙,伍志方,等. 2019年韶关“5•18” 局地特大暴雨极端性成因分析[J]. 热带气象学报,2021,37(1):49 − 60. [WANG Haiheng,ZHANG Shu,WU Zhifang,et al. Analysis of the cause of torrential rain on may 18,2019 in Shaoguan[J]. Journal of Tropical Meteorology,2021,37(1):49 − 60. (in Chinese with English abstract)]

    WANG Haiheng, ZHANG Shu, WU Zhifang, et al. Analysis of the cause of torrential rain on may 18, 2019 in Shaoguan[J]. Journal of Tropical Meteorology, 2021, 37(1): 49 − 60. (in Chinese with English abstract)

    [68] 陈宇,曾丹丹,林浩. 广东河源市2024年4月暴雨洪水成因分析[J]. 中国防汛抗旱,2024,34(10):96 − 101. [CHEN Yu,ZENG Dandan,LIN Hao. Cause analysis of rainstorm flood in Heyuan City of Guangdong Province in April 2024[J]. China Flood & Drought Management,2024,34(10):96 − 101. (in Chinese with English abstract)]

    CHEN Yu, ZENG Dandan, LIN Hao. Cause analysis of rainstorm flood in Heyuan City of Guangdong Province in April 2024[J]. China Flood & Drought Management, 2024, 34(10): 96 − 101. (in Chinese with English abstract)

    [69]

    ZHANG Tingyu,FU Quan,WANG Hao,et al. Bagging based machine learning algorithms for landslide susceptibility modeling[J]. Natural Hazards,2022,110(2):823 − 846. DOI: 10.1007/s11069-021-04986-1

    [70]

    LIU Zhongqiang,GILBERT G,CEPEDA J M,et al. Modelling of shallow landslides with machine learning algorithms[J]. Geoscience Frontiers,2021,12(1):385 − 393. DOI: 10.1016/j.gsf.2020.04.014

    [71]

    SHAO Xiaoyi,MA Siyuan,XU Chong,et al. Effects of sampling intensity and non-slide/slide sample ratio on the occurrence probability of coseismic landslides[J]. Geomorphology,2020,363:107222. DOI: 10.1016/j.geomorph.2020.107222

    [72]

    CONFORTI M,IETTO F. Modeling shallow landslide susceptibility and assessment of the relative importance of predisposing factors,through a GIS based statistical analysis[J]. Geosciences,2021,11(8):333. DOI: 10.3390/geosciences11080333

    [73]

    XIAO Zikang,XU Chong,HUANG Yuandong,et al. Analysis of spatial distribution of landslides triggered by the Ms 6.8 Luding earthquake in China on September 5,2022[J]. Geoenvironmental Disasters,2023,10(1):3. DOI: 10.1186/s40677-023-00233-w

    [74]

    CHEN Zhaoning,HUANG Yuandong,HE Xiangli,et al. Landslides triggered by the 10 June 2022 Maerkang earthquake swarm,Sichuan,China:Spatial distribution and tectonic significance[J]. Landslides,2023,20(10):2155 − 2169. DOI: 10.1007/s10346-023-02080-0

    [75]

    GHAREHTORAGH M A,JOHNSON D R. Using surrogate modeling to predict storm surge on evolving landscapes under climate change[J]. NPJ Natural Hazards,2024,1:33. DOI: 10.1038/s44304-024-00032-9

    [76]

    STRADER S M,GENSINI V A,ASHLEY W S,et al. Changes in tornado risk and societal vulnerability leading to greater tornado impact potential[J]. NPJ Natural Hazards,2024,1:20. DOI: 10.1038/s44304-024-00019-6

    [77]

    LIU Shuhao,YIN Kunlong,DU Juan,et al. Landslides triggered by the extreme rainfall on July 4,2023,Wanzhou,China[J]. Landslides,2024:1-6.

    [78]

    SHAO Xiaoyi,MA Siyuan,XU Chong,et al. Insight into the characteristics and triggers of loess landslides during the 2013 heavy rainfall event in the Tianshui area,China[J]. Remote Sensing,2023,15(17):4304. DOI: 10.3390/rs15174304

    [79]

    MA Siyuan,SHAO Xiaoyi,XU Chong. Physically-based rainfall-induced landslide thresholds for the Tianshui area of Loess Plateau,China by TRIGRS model[J]. Catena,2023,233:107499. DOI: 10.1016/j.catena.2023.107499

    [80]

    MA Siyuan,SHAO Xiaoyi,XU Chong. Landslides triggered by the 2016 heavy rainfall event in Sanming,Fujian Province:Distribution pattern analysis and spatio-temporal susceptibility assessment[J]. Remote Sensing,2023,15(11):2738. DOI: 10.3390/rs15112738

    [81] 陈博,张灿灿,李振洪,等. 福建龙岩市2024年“6•16” 特大暴雨诱发滑坡发育特征及其调控因子分析[J]. 武汉大学学报(信息科学版),2024,49(11):2145 − 2155. [CHEN Bo,ZHANG Cancan,LI Zhenhong,et al. Developmental characteristics and controlling factors of landslides triggered by extreme rainfalls on 16 June 2024 in Longyan,Fujian Province[J]. Geomatics and Information Science of Wuhan University,2024,49(11):2145 − 2155. (in Chinese with English abstract)]

    CHEN Bo, ZHANG Cancan, LI Zhenhong, et al. Developmental characteristics and controlling factors of landslides triggered by extreme rainfalls on 16 June 2024 in Longyan, Fujian Province[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2145 − 2155. (in Chinese with English abstract)

    [82]

    CUI Yulong,YANG Liu,XU Chong,et al. Spatial distribution of shallow landslides caused by Typhoon Lekima in 2019 in Zhejiang Province,China[J]. Journal of Mountain Science,2024,21(5):1564 − 1580. DOI: 10.1007/s11629-023-8377-y

    [83] 麻土华,李长江,孙乐玲,等. 浙江地区引发滑坡的降雨强度-历时关系[J]. 中国地质灾害与防治学报,2011,22(2):20 − 25. [MA Tuhua,LI Changjiang,SUN Leling,et al. Rainfall intensity-duration thresholds for landslides in Zhejiang Region,China[J]. The Chinese Journal of Geological Hazard and Control,2011,22(2):20 − 25. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1003-8035.2011.02.004

    MA Tuhua, LI Changjiang, SUN Leling, et al. Rainfall intensity-duration thresholds for landslides in Zhejiang Region, China[J]. The Chinese Journal of Geological Hazard and Control, 2011, 22(2): 20 − 25. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2011.02.004

    [84] 黄健敏,赵国红,廖芸婧,等. 基于Logistic回归的降雨诱发区域地质灾害易发性区划及预报模型建立——以安徽歙县为例[J]. 中国地质灾害与防治学报,2016,27(3):98 − 105. [HUANG Jianmin,ZHAO Guohong,LIAO Yunjing,et al. Research on rainfall induced regional geo-hazard forecast model based on the Logistic regression[J]. The Chinese Journal of Geological Hazard and Control,2016,27(3):98 − 105. (in Chinese with English abstract)]

    HUANG Jianmin, ZHAO Guohong, LIAO Yunjing, et al. Research on rainfall induced regional geo-hazard forecast model based on the Logistic regression[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(3): 98 − 105. (in Chinese with English abstract)

    [85] 袁康,崔玉龙,胡俊宏,等. 2019年“利奇马” 台风暴雨滑坡分布分析——以安徽省宁国市为例[J]. 陕西理工大学学报(自然科学版),2021,37(3):74 − 81. [YUAN Kang,CUI Yulong,HU Junhong,et al. Analysis of the distribution of landslides triggered by heavy rains caused by typhoon “Lekima” in 2019:Taking Ningguo City,Anhui Province as an example[J]. Journal of Shaanxi University of Technology (Natural Science Edition),2021,37(3):74 − 81. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1673-2944.2021.03.012

    YUAN Kang, CUI Yulong, HU Junhong, et al. Analysis of the distribution of landslides triggered by heavy rains caused by typhoon “Lekima” in 2019: Taking Ningguo City, Anhui Province as an example[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 2021, 37(3): 74 − 81. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-2944.2021.03.012

    [86]

    MA Hao,WANG Fawu. Inventory of shallow landslides triggered by extreme precipitation in July 2023 in Beijing,China[J]. Scientific Data,2024,11(1):1083. DOI: 10.1038/s41597-024-03901-0

    [87] 栗倩倩,王伟,黄亮,等. 台风暴雨型滑坡滞后效应分析——以浙江青田县“利奇马” 台风为例[J]. 中国地质灾害与防治学报,2022,33(6):10 − 19. [LI Qianqian,WANG Wei,HUANG Liang,et al. Analysis on lag effect of typhoon induced landslide:A case study of typhoon “Lekima” in Qingtian County,Zhejiang Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):10 − 19. (in Chinese with English abstract)]

    LI Qianqian, WANG Wei, HUANG Liang, et al. Analysis on lag effect of typhoon induced landslide: A case study of typhoon “Lekima” in Qingtian County, Zhejiang Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 10 − 19. (in Chinese with English abstract)

    [88] 闫金凯,黄俊宝,李海龙,等. 台风暴雨型浅层滑坡失稳机理研究[J]. 地质力学学报,2020,26(4):481 − 491. [YAN Jinkai,HUANG Junbao,LI Hailong,et al. Study on instability mechanism of shallow landslide caused by typhoon and heavy rain[J]. Journal of Geomechanics,2020,26(4):481 − 491. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2020.26.04.041

    YAN Jinkai, HUANG Junbao, LI Hailong, et al. Study on instability mechanism of shallow landslide caused by typhoon and heavy rain[J]. Journal of Geomechanics, 2020, 26(4): 481 − 491. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2020.26.04.041

图(9)  /  表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  4
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-09
  • 修回日期:  2025-02-04
  • 录用日期:  2025-03-02
  • 网络出版日期:  2025-03-09

目录

/

返回文章
返回