Characteristics, hazard conditions, and research progress of shattered mountains in the Yarlung Zangbo Suture Belt, Tibet, China
-
摘要:
雅鲁藏布江缝合带震裂山体是由印度-欧亚板块碰撞运动和近期强震活动作用叠加而形成,具有岩性结构混杂、构造作用强烈、松动变形明显等特点,极端力学条件下容易失稳成灾,是边疆城镇和工程建设运营的重大地质安全挑战之一。文章基于实地调研和地质勘查工作,深入分析了雅鲁藏布江缝合带震裂山体发育特征,并从岩性组合、构造活动以及岩体结构等3个方面总结了其孕灾地质条件,从板块缝合带岩体工程地质性质、震裂山体结构特征、山体地震动力响应规律、山体强震失稳破坏机制、研究方法等5个方面梳理了相关最新研究成果。主要研究结果为:(1)雅江缝合带震裂山体受控于墨脱活动断裂系,遭受了1950年察隅8.6级大地震作用,山体结构发生了明显松动,形成了多处大型变形区,在强烈扰动下容易发生大规模失稳滑动;(2)雅江缝合带震裂山体具有特殊的易灾地质结构,孕灾条件主要受控于特殊的岩性组合、强烈的构造活动和松散的岩体结构;(3)目前亟待建立雅江缝合带震裂山体精细地质力学模型,分析构造混杂岩岩体震裂损伤破坏机制,阐释强震作用下的缝合带跨断层震裂山体动力响应和失稳机理。文章最后建议选取墨脱巴登则山体为重点研究案例,系统开展雅鲁藏布江缝合带震裂山体失稳机理研究,为青藏高原特大地质灾害防灾减灾提供相应科学依据。
Abstract:Shattered mountains in the Yarlung Zangbo Suture Belt, Tibet, were formed by the collision movement of Indo-Eurasian plates superimposed with recent strong seismic activities. They are characterized by complex lithologic structures, strong tectonic actions, and significant deformation, which are beneficial to failure under certain extreme mechanical conditions. Thus, the shattered mountain problem becomes one of the major geological safety challenges in the construction and operation of the border towns and major engineering projects. Based on field investigation and geological explorations, this paper deeply analyzed the characteristics of the shattered mountains in the Yarlung Zangbo Suture Belt. Hazard conditions were summarized from three aspects: lithological combination, tectonic activities, and rock mass structure. Moreover, this paper overviewed the latest research results, including engineering geological properties of rock masses in suture zones, structural characteristics of the shattered mountains, seismic dynamic responses of mountain slopes, mountain failure mechanism induced by strong earthquakes, and relative research methods. Main conclusions include: 1) The shattered mountains in the Yarlung Zangbo Suture Belt are controlled by the Motuo active fault system and were subjected to the Great Chayu M 8.6 earthquake in 1950; the mountain structures were loosened, and the rock masses were deformed, which were prone to large-scale instability under intense disturbance. 2) The scattered mountains in the Yarlung Zangbo Suture Belt have special disaster-prone geological structures, and the favorable conditions are mainly governed by the particular lithological combination, strong tectonic activity, and loose rock mass structure. 3) At present, it is urgent to establish a detailed geomechanical model of the shattered mountains in the Yarlung Zangbo Suture Belt, to analyze the damage and failure mechanism of the tectonic mélange rock masses, and to explain the dynamic response and instability mechanism of the shattered mountains in the suture zone under strong earthquakes. In the end, it is suggested to choose Badengze Mountain in Motuo county as the key study case to systematically analyze the failure mechanism of the shattered mountains in the Yarlung Zangbo Suture Belt, which would support the prevention and reduction of major geological disasters on the Qinghai-Tibet Plateau.
-
0. 引言
西藏雅鲁藏布江缝合带(简称雅江缝合带)是印度-欧亚板块碰撞运动形成的特殊地质体,岩性结构极为复杂,构造作用极为强烈,地震和地质灾害频繁发生[1 − 2]。如1950年察隅8.6级地震和2017年米林6.9级地震,导致雅鲁藏布江下游地区发生大规模地表破坏,大型~特大型山体滑坡连片发育,淤积堵塞了雅鲁藏布江多段干流、支流河段,形成了流域性地质灾害链,危害十分严重[3 − 4]。大量地质勘查工作表明,在频繁强烈的地震动作用下,雅江缝合带沿线已形成了震裂山体,其具有岩性混杂、跨越多条活动断层、前期震裂损伤严重等特点,自稳能力差,成灾风险高,对边疆城镇和工程建设运营造成了严重威胁。
板块缝合带和震裂山体具有十分特殊的工程地质性质,均是特大滑坡灾害的高易发区。例如位于金沙江缝合带的白格滑坡,受构造混杂岩和活动断裂控制,滑体结构混杂破碎,力学性质差,在重力和水的作用下持续蠕滑变形,并于2018年10月和11月发生大规模高位滑动,阻断金沙江干流形成巨型堰塞湖,超过10万人受灾[2, 5]。2008年汶川8.0级大地震发生后,震区震裂山体陆续形成了多起特大型滑坡灾害。如四川都江堰三溪村滑坡,位于汶川地震VIII度烈度区,地震导致斜坡严重震裂损伤,地表形成多条贯通裂缝,最终在2013年7月极端暴雨作用下失稳成灾,灾害体积150万方,造成了百余人失踪和死亡[6 − 7];又如四川茂县新磨滑坡,位于汶川地震强震区,地震导致岩体显著松动变形,最终2017年6月发生整体失稳并形成特大高位远程滑坡灾害,体积超过1千万方,摧毁了新磨村村庄,导致近百人死亡[8 − 9]。
总体而言,雅江缝合带震裂山体稳定性差,容易形成特大滑坡灾害,是边疆城镇和工程建设运营重大地质安全挑战之一,亟待开展深入研究。本文基于前期实地调研和地质勘查工作,并综合国内外已有研究成果,对雅江缝合带震裂山体发育特征、孕灾条件与相关研究进展进行系统梳理和总结。
1. 雅江缝合带震裂山体发育特征
雅江缝合带是由新特提斯洋闭合和印度-欧亚板块碰撞形成,延伸长度
2000 km,宽度2~15 km,经历了俯冲-抬升、走滑、伸展-垮塌、变质等强烈地质构造作用,原岩结构基本被肢解破坏,大量挤压剪切带穿插发育,组成物质包括强糜棱岩化变镁铁质岩、石英岩、云母石英片岩、变超镁铁质岩、岛弧物质等,各类岩石空间变化迅速,岩体结构极为复杂,物理力学性质差异巨大[10 − 12]。受强烈的板块碰撞作用,雅江缝合带沿线地震频发,导致震裂山体极为发育,广泛分布于雅鲁藏布江干流及支流峡谷两岸。如1950年察隅8.6级大地震,震中烈度XI~XII,在雅江缝合带墨脱地区造成了严重地表破坏,高陡山体上形成了大规模地表破裂带,裂缝宽度1~2米、长度达数百米,山崩、滑坡、泥石流灾害密集分布,导致雅鲁藏布江及其支流多处断流,多个村庄被滑体推入江中或被掩埋,死亡人数超过2000人[13];2017年米林6.9级地震,触发雅鲁藏布江大峡谷段山体震裂破坏,形成了包括766处滑坡的同震滑坡群,对超过50 km长的干流河段造成淤积堵塞,导致色东普、西兴拉等特大堵江灾害的发生[14 − 15]。除了这两次强震以外,中国地震台网记录显示,2012-2023年间雅江缝合带大峡谷至墨脱地区发生3级以上地震超过30次。频繁强烈的地震动作用导致雅江缝合带高陡山体震裂损伤和结构松动,岩体强度和稳定性降低,在未来大型工程扰动或极端条件作用下容易发生大规模失稳滑动。
巴登则山体位于雅江缝合带墨脱段的边界(图1a),属于典型的震裂山体,其地处白马西路河与雅鲁藏布江的交汇处,距离墨脱县城仅13 km,一旦发生整体失稳将对边疆城镇和工程建设运营造成严重危害。巴登则山体总体呈“宽U型”凹腔,开口方向南东,横宽约2.5 km,顶部有民居村落,山脊高程
1600 ~2100 m,山底雅鲁藏布江江面高程660~670 m,山体高差超过1000 m,坡度35°~50°。受雅江缝合带控制,巴登则山体地质结构十分复杂,岩性包括念青唐古拉岩群变质岩、闪长岩、花岗岩以及构造混杂岩,巴登则断裂和月尔冬断裂在此经过(图1b)。巴登则断裂和月尔冬断裂是墨脱活动断裂系的主要分支,活动性强,以走滑运动为主,影响带宽均超过100 m。中国地质科学院地质力学研究所在巴登则山体附近布设了40个地震监测台站,定位观测到该地区构造活动强烈,2022年6月—2024年1月发生地震千余起,最大震级3.4级,震源深度主要为10 km以内,最大震源深度32 km(图1c)。受巴登则和月尔冬活动断裂控制,加之长期地震活动影响,巴登则山体发生明显松动,岩体结构十分破碎,沿坡表已形成了5个大型变形区(图1d)。变形区内地表裂缝和松动岩体广泛分布,岩石碎块大小不一,岩体呈碎裂-散体状,风化强烈,岩石强度低,稳定性差,岩性主要为花岗片麻岩、花岗岩、闪长岩,构造面理十分混乱(图2)。2. 雅江缝合带震裂山体孕灾条件分析
雅江缝合带震裂山体具有特殊的易灾地质结构,其孕灾条件主要受特殊的岩性组合、强烈的构造活动以及松散的岩体结构控制,具有岩石组成混杂、跨越多条活动断裂、前期震裂损伤严重等特点,在强震、极端气候等因素作用下容易发生大规模失稳成灾,对边疆城镇和工程建设运营造成严重威胁。
2.1 特殊的岩性组合
对雅江缝合带墨脱段进行了野外实地调研和剖面测量,发现缝合带岩石物质组成混杂,由北西向南东主要包括阿尼桥岩组、构造混杂岩带、冈底斯岩浆杂岩等,南北两侧以外为元古代变质岩(图3)。其中,阿尼桥岩组北侧以老虎嘴剪切带为界,出露石英片岩、云母石英片岩、石英岩、绿片岩等,节理较发育,岩体完整性较差。构造混杂岩带被根阿日断裂和巴登则断裂围限,由构造岩块和强变形的基质组成,横纵向岩性变化大,岩块包括变橄榄岩、蛇纹滑石直闪石片岩、钠长阳起石片岩、斜长角闪岩、角闪斜长片麻岩、大理岩、绿泥阳起片岩、花岗片麻岩等,基质以二云母石英片岩、石英黑云母片岩和少量变粒岩为主,早期俯冲碰撞形成的构造迹象多被改造、叠加,发生多次面理置换。冈底斯岩浆杂岩主体为古新世-渐新世的中酸性岩体,主要包括似斑状二长花岗岩、花岗闪长岩、英云闪长岩和石英闪长岩,沿南东方向从糜棱岩化转变为片麻状构造、条带状构造,面理方向总体与缝合带走向一致。总体而言,雅江缝合带各类岩石空间变化迅速,变形程度高,物理力学性质差异巨大,构造面理(片理)等透入性结构面发育,强应变带与弱变形域紧密伴生。
2.2 强烈的构造活动
对墨脱断裂系发育特征开展了地球物理探测和构造行迹分析,发现墨脱断裂系是在雅江缝合带的基础上演化和新生,总体由月尔冬断裂、巴登则断裂、墨脱断裂等多条分支断裂组成,走向一般北东—南西,具左行走滑兼逆冲性质,错断了全新世最新的河流阶地和冲积扇。跨越雅鲁藏布江开展了音频大地电磁测深地球物理探测(图4),揭露墨脱断裂系各分支断裂主要在深部2 km左右汇聚,向剖面中部断裂产状逐渐变陡,表现出正花状构造。其中,巴登则断裂和月尔冬断裂均倾向南东,在1.5~2 km深度汇聚;雅鲁藏布江南东侧的F8断裂近于直立,F9断裂倾向北西,倾角较大,在2 km深度汇聚。巴登则山体(巴登则断裂至月尔冬断裂)浅部电阻率较低,而深部电阻率较高,低阻区和高阻区之间出现明显分界,验证了山体表层结构已发生显著破碎。对墨脱断裂系进行了野外追索调查(图5),发现月尔冬断裂、巴登则断裂、墨脱断裂等分支断裂均切穿至地表,并发育断层泥、断层角砾和碎裂岩等断层破裂带结构,沿断裂走向可见线状谷地和断层陡坎,断层陡坎最大高差达2.5 m,线状地貌平行排列,显示墨脱断裂系活动性强,历史上曾多次发生强震活动。
2.3 松散的岩体结构
有单位对巴登则山体进行了平硐地质勘查,揭露了0~700 m水平深度岩体结构发育特征。平硐剖面显示(图6),巴登则山体岩性组成复杂,并受多条不同期次的断裂构造切割。其中,592 m和696 m处发育走向北东的断层破碎带,宽度1.5~3 m,岩体透水严重并形成裂缝空腔;210~250 m之间也发育两条性质和形态相似的断层,但规模较小。结合地球物理探测和地面调查结果,认为这几条晚期断层均是月尔冬活动断裂的分支,共同控制着巴登则山体的稳定性。平硐勘查还发现,巴登则山体张性裂隙发育,局部可见岩体松动架空(图7),显示前期经历强震作用并发生严重震裂损伤。受活动断裂带影响,巴登则山体变形错动强烈,岩体结构较破碎,稳定性较差,极端条件下存在发生大规模失稳破坏的风险。
3. 板块缝合带震裂山体研究进展
围绕雅江缝合带震裂山体动力响应和失稳问题,主要从板块缝合带岩体工程地质性质、震裂山体结构特征、山体地震动力响应规律、山体强震失稳破坏机制、研究方法等5个方面对国内外研究进展进行论述。
3.1 板块缝合带岩体工程地质性质
板块缝合带内构造混杂岩工程地质性质十分特殊,按物质组成和构造变形程度可以划分为岩块(block)和基质(matrix),岩块为弱变形物质,基质为强变形物质,此类岩体结构因此可以称为“block-in-matrix fabric”,一些学者以此为基础进行了岩体失稳物理模拟和数值分析[16 − 18]。混杂岩的物理力学性质受控于块体基质成分、各向异性程度、岩体内部扰乱肢解程度、以及岩块体积占比(VBP)等四个方面的因素,当VBP低于10%或25%时岩块的力学影响可以忽视,当VBP高于75%时构造混杂岩可以视作块裂介质岩体[19 − 20]。压缩试验和直剪试验结果表明,随着岩块含量增大,岩块与基质的接触面积增加,导致构造混杂岩内摩擦角增大、粘聚力减小,岩体强度出现复杂变化[21 − 22]。
3.2 震裂山体结构特征
众多学者[23 − 25]在开展黄河大柳树坝工程地质问题研究时发现存在大量震裂松动岩体,其影响带水平深度超过200 m,具有结构面张开、张裂缝密集发育、大范围低波速、低强度、质量差等特征,是制约大坝建设的重要原因之一。2008年汶川8.0级大地震后,震裂山体问题再次引发广泛关注。众多研究发现,这些震裂山体地质结构松动,出现了大规模变形和岩体损伤破坏,具有潜在的不稳定性,孕育形成了三溪村滑坡、新磨村滑坡等特大高位地质灾害,危害十分严重[6, 8, 26 − 27]。近年来,一些研究采用循环荷载试验、振动台试验、数值模拟等方法,分析了岩石非线性损伤破裂过程和强度弱化效应,建立了斜坡岩体震裂深度计算模型,研究了碎裂岩体动态剪切变形规律,阐释了山体震裂破坏机制,并对震损岩体质量进行了综合评价,为后续研究提供了良好参照[28 − 30]。
3.3 山体地震动力响应规律
翁文灏[31]在调研1920年海原8.5级地震时就提出地形地质条件和岩土体结构会对震害造成显著影响。此后,诸多研究人员通过实地调查、强震观测、模型试验、数值模拟等方法,发现地震波传播至局部不规则场地时会发生波动散射,导致地震动放大、衰减以及空间变化,并且地形突变的高耸陡坡震害相对严重,坡顶和斜坡突出部分的地震动放大效应更为强烈[32 − 34]。这种地形放大效应与坡体的几何特征紧密相关,总体随相对高程和坡度增加而非线性增大。在相同震源和入射条件下,山体岩性结构是影响地震动力响应规律的另一项重要因素。众多学者研究发现[35 − 37],软岩的地震放大效应通常较硬岩显著,层状岩体较均质完整岩体显著,上硬下软岩体较上软下硬岩体显著,顺向坡较逆向坡显著;当地震波传播至含软弱结构面和软弱夹层岩体时则产生振动分离,并发生衰减吸收和局部放大等复杂作用,导致地震响应行为的非协调。
3.4 缝合带山体强震失稳破坏机制
殷跃平等[3]总结青藏高原构造缝合带山体失稳破坏机制主要有三种类型:①构造混杂软岩山体长期蠕滑变形;②跨断层山体断层处形成关键锁固段,锁固段突发破坏形成“挡墙溃决”;③断裂带震裂山体受强震作用发生振胀和抛掷破坏。2008年汶川8.0级大地震发生后,强震触发山体失稳破坏引发广泛关注。殷跃平等[38]针对大光包巨型滑坡开展深入研究,发现地震动作用下山体前缘发生顺层失稳滑动,后缘发生拉裂、振碎解体和抛掷失稳;黄润秋等[39]提出大光包滑坡存在强震拉裂、锁固段剪断及“楔形体”失稳、高速滑动和“急刹车”运动堆积、拆离滑动、断壁崩滑等5个失稳破坏阶段;裴向军等[40]认为强震作用下大光包岩体发生损伤碎裂化和强度骤降,层间错动带发生液化,导致了最终的滑坡失稳启动。诸多学者[41 − 43]分析了汶川地震滑坡多阶段失稳启动过程,提出了带状震源分段作用响应、软弱层非协调变形动力损伤、滑动面动力摩擦减阻等失稳破坏力学机制。
3.5 研究方法
在岩体震裂损伤和强度衰减研究方面,循环荷载试验是常用的室内分析方法,包括循环三轴试验、循环直剪试验等。该方法可以用于定量评价裂隙岩体非线性损伤破裂过程和强度劣化效应,刻画地震载荷作用下裂纹扩展和变形累积规律,在工程岩体地震失稳研究中应用广泛[44 − 45]。
在模型试验研究方面,振动台试验可以通过输入设计地震波直观模拟地震作用下的结构响应,并研究强震诱发变形破坏机理和失稳模式。近年来,大型振动台模型试验设备和技术发展迅速,地震荷载可以单次加载或多次加载,振动模式可以采取竖直向、水平向、三向激振,地震动频率0.1~120 Hz,加速度峰值超过±1.5 g,位移峰值超过±100 mm,针对不同岩性强度、不同岩体结构、不同软弱夹层、不同结构面类型的斜坡模型均有较好的应用实例[46 − 48]。近期,世界上最大的地震工程模拟研究设施、天津大学地震大装置已完成安装,不久将可以投入使用。
在数值模拟研究方面,常采用有限元法、有限差分法、离散元法、无网格法等数值模拟方法。有限元法(FEM)是用有限离散单元集合体代替原连续体求解,能考虑地震动特性和斜坡岩土体的动力特性,可以分析地震过程中的安全系数随时间动态变化过程[49 − 50]。有限差分法(FDM)是将差分线性方程组代替微分方程组进行求解,可以模拟随时间演化的连续介质大变形力学过程[51]。离散元法(DEM)是把破碎岩体视为离散的刚性体或散粒体进行仿真计算,适用于模拟分析非连续介质大变形问题,可以再现地震作用下的岩体损伤崩滑动力破坏全过程[52]。无网格法(MMs)是通过在坐标点上构造插值函数来离散控制方程从而进行模拟计算,不需要生成网格,适用于复杂几何形状和超大变形问题的求解。物质点法(MPM)是无网格法的一种,可以用于描述斜坡失稳到后破坏的渐进式发展全过程,近期发展迅速,在地震滑坡响应机制和失稳破坏分析上得到了较好应用[53 − 54]。
4. 结论与建议
雅江缝合带震裂山体是由印度-欧亚板块碰撞运动和近期强震活动作用叠加而形成,具有岩性空间变化迅速、岩体结构复杂、工程地质性质特殊等特点,极端条件作用下容易发生大规模失稳滑动,形成特大地质灾害风险高。其孕灾条件主要受控于特殊的岩性组合、强烈的构造活动以及松散的岩体结构。
通过分析总结前人在板块缝合带岩体工程地质性质、震裂山体结构特征、山体地震动力响应规律、山体强震失稳破坏机制、研究方法等方面的研究,发现雅江缝合带震裂山体精细地质力学模型有待建立、构造混杂岩岩体震裂损伤破坏机制认识不清、强震作用下的缝合带跨断层震裂山体动力响应和失稳机理尚不明确等问题,亟待采用新的方法手段开展深入研究。为此,建议选取雅江缝合带墨脱段巴登则山体为重点研究案例,围绕“缝合带跨断层震裂山体地质结构与孕灾机制”和“强震作用下缝合带跨断层震裂山体动力响应规律与破坏模式”两个关键科学问题,系统开展雅鲁藏布江缝合带跨断层震裂山体失稳机理研究,主要查明巴登则山体岩性结构、活动断裂、前期震裂损伤特征,建立雅江缝合带跨断层震裂山体孕灾地质结构精细模型,研究岩石动力破坏演化规律,阐明岩体震裂损伤破坏机制,分析巴登则山体地震波传播响应时空分布规律,阐明复杂地质结构对放大效应的影响作用,研究山体局部变形破裂-整体失稳启滑-后破坏碎屑堆积的灾害过程,揭示强震触发山体失稳模式和力学启动机制。
-
-
[1] BILHAM R,ENGLAND P. Plateau ‘pop-up’ in the great 1897 Assam earthquake[J]. Nature,2001,410:806 − 809. DOI: 10.1038/35071057
[2] YIN Y P,LI B,GAO Y,et al. Geostructures,dynamics and risk mitigation of high-altitude and long-runout rockslides[J]. Journal of Rock Mechanics and Geotechnical Engineering,2023,15(1):66 − 101. DOI: 10.1016/j.jrmge.2022.11.001
[3] COUDURIER-CURVEUR A,TAPPONNIER P,OKAL E,et al. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis[J]. Earth and Planetary Science Letters,2020,531:115928. DOI: 10.1016/j.jpgl.2019.115928
[4] 李滨,殷跃平,谭成轩,等. 喜马拉雅东构造结工程选址面临的地质安全挑战[J]. 地质力学学报,2022,28(6):907 − 918. [LI Bin,YIN Yueping,TAN Chengxuan,et al. Geo-safety challenges against the site selection of engineering projects in the eastern Himalayan syntaxis area[J]. Journal of Geomechanics,2022,28(6):907 − 918. (in Chinese with English abstract)] LI Bin, YIN Yueping, TAN Chengxuan, et al. Geo-safety challenges against the site selection of engineering projects in the eastern Himalayan syntaxis area[J]. Journal of Geomechanics, 2022, 28(6): 907 − 918. (in Chinese with English abstract)
[5] 张永双,巴仁基,任三绍,等. 中国西藏金沙江白格滑坡的地质成因分析[J]. 中国地质,2020,47(6):1637 − 1645. [ZHANG Yongshuang,BA Renji,REN Sanshao,et al. An analysis of geo-mechanism of the Baige landslide in Jinsha River,Tibet[J]. Geology in China,2020,47(6):1637 − 1645. (in Chinese with English abstract)] ZHANG Yongshuang, BA Renji, REN Sanshao, et al. An analysis of geo-mechanism of the Baige landslide in Jinsha River, Tibet[J]. Geology in China, 2020, 47(6): 1637 − 1645. (in Chinese with English abstract)
[6] YIN Y P,CHENG Y L,LIANG J T,et al. Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun,Dujiangyan,after the Wenchuan Ms 8.0 earthquake[J]. Landslides,2016,13(1):9 − 23. DOI: 10.1007/s10346-015-0554-9
[7] GAO Y,YIN Y P,LI B,et al. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide–debris flow at Sanxicun,Dujiangyan,China,following the Wenchuan Ms 8.0 earthquake[J]. Landslides,2017,14(4):1361 − 1374. DOI: 10.1007/s10346-016-0793-4
[8] 殷跃平,王文沛,张楠,等. 强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J]. 中国地质,2017,44(5):827 − 841. [YIN Yueping,WANG Wenpei,ZHANG Nan,et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area:a case study of the xinmo landslide in Maoxian County,Sichuan Province[J]. Geology in China,2017,44(5):827 − 841. (in Chinese with English abstract)] YIN Yueping, WANG Wenpei, ZHANG Nan, et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: a case study of the xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 2017, 44(5): 827 − 841. (in Chinese with English abstract)
[9] 何思明,白秀强,欧阳朝军,等. 四川省茂县叠溪镇新磨村特大滑坡应急科学调查[J]. 山地学报,2017,35(4):598 − 603. [HE Siming,BAI Xiuqiang,OUYANG Chaojun,et al. On the survey of giant landslide at xinmo village of diexi town,Maoxian country,Sichuan Province,China[J]. Mountain Research,2017,35(4):598 − 603. (in Chinese with English abstract)] HE Siming, BAI Xiuqiang, OUYANG Chaojun, et al. On the survey of giant landslide at xinmo village of diexi town, Maoxian country, Sichuan Province, China[J]. Mountain Research, 2017, 35(4): 598 − 603. (in Chinese with English abstract)
[10] 许志琴,蔡志慧,张泽明,等. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学[J]. 岩石学报,2008,24(7):1463 − 1476. [XU Zhiqin,CAI Zhihui,ZHANG Zeming,et al. Tectonics and fabric kinematics of the Namche Barwa terrane,Eastern Himalayan Syntaxis[J]. Acta Petrologica Sinica,2008,24(7):1463 − 1476. (in Chinese with English abstract)] XU Zhiqin, CAI Zhihui, ZHANG Zeming, et al. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis[J]. Acta Petrologica Sinica, 2008, 24(7): 1463 − 1476. (in Chinese with English abstract)
[11] SEWARD D,BURG J P. Growth of the namche barwa syntaxis and associated evolution of the Tsangpo gorge:constraints from structural and thermochronological data[J]. Tectonophysics,2008,451(1/2/3/4):282 − 289.
[12] 丁林,钟大赉. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化[J]. 地质科学,2013,48(2):317 − 333. [DING Lin,ZHONG Dala. The tectonic evolution of the eastern Himalaya syntaxis since the collision of the Indian and Eurasian plates[J]. Chinese Journal of Geology (Scientia Geologica Sinica),2013,48(2):317 − 333. (in Chinese with English abstract)] DING Lin, ZHONG Dala. The tectonic evolution of the eastern Himalaya syntaxis since the collision of the Indian and Eurasian plates[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 2013, 48(2): 317 − 333. (in Chinese with English abstract)
[13] 西藏自治区科学技术委员会国家地震局科技监测司. 西藏察隅当雄大地震[M]. 拉萨:西藏人民出版社,1988. [Science and Technology Commission of Tibet Autonomous Region,and Department of Science and Technology Monitoring,National Earthquake Administration. Dangxiong earthquake in Chayu,Tibet[M]. Lhasa:Tibet People's Publishing House,1988. (in Chinese)] Science and Technology Commission of Tibet Autonomous Region, and Department of Science and Technology Monitoring, National Earthquake Administration. Dangxiong earthquake in Chayu, Tibet[M]. Lhasa: Tibet People's Publishing House, 1988. (in Chinese)
[14] HU K H,ZHANG X P,YOU Y,et al. Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge[J]. Landslides,2019,16(5):993 − 1001. DOI: 10.1007/s10346-019-01168-w
[15] GAO H Y,YIN Y P,LI B,et al. Geomorphic evolution of the Sedongpu Basin after catastrophic ice and rock avalanches triggered by the 2017 Ms6.9 Milin earthquake in the Yarlung Zangbo River area,China[J]. Landslides,2023,20(11):2327 − 2341. DOI: 10.1007/s10346-023-02118-3
[16] KALENDER A,SONMEZ H,MEDLEY E,et al. An approach to predicting the overall strengths of unwelded bimrocks and bimsoils[J]. Engineering Geology,2014,183:65 − 79. DOI: 10.1016/j.enggeo.2014.10.007
[17] CLARKE A P,VANNUCCHI P. Structural anisotropy:Using image analysis to quantify block-in-matrix fabrics[J]. Journal of Structural Geology,2020,131:103939. DOI: 10.1016/j.jsg.2019.103939
[18] OGATA K,FESTA A,PINI G A,et al. Mélanges in flysch-type formations:reviewing geological constraints for a better understanding of complex formations with block-in-matrix fabric[J]. Engineering Geology,2021,293:106289. DOI: 10.1016/j.enggeo.2021.106289
[19] KHORASANI E,AMINI M,HOSSAINI M F,et al. Statistical analysis of bimslope stability using physical and numerical models[J]. Engineering Geology,2019,254:13 − 24. DOI: 10.1016/j.enggeo.2019.03.023
[20] NAPOLI M L,FESTA A,BARBERO M. Practical classification of geotechnically complex formations with block-in-matrix fabrics[J]. Engineering Geology,2022,301:106595. DOI: 10.1016/j.enggeo.2022.106595
[21] SONMEZ H,ERCANOGLU M,KALENDER A,et al. Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension[J]. International Journal of Rock Mechanics and Mining Sciences,2016,86:91 − 103. DOI: 10.1016/j.ijrmms.2016.03.022
[22] AVŞAR E. An experimental investigation of shear strength behavior of a welded bimrock by meso-scale direct shear tests[J]. Engineering Geology,2021,294:106321. DOI: 10.1016/j.enggeo.2021.106321
[23] 韩文峰. 黄河黑山峡大柳树松动岩体工程地质研究[M]. 兰州:甘肃科学技术出版社,1993. [HAN Wenfeng. Engineering geological study on loose rock mass of Daliushu in Heishanxia of the Yellow River[M]. Lanzhou:Gansu Science & Technology Press,1993. (in Chinese)] HAN Wenfeng. Engineering geological study on loose rock mass of Daliushu in Heishanxia of the Yellow River[M]. Lanzhou: Gansu Science & Technology Press, 1993. (in Chinese)
[24] 谌文武,梁收运,刘高,等. 松动岩体的工程特性研究[J]. 岩石力学与工程学报,2000,19(6):751 − 755. [CHEN Wenwu,LIANG Shouyun,LIU Gao,et al. Study on engineering characteristics of the dynamo-relaxed rockmass[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(6):751 − 755. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2000.06.014 CHEN Wenwu, LIANG Shouyun, LIU Gao, et al. Study on engineering characteristics of the dynamo-relaxed rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6): 751 − 755. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2000.06.014
[25] 王勇智,戚炜,门玉明,等. 黄河大柳树坝址岩体破坏机制动力模拟试验分析[J]. 地球科学与环境学报,2004,26(2):54 − 58. [WANG Yongzhi,QI Wei,MEN Yuming,et al. Dynamic simulation test analysis on destructive mechanism of rock mass at Daliushu dam site of Huanghe River[J]. Journal of Earth Science and Enivronmental,2004,26(2):54 − 58. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1672-6561.2004.02.013 WANG Yongzhi, QI Wei, MEN Yuming, et al. Dynamic simulation test analysis on destructive mechanism of rock mass at Daliushu dam site of Huanghe River[J]. Journal of Earth Science and Enivronmental, 2004, 26(2): 54 − 58. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-6561.2004.02.013
[26] YIN Y P,WANG W P,ZHANG N,et al. The June 2017 Maoxian landslide:Geological disaster in an earthquake area after the Wenchuan ms 8.0 earthquake[J]. Science China Technological Sciences,2017,60(11):1762 − 1766. DOI: 10.1007/s11431-017-9148-2
[27] JIN K P,XING A G,BILAL M. Plane morphometric analysis of particles using an automatic image analysis system:a case study of the xinmo landslide[J]. Granular Matter,2023,26(1):4.
[28] LI T T,PEI X J,GUO J,et al. An energy-based fatigue damage model for sandstone subjected to cyclic loading[J]. Rock Mechanics and Rock Engineering,2020,53(11):5069 − 5079. DOI: 10.1007/s00603-020-02209-w
[29] 信春雷,杨飞,冯文凯,等. 多期地震作用的台阶式顺层岩质边坡震裂破坏机制[J]. 岩土力学,2023,44(12):3481 − 3494. [XIN Chunlei,YANG Fei,FENG Wenkai,et al. Shattering failure mechanism of step-like bedding rock slope under multi-stage earthquake excitations[J]. Rock and Soil Mechanics,2023,44(12):3481 − 3494. (in Chinese with English abstract)] XIN Chunlei, YANG Fei, FENG Wenkai, et al. Shattering failure mechanism of step-like bedding rock slope under multi-stage earthquake excitations[J]. Rock and Soil Mechanics, 2023, 44(12): 3481 − 3494. (in Chinese with English abstract)
[30] HE J X,WANG Y S,ZHAO J J,et al. Seismic response of an irregular slope containing surficial weak layer and internal fractures in Dadu River,Southwest China[J]. Landslides,2024,21(3):621 − 640. DOI: 10.1007/s10346-023-02171-y
[31] 翁文灏. 民国九年十二月十六日甘肃的地震[J]. 科学,1922,7(2):105 − 114. [WENG Wenhao. Earthquake in Gansu on December 16,the 9th year of the Republic of China[J]. Science,1922,7(2):105 − 114. (in Chinese)] WENG Wenhao. Earthquake in Gansu on December 16, the 9th year of the Republic of China[J]. Science, 1922, 7(2): 105 − 114. (in Chinese)
[32] 胡聿贤,孙平善,章在墉,等. 场地条件对震害和地震动的影响[J]. 地震工程与工程振动,1980(0):34 − 41. [HU Yuxian,SUN Pingshan,ZHANG Zaiyong,et al. Effects of site conditions on earthquake damage and ground motion[J]. Earthquake Engineering and Engineering Vibration,1980(0):34 − 41. (in Chinese with English abstract)] HU Yuxian, SUN Pingshan, ZHANG Zaiyong, et al. Effects of site conditions on earthquake damage and ground motion[J]. Earthquake Engineering and Engineering Vibration, 1980(0): 34 − 41. (in Chinese with English abstract)
[33] ASHFORD S A,SITAR N,LYSMER J,et al. Topographic effects on the seismic response of steep slopes[J]. Bulletin of the Seismological Society of America,1997,87(3):701 − 709. DOI: 10.1785/BSSA0870030701
[34] ZHU C,XU J J,HE M C,et al. Amplification of ground vibration on a rocky hill and its environs under cylindrical SH waves[J]. Rock Mechanics and Rock Engineering,2024,57(4):2727 − 2738. DOI: 10.1007/s00603-023-03711-7
[35] LIU H X,XU Q,LI Y R. Effect of lithology and structure on seismic response of steep slope in a shaking table test[J]. Journal of Mountain Science,2014,11(2):371 − 383. DOI: 10.1007/s11629-013-2790-6
[36] YANG G X,QI S W,WU F Q,et al. Seismic amplification of the anti-dip rock slope and deformation characteristics:a large-scale shaking table test[J]. Soil Dynamics and Earthquake Engineering,2018,115:907 − 916. DOI: 10.1016/j.soildyn.2017.09.010
[37] SONG D Q,ZHANG S,LIU C,et al. Cumulative damage evolution of jointed slopes subject to continuous earthquakes:influence of joint type on dynamic amplification effect and failure mode of slopes[J]. Computers and Geotechnics,2024,166:106016. DOI: 10.1016/j.compgeo.2023.106016
[38] 殷跃平,王猛,李滨,等. 汶川地震大光包滑坡动力响应特征研究[J]. 岩石力学与工程学报,2012,31(10):1969 − 1982. [YIN Yueping,WANG Meng,LI Bin,et al. Dynamic response characteristics of daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(10):1969 − 1982. (in Chinese with English abstract)] YIN Yueping, WANG Meng, LI Bin, et al. Dynamic response characteristics of daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1969 − 1982. (in Chinese with English abstract)
[39] 黄润秋,张伟锋,裴向军. 大光包滑坡工程地质研究[J]. 工程地质学报,2014,22(4):557 − 585. [HUANG Runqiu,ZHANG Weifeng,PEI Xiangjun. Engineering geological study on daguangbao landslide[J]. Journal of Engineering Geology,2014,22(4):557 − 585. (in Chinese with English abstract)] HUANG Runqiu, ZHANG Weifeng, PEI Xiangjun. Engineering geological study on daguangbao landslide[J]. Journal of Engineering Geology, 2014, 22(4): 557 − 585. (in Chinese with English abstract)
[40] 裴向军,朱凌,崔圣华,等. 大光包滑坡层间错动带液化特性及滑坡启动成因探讨[J]. 岩土力学,2019,40(3):1085 − 1096. [PEI Xiangjun,ZHU Ling,CUI Shenghua,et al. Liquefaction characteristics of interlayer dislocation zone of Daguangbao landslide and its start-up cause[J]. Rock and Soil Mechanics,2019,40(3):1085 − 1096. (in Chinese with English abstract)] PEI Xiangjun, ZHU Ling, CUI Shenghua, et al. Liquefaction characteristics of interlayer dislocation zone of Daguangbao landslide and its start-up cause[J]. Rock and Soil Mechanics, 2019, 40(3): 1085 − 1096. (in Chinese with English abstract)
[41] TANG H M,JIA H B,HU X L,et al. Characteristics of landslides induced by the great Wenchuan earthquake[J]. Journal of Earth Science,2010,21(1):104 − 113. DOI: 10.1007/s12583-010-0008-1
[42] 崔芳鹏,许强,殷跃平,等. 基于带状震源破裂机制的斜坡动力响应[J]. 岩土力学,2018,39(1):320 − 330. [CUI Fangpeng,XU Qiang,YIN Yueping,et al. Dynamic response of slope based on fracture mechanisms of strip-shape hypocenter[J]. Rock and Soil Mechanics,2018,39(1):320 − 330. (in Chinese with English abstract)] CUI Fangpeng, XU Qiang, YIN Yueping, et al. Dynamic response of slope based on fracture mechanisms of strip-shape hypocenter[J]. Rock and Soil Mechanics, 2018, 39(1): 320 − 330. (in Chinese with English abstract)
[43] FERNÁNDEZ F,VARGAS E,MULLER A L,et al. Material point method modeling in 3D of the failure and Run-out processes of the Daguangbao landslide[J]. Acta Geotechnica,2024,19(7):4277 − 4296. DOI: 10.1007/s11440-023-02152-4
[44] QI S W,ZHENG B W,WU F Q,et al. A new dynamic direct shear testing device on rock joints[J]. Rock Mechanics and Rock Engineering,2020,53(10):4787 − 4798. DOI: 10.1007/s00603-020-02175-3
[45] PARK J,PARK M,CHAE Y,et al. Dynamic cyclic loading tests for investigating the influence of loading rate and axial force on the lateral response of RC columns[J]. Earthquake Engineering & Structural Dynamics,2024,53(4):1537 − 1551.
[46] 杜修力,路德春. 土动力学与岩土地震工程研究进展[J]. 岩土力学,2011,32(增刊2):10 − 20. [DU Xiuli,LU Dechun. Advances in soil dynamics and geotechnical earthquake engineering[J]. Rock and Soil Mechanics,2011,32(Sup 2):10 − 20. (in Chinese)] DU Xiuli, LU Dechun. Advances in soil dynamics and geotechnical earthquake engineering[J]. Rock and Soil Mechanics, 2011, 32(Sup 2): 10 − 20. (in Chinese)
[47] 黄润秋,李果,巨能攀. 层状岩体斜坡强震动力响应的振动台试验[J]. 岩石力学与工程学报,2013,32(5):865 − 875. [HUANG Runqiu,LI Guo,JU Nengpan. Shaking table test on strong earthquake response of stratified rock slopes[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(5):865 − 875. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-6915.2013.05.003 HUANG Runqiu, LI Guo, JU Nengpan. Shaking table test on strong earthquake response of stratified rock slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 865 − 875. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-6915.2013.05.003
[48] CHEN J C,CHE A L,WANG L M,et al. Investigating the failure mechanism of loess-mudstone landslides with a high water content interface subjected to earthquakes through the shaking table test[J]. Soil Dynamics and Earthquake Engineering,2024,177:108406. DOI: 10.1016/j.soildyn.2023.108406
[49] 徐文杰,陈祖煜,何秉顺,等. 肖家桥滑坡堵江机制及灾害链效应研究[J]. 岩石力学与工程学报,2010,29(5):933 − 942. [XU Wenjie,CHEN Zuyu,HE Bingshun,et al. Research on river-blocking mechanism of Xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):933 − 942. (in Chinese with English abstract)] XU Wenjie, CHEN Zuyu, HE Bingshun, et al. Research on river-blocking mechanism of Xiaojiaqiao landslide and disasters of chain effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 933 − 942. (in Chinese with English abstract)
[50] ZHANG Y B,YIN Y P,XING A G,et al. On frictional heating and pore pressure generation:implications for coseismic landslides hypermobility[J]. Computers and Geotechnics,2022,150:104899. DOI: 10.1016/j.compgeo.2022.104899
[51] FENG Z Y,LU Y R,SHEN Z R. A numerical simulation of seismic signals of coseismic landslides[J]. Engineering Geology,2021,289:106191. DOI: 10.1016/j.enggeo.2021.106191
[52] 蔡国军,陈锡锐,孙文鹏,等. 强震作用下斜坡表面放大效应的三维离散元模拟[J]. 地质科技通报,2022,41(2):104 − 112. [CAI Guojun,CHEN Xirui,SUN Wenpeng,et al. Three-dimensional discrete element simulation of the amplification effect of the slope surface under the action of strong earthquakes[J]. Bulletin of Geological Science and Technology,2022,41(2):104 − 112. (in Chinese with English abstract)] CAI Guojun, CHEN Xirui, SUN Wenpeng, et al. Three-dimensional discrete element simulation of the amplification effect of the slope surface under the action of strong earthquakes[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 104 − 112. (in Chinese with English abstract)
[53] 王斌,冯夏庭,潘鹏志,等. 物质点法在边坡稳定性评价中的应用研究[J]. 岩石力学与工程学报,2017,36(9):2146 − 2155. [WANG Bin,FENG Xiating,PAN Pengzhi,et al. Slope failure analysis using the material point method[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(9):2146 − 2155. (in Chinese with English abstract)] WANG Bin, FENG Xiating, PAN Pengzhi, et al. Slope failure analysis using the material point method[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2146 − 2155. (in Chinese with English abstract)
[54] HE M C,RIBEIRO E SOUSA L,MÜLLER A,et al. Numerical and safety considerations about the Daguangbao landslide induced by the 2008 Wenchuan earthquake[J]. Journal of Rock Mechanics and Geotechnical Engineering,2019,11(5):1019 − 1035. DOI: 10.1016/j.jrmge.2019.05.004