Study on the surge formula system of typical dangerous rock mass collapse with different instability modes
-
摘要:
峡谷区高陡危岩崩塌产生涌浪危害巨大,严重危及航道及景区安全;但危岩崩塌产生涌浪的系统性研究不够,针对性快速评估技术有待加强。本文旨在建立一个针对不同失稳模式的危岩体涌浪公式计算体系,以加强峡谷区高陡危岩崩塌产生涌浪灾害的快速评估技术。通过系统梳理了适用于危岩体不同失稳模式的涌浪计算公式,并建立了适用于不同失稳模式的危岩体涌浪全过程公式计算体系,以此体系为基础编制了危岩涌浪计算引擎。通过对典型压溃式龙门寨危岩体运用公式法计算体系进行涌浪计算,发现175 m水位时最大首浪高度为13.9 m,传播至2 km处传播浪高度为1.75 m,码头处爬高值为2.91 m,与数值模拟结果误差在20%以内,验证了计算体系的可行性,并进行了涌浪危险性分析。随后运用该计算体系对典型坠落式渔峡口危岩体和典型倾倒式巴西卡皮托利乌危岩体进行了涌浪计算,两者危岩体涌浪传播200 m后都进入低风险区域,体现了该计算体系在不同失稳模式下的应用情况。
Abstract:The collapse of high and steep dangerous rock in the gorge area produces huge surge hazards, which seriously endangers the safety of waterways and scenic spots. However, the systematic research on the surge caused by perilous rock collapse is not enough, and the targeted rapid assessment technology needs to be strengthened. The purpose of this paper is to establish a calculation system of dangerous rock surge formula for different instability modes, so as to strengthen the rapid assessment technology of surge disaster caused by high and steep dangerous rock collapse in canyon area. The surge calculation formulas suitable for different instability modes of perilous rock mass are systematically sorted out, and the calculation system of the whole process formula of perilous rock mass surge suitable for different instability modes is established. Based on this system, the calculation engine of perilous rock surge is compiled. By using the formula method to calculate the surge of the typical crushed Longmenzhai dangerous rock mass, it is found that the maximum first wave height is 13.9 m at 175 m water level, the propagation wave height is 1.75 m at 2 km, and the climbing height at the wharf is 2.91m. The error with the numerical simulation results is within 20 %, which verifies the feasibility of the calculation system and analyzes the surge risk. Then, the calculation system is used to calculate the surge of the typical falling Yuxiakou dangerous rock mass and the typical toppling Brazilian Capitoliu dangerous rock mass. Both dangerous rock masses enter the low-risk area after 200 m surge propagation, which reflects the calculation system under different instability modes.
-
Keywords:
- dangerous rock mass /
- surge /
- formula method /
- surge calculation system /
- instability mode
-
0. 引 言
近年来,中国建设开发了数十座软岩露天煤矿,在开采过程中采场及排土场均发生过一定规模的滑坡,对于采场底帮顺倾软岩边坡与顺倾软基底内排土场边坡滑坡灾害尤为严重。滑坡灾害直接影响剥采排工程的发展,造成人员伤害和设备损毁及地貌景观破坏,严重制约着露天矿的安全高效生产[1-2],边坡稳定性治理问题已成为边坡工程领域亟待解决的难题之一。
目前国内外学者们应用不同理论对其展开大量有意义的研究,成果丰硕。王东等[3]综合运用极限平衡法及数值模拟法,分析了不同压帮高度下边坡稳定性变化规律,提出了逆倾软岩边坡变形的治理措施;刘子春等[4]以扎尼河露天矿为背景,通过分析扩帮、内排压角等治理措施的基础上,提出了一种条带式开采技术的边坡治理方案;陈毓等[5]采用ANSYS对黑山露天矿内排土场边坡稳定性和破坏机理进行了分析,揭示了内排土场滑坡模式为“坐落滑移式”滑动,运用削坡治理技术来保证内排土场稳定性;唐文亮等[6]系统分析了露天矿内排土场滑坡影响因素,提出了预留煤柱的滑坡治理方法;李伟[7]揭示了阴湾排土场边坡变形破坏机理并结合数值模拟法和极限平衡法,分析了内排不同压脚方案下边坡稳定性,提出了阴湾排土场滑坡治理措施;王刚等[8]基于有限元数值模拟法和极限平衡法,分析了边坡破坏机理并对边坡进行了稳定性计算,提出了削坡减载的治理措施。软岩露天煤矿采场边坡稳定性治理最经济有效的方式是内排追踪压帮,内排土场稳定是前提,但现有方法均是单一针对采场或排土场边坡稳定性分析和治理,未能同时兼顾采场与内排土场边坡的稳定性,对工程实际的指导性不强。
本文以贺斯格乌拉南露天煤矿首采区南帮为工程背景,在兼顾采场与内排土场边坡稳定性的基础上,提出了露天煤矿顺倾软岩边坡内排追踪压帮治理工程,为深入研究顺倾软岩露天煤矿边坡稳定性治理方法提供新的参考。
1. 边坡工程地质条件分析
贺斯格乌拉南露天煤矿设计生产能力为15 Mt/a,首采区南帮地层自上而下主要发育第四系、2煤组、2煤组与3煤组间夹石、3煤组、3煤组底板和盆地基底火山岩,含煤岩系主要以泥岩为主,全区可采的有2-1、3-1煤层,第四系以粉砂质黏土为主,局部夹黄-浅灰色细砂及含砾粗砂层,岩性较差,首采区土层赋存较薄,且其地层中多赋存软弱夹层,主要以3-1、3-4煤底板弱层主,属于典型的顺倾软岩边坡,岩土体物理力学指标如表1所示,典型工程地质剖面如图1所示。
表 1 岩土体物理力学指标Table 1. Physical and mechanical parameters of rock mass岩体名称 内摩擦角/(°) 黏聚力/kPa 容重/(kN·m−3) 弹性模量/MPa 泊松比 砂岩 26.00 65 19.6 35 0.42 粉质黏土 14.06 22 19.8 46 0.38 煤 29.00 85 12.1 40 0.35 泥岩 20.00 40 19.4 75 0.36 排弃物 14.49 20 19.0 60 0.40 弱层 6.00 0 19.1 20 0.42 回填岩石 20.00 40 19.0 − − 2. 采场底帮浅层边坡二维稳定性分析
影响顺倾软岩露天煤矿采场边坡稳定性的主控因素是弱层及其暴露长度,采用追踪压帮方式治理该类边坡稳定性时,可忽略软弱夹层为底界面的切层-顺层组合滑动模式[9-10],仅考虑剪胀破坏模式。由于贺斯格乌拉南露天矿边坡体内赋存软弱夹层,主要以3-1、3-4煤底板弱层为主,顺倾角度大,岩质松软,对于此类边坡,浅部可通过平盘参数进行重新设计,深部必须利用三维效应,实现稳定性控制。可采用刚体极限平衡法中的剩余推力法对浅层边坡进行稳定性计算[11-12]。该方法的优点是可以用来计算求解给定任意边坡潜在滑面的稳定系数,并且可以考虑在复杂外力作用下的不同抗剪参数滑动岩体对边坡稳定性的影响。稳定系数求解公式为:
$$ {P_i} = \frac{{{W_i}\sin {\alpha _i}({W_i}\sin {\alpha _i}\tan {\varphi _i}) + {C_i}{L_i}}}{{{F_{\rm{s}}}}} + {\phi _i}{p_{i - 1}} $$ (1) $$ {\phi _i} = \frac{{\cos ({\alpha _{i - 1}} - {\alpha _i})\tan {\varphi _i}\sin ({\alpha _{i - 1}} - {\alpha _i})}}{{{F_{\rm{s}}}}} $$ (2) 式中:
${P_i}$ ——第$i$ 条块的剩余推力/kN;$ {W_i} $ ——第$i$ 条块的重量/(N·m−3);$\alpha_i$ ——第$i$ 条块的滑面倾角/(°);${\varphi _i}$ ——第$i$ 条块的推力传递系数;${C_i}$ ——第$i$ 条块的滑面黏聚力/kPa;${L_i}$ ——第$i$ 条块的底面长度/m;${\phi _i}$ ——第$i$ 条块的滑面摩擦角/(°);${F_{\rm{s}}}$ ——稳定性系数。依据《煤炭工业露天矿设计规范》(GB 50197―2015)[13]综合考虑贺斯格乌拉南露天煤矿首采区南帮边坡服务年限、地质条件与力学参数的可靠性、潜在滑坡危害程度等,确定安全储备系数为1.2。
由于南帮压覆大量煤层,在保证安全前提下,为实现最大限度回采压覆的煤炭资源,需要对边坡形态重新设计。本文选取典型剖面为研究对象,浅层边坡形态按照40 m运输平盘、15 m保安平盘进行设计,深部利用横采内排三维支挡效应回采采场底帮深部压覆煤炭资源。通过上述情况对浅层边坡进行了分析,边坡稳定性计算结果如图2所示。
分析图2可知,浅部边坡形态可按照40 m运输平盘、15 m保安平盘进行设计,由于弱层上部存在煤岩支挡,边坡潜在滑坡模式为以圆弧为侧界面、3-1煤底板弱层为底界面、沿边坡坡脚处剪出,此时,浅层边坡能满足安全储备系数1.2的要求。
3. 采场底帮深部边坡稳定性三维效应分析
基于浅层边坡二维稳定性分析结果可知,实现深部稳定性控制,必须借助横采工作帮与内排土场的双重支挡作用进行压煤回采,因此提出了利用横采内排三维支挡效应回采采场深部压覆煤炭资源[14]。本文借助FLAC3D数值模拟软件,分析不同降深角度和不同追踪距离条件下的边坡三维稳定性,以期获得最优的边坡空间形态参数。
(1) 模型的建立
考虑到FLAC3D建模较为复杂,采用CAD与Rhino相结合的方法,首先在CAD中对剖面进行整理,然后在Rhino软件中进行模型成体与网格划分的处理,并用Griddle将网格导出,生成精细的六面体网格模型[15 − 17],最后导入采用于FLAC3D进行数值模拟计算。为尽可能凸显边坡稳定性的三维效应,以南帮断面形态设计边坡为数值模拟对象,共计建立15种工况模型,模型如图3,追踪距离分别为50,100,200,300,400 m。为避免边界效应,在模型的底部和两侧分别施加水平和垂直位移约束,加载方式为重力加载[18]。
(2) 计算结果分析
由于计算结果过多,本文仅列举降深角度α=29°,追踪距离50,200,400 m工况下边坡位移云图(切割位置为沿模型走向中间处),如图4所示。南帮边坡三维稳定性计算结果如图5所示。
分析图4、图5可知,追踪距离50 m时,三维支挡效应显著,边坡深部位移明显小于上部,发生以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层-剪出滑动,稳定系数大于1.2。当追踪距离大于50 m时,通过对比分析不同深部边坡角(α)条件下的数值模拟结果可知,深部边坡角对边坡稳定性系数影响较小,随着追踪距离的增加,边坡的破坏模式过渡为以圆弧为侧界面、3-1煤底板弱层为底界面的切层-顺层滑动,并且此时边坡的稳定性不满足安全储备系数1.2要求。因此,内排土场追踪距离需控制在50 m以内,深部边坡角设计为29°。
4. 内排土场压帮边坡稳定性分析与治理
露天矿内排土场边坡稳定的主控因素是软弱基底,软弱基底分为自身软弱岩土层和受外界条影响转变为软弱岩土层2种类型。排土场下沉是软弱基底内排土场失稳的特征,主要现象是含有纵向强烈挤压区,基底上部岩层隆起,地面出现滑坡等[19 − 21]。在保证采场南帮安全的前提下降深至3-1煤底板,须借助横采工作帮与内排土场的双重支挡作用,内排土场稳定是前提[22]。由于内排土场基底为3-1、3-4煤底板弱层,顺倾角度较大,按照内排土场设计参数,其稳定性无法满足安全储备系数的要求[23]。从提供基底强度角度出发,采用破坏弱层回填岩石的方式提高内排土场边坡稳定性。按照排土台阶高度24 m、平盘宽度60 m、坡面角33°对不同内排压帮标高边坡稳定性进行试算,确定内排最小压帮标高为+844水平,因此本文分析了内排基于+844水平的压帮高度下内排土场基底不同的处理方式时的边坡稳定性计算结果如图6—7所示,边坡稳定性与破坏弱层回填岩石范围关系曲线如图8所示。
分析图6—图8可知,当内排基于+844的压帮高度,内排基底3-1底板弱层完全破坏并回填岩石,破坏3-4底板弱层并回填岩石倾向长度达60 m时,内排土场及其与采场南帮复合边坡稳定性均可满足安全系数1.2要求。边坡稳定性随破坏底板弱层回填岩石范围的增大呈正指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。采用破坏弱层回填岩石的基底处理方法,既保证了边坡的稳定又规避了过渡处理基底的生产成本。
5. 结 论
(1) 弱层暴露长度是露天矿顺倾软岩边坡稳定性的主控因素,据此提出了露天矿顺倾软岩边坡内排追踪压帮治理工程,可最大限度的安全回收边坡压覆煤炭资源。
(2) 控制采场与内排土场间的追踪距离是改善边坡稳定性的有效途径。随着追踪距离的增加,边坡破坏模式从以圆弧为侧界面、弱层为底界面的切层-顺层-剪出滑动逐渐过渡为以圆弧为侧界面、弱层为底界面的切层-顺层滑动。
(3) 内排土场及其与采场构成的复合边坡稳定性随破坏底板弱层回填岩石范围的增大呈指数函数规律提高,随着回填岩石范围长度的不断增加,边坡稳定性系数不断提高。
(4) 贺斯格乌拉南露天煤矿首采区南帮浅部边坡留设40 m运输平盘、15 m保安平盘,底帮深部边坡角29°,追踪距离控制在50 m之内时可满足安全要求;内排基底弱层完全破坏并回填岩石倾向长度60 m时可满足安全需求。
-
表 1 涌浪研究方法及优劣
Table 1 Surge research methods and advantages and disadvantages
方法 公式法 概化物理试验模型法 缩尺物理模型试验法 数值模拟法 准确度 中 中-高 高 高 时间 少 少 非常多 多 经费 低 低 非常高 中等 技术门槛 低 中等 高 高 表 2 最大首浪公式
Table 2 Part of propagation wave formula
公式 来源 适用模式 适用条件 $ V = \dfrac{v}{{\sqrt {g{h_w}} }} $ $ \dfrac{{{H_s}}}{{{h_w}}} $ $ \dfrac{{{H_{\max }}}}{{{H_s}}} $ Noda[15]
(1970)坠落式
倾倒式h落>hw $ \dfrac{{{H_{\max }}}}{{{h_w}}} = 1.17\dfrac{v}{{\sqrt {g{h_w}} }} $ 潘家铮[16]
(1980)坠落式 0.5<Fr数<2 $ \dfrac{{{H_{\max }}}}{{{h_w}}} = 0.159{a^{ - 0.641}}{\left( {\dfrac{v}{{\sqrt {g{h_w}} }}} \right)^{1.6}}{\left( {\dfrac{{{h_1}}}{{{h_w}}}} \right)^{0.839}}{\left( {\dfrac{d}{{{h_w}}}} \right)^{0.23}}{\left( {\dfrac{{{h_1}}}{{{h_2}}}} \right)^{0.294}} $
$ v = 0.636{a^{0.172}}{\left( {g{h_1}} \right)^{0.5}}{\left( {\dfrac{{{h_1}}}{{{h_w}}}} \right)^{ - 0.007}}{\left( {\dfrac{{{h_2}}}{{{h_w}}}} \right)^{0.156}}{\left( {\dfrac{{{h_1}}}{{{h_2}}}} \right)^{ - 0.003}} $张全等[17]
(2021)压溃式 2<a<16
30 m<h2<120 m式中,v为入水最大速度,hw为水深,Hs为滑坡体厚度,由V与$ \dfrac{{{H_s}}}{{{h_w}}} $确认波浪特性,Hmax为最大首浪高度,由V与$ \dfrac{{{H_{\max }}}}{{{H_s}}} $确认涌浪高度,h落为坠落高度;a为柱体高宽比,h1为危岩体高度,h2基座高度,d为危岩体宽度;Fr为相对Froude数,可根据$ {F_r} = \dfrac{v}{{\sqrt {g{h_w}} }} $进行计算。 表 3 部分传播浪公式
Table 3 Part of propagation wave formula
公式 来源 范围 适用条件 $ \dfrac{{{H_P}}}{{{h_w}}} = 1.67\sin (\alpha ){\cos ^2}\left(\dfrac{2}{3}\gamma \right){\left(\dfrac{\rho }{{{\rho _w}}}\right)^{\tfrac{1}{4}}}{\left[ {\dfrac{{{V_s}}}{{(d{h_w}^2)}}} \right]^{\tfrac{1}{2}}}{\left(\dfrac{r}{{{h_w}}}\right)^{ - \tfrac{2}{3}}} $ Huber and Hager[13](1997) 近场环状传播 高倾角入水 $ \dfrac{{{H_P}}}{{{h_w}}} = \dfrac{3}{4}{\left(\dfrac{v}{{\sqrt {g{h_w}} }}{\left(\dfrac{s}{{{h_w}}}\right)^{0.5}}{\left(\dfrac{{\rho {V_s}}}{{{\rho _w}d{h_w}^2}}\right)^{0.25}}{\left(\cos (\dfrac{6}{7}\alpha )\right)^{0.5}}{\left(\dfrac{x}{{{h_w}}}\right)^{ - \tfrac{1}{3}}}\right)^{\tfrac{4}{5}}} $ 沿程平行传播 $ \dfrac{{{H_P}}}{{{h_w}}} = 1.47\dfrac{{{H_{\max }}}}{{{h_w}}}{\left(\dfrac{x}{{{h_w}}}\right)^{ - 0.5}} $ 殷坤龙和汪洋[27](2008) 近场环状传播 0.063<Fr数<0.9
5°<α<45°$ \dfrac{{{H_P}}}{{{h_w}}} = \dfrac{{{H_{\max }}}}{{{h_w}}}{e^{ - 0.4\left(\tfrac{x}{{{h_w}}}\right)0.35}} $ 沿程平行传播 $ \dfrac{{{H_P}}}{{{h_w}}} = 2.75F_r^{0.67}S{M^{0.6}}{\left(\dfrac{r}{{{h_w}}}\right)^{ - 1}}{f_\gamma } $
$ {f_\gamma } = {\cos ^{2\left(1 + e^{ - 0.2\left(\tfrac{r}{{{h_w}}}\right)}\right)}}\left(\dfrac{2}{3}\lambda \right) $Heller and Spinneken[25]
(2015)近场环状传播 0.54<Fr数<2.47
α=45°式中,HP为传播浪高度,$\varTheta $为入水角度,©为滑动方向与径向夹角,$\lambda $为危岩体密度,$\lambda_w $为水密度,Vs为体积,r为径向距离,x为距危岩体距离;S为滑坡相对厚度,可根据$ S = \dfrac{{{H_s}}}{{{h_w}}} $进行计算,M为危岩相对质量,可根据$ M = \dfrac{m}{{{\rho _s}wh_w^2}} $进行计算,m为危岩体质量。 表 4 部分爬高浪公式
Table 4 Part of climbing wave formula
公式 来源 适用范围 适用条件 $ \dfrac{{{H_R}}}{{{h_w}}} = 2.831{(\cot \beta )^{\tfrac{1}{2}}}{\left(\dfrac{{{H_P}}}{{{h_w}}}\right)^{\tfrac{5}{4}}} $ Synolakis [28]
(1987)正对岸爬高 坡比1:19.85 $ \dfrac{{{H_R}}}{{{h_w}}} = 1.25{\left(\dfrac{{90}}{\beta }\right)^{0.2}}{\left(\dfrac{{{H_P}}}{{{h_w}}}\right)^{1.25}}{\left(\dfrac{{{H_P}}}{L}\right)^{ - 0.15}} $ Müller [29]
(1995)正对岸爬高 坡比1:1、1:3或坡度90° $ \dfrac{{{H_R}}}{{{h_w}}} = 2.3\dfrac{{{H_P}}}{{{h_w}}}{\left(\dfrac{{90}}{\beta }\right)^{0.2}} $ 殷坤龙和汪洋[27](2008) 正对岸爬高 0.063<Fr数<0.9
5<α<45$ \dfrac{{{H_R}}}{{{h_w}}} = \left((2.3{\left(\dfrac{{90}}{\beta }\right)^{0.2}} - 1)\cos \delta + 1\right)\dfrac{{{H_P}}}{{{h_w}}} $ 沿程爬高 式中,HR为爬高,®为岸坡坡角,L为坝前波长;™为爬坡方位角,根据河道宽度B和计算点与滑坡的水平距离xs计算$ \cos \delta = \dfrac{B}{{\sqrt {{B^2} + x_s^2} }} $。 表 5 危岩体计算参数
Table 5 Calculation parameters of dangerous rock mass
符号 g hw v h1 h2 d a Vs 参数 重力加速度(m/s2) 水深(m) 入水速度(m/s) 高度(m) 基座高度(m) 宽度(m) 柱体高宽比 体积(万m³) 145m 9.8 65 27.1 190 12 40 4.75 30.4 175m 95 25.6 表 6 危岩体计算参数
Table 6 Calculation parameters of dangerous rock mass
符号 g hw v HS Vs 参数 重力加速度
(m/s2)水深
(m)入水速度
(m/s)平均厚度
(m)体积
(万m³)渔峡口危岩体 9.8 63 30 3 0.01 -
[1] YIN Yueping,HUANG Bolin,LIU Guangning,et al. Potential risk analysis on a Jianchuandong dangerous rockmass-generated impulse wave in the Three Gorges Reservoir,China[J]. Environmental Earth Sciences,2015,74(3):2595 − 2607. DOI: 10.1007/s12665-015-4278-x
[2] 郑嘉豪,黄波林,张全,等. 三峡库区龙门寨危岩体崩塌产生涌浪研究[J]. 地质力学学报,2020,26(4):533 − 543. [ZHENG Jiahao,HUANG Bolin,ZHANG Quan,et al. Study on the surge induced by the collapse of dangerous rock mass in Longmen Village in Three Gorges Reservoir area[J]. Journal of Geomechanics,2020,26(4):533 − 543. (in Chinese with English abstract)] DOI: 10.12090/j.issn.1006-6616.2020.26.04.046 ZHENG Jiahao, HUANG Bolin, ZHANG Quan, et al. Study on the surge induced by the collapse of dangerous rock mass in Longmen Village in Three Gorges Reservoir area[J]. Journal of Geomechanics, 2020, 26(4): 533 − 543. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2020.26.04.046
[3] 闫举生,谭建民. 三峡库区秭归县棺木岭危岩体发育特征及成因机制探讨[J]. 华南地质与矿产,2018,34(4):347 − 353. [YAN Jusheng,TAN Jianmin. Preliminary analysis on development characteristics and genetic mechanism of Guanmuling dangerous rock in Zigui County,Three Gorges Reservoir Area[J]. Geology and Mineral Resources of South China,2018,34(4):347 − 353. (in Chinese with English abstract)] YAN Jusheng, TAN Jianmin. Preliminary analysis on development characteristics and genetic mechanism of Guanmuling dangerous rock in Zigui County, Three Gorges Reservoir Area[J]. Geology and Mineral Resources of South China, 2018, 34(4): 347 − 353. (in Chinese with English abstract)
[4] 李俊男. 三峡库区望霞危岩破坏与解体机制研究[D]. 重庆:重庆交通大学,2018. [LI Junnan. Research on Damage and Disintegration Mechanism of Wangxia Unstable Rocks in Three Gorges Reservoir Area[D]. Chongqing:Chongqing Jiaotong University,2018. (in Chinese with English abstract)] LI Junnan. Research on Damage and Disintegration Mechanism of Wangxia Unstable Rocks in Three Gorges Reservoir Area[D]. Chongqing: Chongqing Jiaotong University, 2018. (in Chinese with English abstract)
[5] 黄波林,殷跃平,王世昌等. 2019a. 滑坡涌浪分析[M]. 北京:科学出版社. [HUANG Bolin,YIN Yueping,WANG Shichang,et al. 2019a. Analysis of landslide surge[M]. BeiJing:Science Press. (in Chinese)] HUANG Bolin, YIN Yueping, WANG Shichang, et al. 2019a. Analysis of landslide surge[M]. BeiJing: Science Press. (in Chinese)
[6] 牟英华,陈再谦. 洪家渡水电站库区文昌阁危岩体稳定分析及入库涌浪预测[J]. 贵州水力发电,2007,21(5):32 − 36. [MOU Yinghua,CHEN Zaiqian. Stable analysis of wenchangge dangerous rock mass in reservoir area of hongjiadu hydropower station & surge forecast when it falls down in the reservoir[J]. Guizhou Water Power,2007,21(5):32 − 36. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1007-0133.2007.05.009 MOU Yinghua, CHEN Zaiqian. Stable analysis of wenchangge dangerous rock mass in reservoir area of hongjiadu hydropower station & surge forecast when it falls down in the reservoir[J]. Guizhou Water Power, 2007, 21(5): 32 − 36. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-0133.2007.05.009
[7] 代云霞,汪洋,殷坤龙,等. 三峡库区巫山县某崩塌体涌浪调查及计算分析[J]. 武汉理工大学学报,2010,32(19):71 − 74. [DAI Yunxia,WANG Yang,YIN Kunlong,et al. Surge survey and calculation analysis of a landslide in Wushan County in the Three Gorges Reservoir[J]. Journal of Wuhan University of Technology,2010,32(19):71 − 74. (in Chinese with English abstract)] DAI Yunxia, WANG Yang, YIN Kunlong, et al. Surge survey and calculation analysis of a landslide in Wushan County in the Three Gorges Reservoir[J]. Journal of Wuhan University of Technology, 2010, 32(19): 71 − 74. (in Chinese with English abstract)
[8] 杨渠锋,王平义,喻涛,等. 三峡库区陡岩滑坡涌浪爬高试验分析[J]. 中国地质灾害与防治学报,2014,25(3):43 − 48. [YANG Qufeng,WANG Pingyi,YU Tao,et al. Experimental research on dangerous rock-type landslide Run-up of the river—channel type reservoir in mountainous area[J]. The Chinese Journal of Geological Hazard and Control,2014,25(3):43 − 48. (in Chinese with English abstract)] YANG Qufeng, WANG Pingyi, YU Tao, et al. Experimental research on dangerous rock-type landslide Run-up of the river—channel type reservoir in mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25(3): 43 − 48. (in Chinese with English abstract)
[9] 易臻彦. 库岸崩塌涌浪计算方法研究[D]. 重庆:重庆交通大学,2020. [YI Zhenyan. Study on calculation method of bank landslide surge[D]. Chongqing:Chongqing Jiaotong University,2020. (in Chinese with English abstract)] YI Zhenyan. Study on calculation method of bank landslide surge[D]. Chongqing: Chongqing Jiaotong University, 2020. (in Chinese with English abstract)
[10] 黄波林,刘广宁,王世昌,等. 三峡库区高陡岸坡成灾机理研究[M]. 北京:科学出版社,2015. [HUANG Bolin,LIU Guangning,WANG Shichang,et al. Study on disaster mechanism of high and steep bank slope in Three Gorges Reservoir area[M]. Beijing:Science Press,2015. (in Chinese)] HUANG Bolin, LIU Guangning, WANG Shichang, et al. Study on disaster mechanism of high and steep bank slope in Three Gorges Reservoir area[M]. Beijing: Science Press, 2015. (in Chinese)
[11] 李鹏峰. 水库库区滑坡涌浪生成、爬坡机理研究及灾害分析[D]. 西安:西安理工大学,2023. [LI Pengfeng. Study on Landslide Generated Waves,Run-Up Regime and Engineering Disaster in Reservoir[D]. Xi’an:Xi’an University of Technology,2023. (in Chinese with English abstract)] LI Pengfeng. Study on Landslide Generated Waves, Run-Up Regime and Engineering Disaster in Reservoir[D]. Xi’an: Xi’an University of Technology, 2023. (in Chinese with English abstract)
[12] 牟萍,王平义,韩林峰,等. 滑坡涌浪灾害物理模型试验研究综述[J]. 中国安全生产科学技术,2020,16(1):43 − 49. [MU Ping,WANG Pingyi,HAN Linfeng,et al. Review on research about disaster of landslide-generated impulse waves based on physical model experiment approach[J]. Journal of Safety Science and Technology,2020,16(1):43 − 49. (in Chinese with English abstract)] MU Ping, WANG Pingyi, HAN Linfeng, et al. Review on research about disaster of landslide-generated impulse waves based on physical model experiment approach[J]. Journal of Safety Science and Technology, 2020, 16(1): 43 − 49. (in Chinese with English abstract)
[13] HUBER A,HAGER WH. Forecasting impulse waves in reservoirs [A]. In:Dixneuvième Congress des Grands Barrages C,Florence,Italy,Commission International des Grands Barrages,Paris [C],1997,31:993 ~ 1005.
[14] 徐刚,张志斌,范泽英. 危岩失稳模式分类研究[J]. 工程地质学报,2017,25(s1):390 − 399. [XU Gang,ZHANG Zhibin,FAN Zheying. Study on classification of dangerous rock mass failure modes[J]. Journal of engineering geology,2017,25(s1):390 − 399. (in Chinese with English abstract)] XU Gang, ZHANG Zhibin, FAN Zheying. Study on classification of dangerous rock mass failure modes[J]. Journal of engineering geology, 2017, 25(s1): 390 − 399. (in Chinese with English abstract)
[15] NODA E. Water waves generated by landslides[J]. Journal of the Waterways,Harbors and Coastal Engineering Division,1970,96(4):835 − 855. DOI: 10.1061/AWHCAR.0000045
[16] 潘家铮. 建筑物的抗滑稳定和滑坡分析[M]. 北京:水利出版社,1980. [PAN Jiazheng. Anti-sliding stability and landslide analysis of buildings[M]. China Water&Power Press,1980. (in Chinese)] PAN Jiazheng. Anti-sliding stability and landslide analysis of buildings[M]. China Water&Power Press, 1980. (in Chinese)
[17] HE Kai,YIN Yueping,LI Bin,et al. The mechanism of the bottom-crashing rockfall of a massive layered carbonate rock mass at Zengziyan,Chongqing,China[J]. Journal of Earth System Science,2019,128(4):104. DOI: 10.1007/s12040-019-1141-6
[18] DE FREITAS MACIEL G,PEREIRA J B,SÁO Y T,et al. Impulse wave in the Brazilian Lake of capitólio[J]. Rbrh,2023,28:e27. DOI: 10.1590/2318-0331.282320230036
[19] 张全,黄波林,郑嘉豪,等. 柱状危岩体压溃式崩塌产生涌浪预测分析[J]. 岩土力学,2021,42(10):2845 − 2854. [ZHANG Quan,HUANG Bolin,ZHENG Jiahao,et al. Prediction and analysis of surge generated by crushing failure collapse of columnar dangerous rock mass[J]. Rock and Soil Mechanics,2021,42(10):2845 − 2854. (in Chinese with English abstract)] ZHANG Quan, HUANG Bolin, ZHENG Jiahao, et al. Prediction and analysis of surge generated by crushing failure collapse of columnar dangerous rock mass[J]. Rock and Soil Mechanics, 2021, 42(10): 2845 − 2854. (in Chinese with English abstract)
[20] HUANG Bolin,LI Bin,ZHENG Jiahao,et al. Dynamic analysis of impulse waves generated by the collapse of granular pillars[J]. Journal of Mountain Science,2022,19(1):198 − 210. DOI: 10.1007/s11629-020-6558-5
[21] HUANG Bolin,YIN Yueping,LI Renjiang,et al. Three-dimensional experimental investigation on hazard reduction of landslide-generated impulse waves in the Baihetan Reservoir,China[J]. Landslides,2023,20(9):2017 − 2028. DOI: 10.1007/s10346-023-02068-w
[22] PANIZZO A,DE GIROLAMO P,PETACCIA A. Forecasting impulse waves generated by subaerial landslides[J]. Journal of Geophysical Research:Oceans,2005,110(C12):C12025.
[23] HELLER V,HAGER W H,MINOR H E. Landslide generated impulse waves in reservoirs:Basics and computation[J]. VAW-Mitteilungen,2009,211.
[24] MOHAMMED F,FRITZ H M. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides[J]. Journal of Geophysical Research:Oceans,2012,117(C11):C11015.
[25] HELLER V,SPINNEKEN J. On the effect of the water body geometry on landslide–tsunamis:Physical insight from laboratory tests and 2D to 3D wave parameter transformation[J]. Coastal Engineering,2015,104:113 − 134. DOI: 10.1016/j.coastaleng.2015.06.006
[26] 黄种为,董兴林. 水库库岸滑坡激起涌浪的试验研究[C]. 水利水电科学研究院科学研究论文集第13集(水力学),1983:157-170. [HUANG Zhongwei,DONG Xinglin. Experimental study on surge induced by reservoir bank landslide[C]. Institute of Water Resources and Hydropower Research Collection of Scientific Research Papers No. 13 (Hydraulics ),1983:157 − 170. (in Chinese)] HUANG Zhongwei, DONG Xinglin. Experimental study on surge induced by reservoir bank landslide[C]. Institute of Water Resources and Hydropower Research Collection of Scientific Research Papers No. 13 (Hydraulics ), 1983: 157 − 170. (in Chinese)
[27] 汪洋,殷坤龙. 水库库岸滑坡涌浪的传播与爬高研究[J]. 岩土力学,2008,29(4):1031 − 1034. [WANG Yang,YIN Kunlong. Research on propagation and climb height of surge triggered by landslide in reservoir[J]. Rock and Soil Mechanics,2008,29(4):1031 − 1034. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2008.04.033 WANG Yang, YIN Kunlong. Research on propagation and climb height of surge triggered by landslide in reservoir[J]. Rock and Soil Mechanics, 2008, 29(4): 1031 − 1034. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.04.033
[28] SYNOLAKIS C E. The runup of solitary waves[J]. Journal of Fluid Mechanics,1987,185:523 − 545.
[29] Müller D R. Auflaufen und Überschwappen von Impulswellen an Talsperren[D]. ETH Zurich,1995.
[30] 中华人民共和国水利部. 滑坡涌浪模拟技术规程:SL/T 165—2019[S]. 北京:中国水利水电出版社,2019. [Ministry of Water Resources of the People’s Republic of China. Code for simulation of landslide. generated waves:SL/T 165—2019[S]. Beijing:China Water & Power Press,2019. (in Chinese)] Ministry of Water Resources of the People’s Republic of China. Code for simulation of landslide. generated waves: SL/T 165—2019[S]. Beijing: China Water & Power Press, 2019. (in Chinese)
[31] 王佳佳,陈浩,肖莉丽,等. 散粒体滑坡涌浪运动特征与能量转化规律研究[J]. 水文地质工程地质,2023,50(4):160 − 172. [WANG Jiajia,CHEN Hao,XIAO Lili,et al. A study of the kinematic characteristics and energy conversion of waves generated by granular landslide[J]. Hydrogeology & Engineering Geology,2023,50(4):160 − 172. (in Chinese with English abstract)] WANG Jiajia, CHEN Hao, XIAO Lili, et al. A study of the kinematic characteristics and energy conversion of waves generated by granular landslide[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 160 − 172. (in Chinese with English abstract)
-
期刊类型引用(1)
1. 管少杰,吕进国,王康,张砚力. 露天矿下伏采空区距坡脚水平距离对边坡稳定性的影响. 工矿自动化. 2025(02): 113-120 . 百度学术
其他类型引用(0)