Mudstone Swelling Characteristics and Key Interface Response under Water Immersion
-
摘要:
富黏土矿物泥岩在遇水后的膨胀性是诱发多种地质灾害的关键因素之一。然而,当前对黏土矿物在泥岩膨胀过程中的微观与宏观响应机制,特别是涉及分子尺度界面作用的深入探讨仍然不足。本文采用盐离子作为“探针”,结合试验与分子动力学模拟,探究了浸水作用下关键界面在泥岩膨胀过程中的控制作用,结果表明:泥岩内部裂隙的大量产生是其发生膨胀变形的主要原因,添加盐离子后泥岩的膨胀与吸水受到相近的抑制作用;分子层面上,模拟表明盐离子抑制了蒙脱石水化过程中的层间扩展,指示了蒙脱石对泥岩膨胀的关键影响;而伊利石因其层间强相互作用与边界氢键网络形成而难以发生水化膨胀。进一步基于界面作用阐明了泥岩膨胀变形的两种界面响应机制:其一为蒙脱石分子内层间界面水化,在致密的团聚体中发生结晶膨胀而产生结构裂隙;其二为分子间微孔、裂隙界面浸润,导致泥岩内空气压缩而造成原生裂隙扩展与裂隙网络形成。研究结果可为进一步深入理解涉水泥岩地层的灾变过程提供依据。
Abstract:The swelling of clay mineral-rich mudstones upon water exposure is a critical factor contributing to various geological hazards. However, there remains a lack of in-depth investigation into the microscopic and macroscopic response mechanisms of clay minerals during the swelling process of mudstones, particularly at the molecular scale. This study employs salt ions are as a ‘probe,’ integrating experimental methods and molecular dynamics simulations to investigate the role of key interfaces in controlling the swelling process of mudstone under water immersion. Results indicate that the formation of numerous internal cracks within the mudstone is the primary cause of its swelling and deformation. The addition of salt ions exerts a similar inhibitory effect on both the swelling and water absorption of the mudstone. At the molecular level, simulations reveal that salt ions suppress the interlayer expansion during the hydration process of montmorillonite, highlighting the crucial role of montmorillonite in mudstone swelling. In contrast, illite resists hydration swelling due to strong interlayer interactions and the formation of a boundary hydrogen-bond network. Furthermore, two interfacial response mechanisms underlying mudstone swelling and deformation are elucidated: (1) hydration of intramolecular interlayer interfaces of montmorillonite, which generates structural cracks through crystalline expansion within dense agglomerates; and (2) infiltration at intermolecular micropore and crack interfaces, leading to air compression within the mudstone, which causes primary crack expansion and the formation of a crack network. This study provides a foundation for advancing the understanding of catastrophic processes associated with water-related mudstone strata.
-
0. 引言
地面沉降又称地面下降或地陷,是指在自然环境和人类建设活动影响下,由于地下松散土层及岩层压缩固结,导致地表标高损失的一种地质现象[1]。造成该现象的自然因素和社会经济因素被认为是地面沉降的驱动力,主要包括水文地质条件、矿产资源开发及地下水开采状况等[2 − 3]。地面沉降形成原因复杂,防护与治理难度较高[4 − 6],对人民的生命财产安全造成较大的损害。为深入探索沉降机制及其变化规律,国内外学者对沉降监测方法和驱动力因素进行研究,并不断发展新的理论技术[7 − 10]。
传统的地面沉降监测手段主要为水准测量和GNSS,这种局部单点测量的技术不仅成本高而且空间分辨率低,难以识别和监测大面积的地表形变[11]。时序合成孔径雷达干涉测量(time-series interferometric synthetic aperture radar,TS-InSAR)技术不仅周期短、精度高,还能够全天时、全天候地对大范围的地表形变进行监测,极大地弥补了传统监测手段的不足[12]。其中永久散射体雷达干涉[13](permanent scatterer interferometric synthetic aperture radar,PS-InSAR)和小基线集雷达干涉[14](small baseline subset interferometric synthetic aperture radar,SBAS-InSAR)最具代表性。PS-InSAR方法能够有效获取高相干目标(如建筑、桥梁及裸岩等)的时序形变信息,但在植被茂盛、稳定散射体稀少的区域,无法取得足量的稳定目标点,易使得形变解算结果产生偏差[15]。而SBAS-InSAR方法是利用慢失相关滤波相位像素点获取地表形变信息,该类点能够在短时段内保持较强的相干性,且普遍存在于自然界中(如草地、裸土等)。因此SBAS-InSAR方法比PS-InSAR方法更适用于大范围区域的形变监测[16 − 17]。
皖北地区的地面沉降问题历来较为突出,亳州市作为安徽省重要的新兴产业基地,其城市地质灾害监测一直受到政府及相关管理部门广泛关注。以往对该区域地面沉降的研究更侧重于观测数据的处理方法以及成因的简单分析[18 − 19],对于其驱动力的量化研究尚且不足。探求地面沉降的主要驱动因素,能够为地质灾害防治和城市建设提供科学指导。本文以亳州市为研究区,选取2021年10月至2022年10月共62景Sentinel-1数据,利用SBAS-InSAR技术对亳州市地面沉降进行监测,分析亳州市地面沉降的时空分布特征,并基于地理加权回归(geographically weighted regression,GWR)模型,从地质环境、水文地质条件、人类工程活动和经济发展状况等方面对亳州市地面沉降的空间分异进行分析,探究亳州市地面沉降的主要驱动因素。
1. 研究区与数据
1.1 研究区概况
亳州市位于黄淮海平原南端,皖、豫两省交界,全市下辖一区三县,总面积约8522.58 km2(图1)。亳州市地处中朝准地台的淮河台坳二级构造单元,主要发育有褶皱、断裂构造。该地区地形起伏较小,地势西北高、东南低,辖境与黄河决口扇形地相连,总体呈典型的黄淮堆积型地貌[20]。地层属华北地层大区徐淮地层分区,第四系覆盖区内大部分基岩,第四系及新近系松散地层厚度在800~1000 m。亳州市煤炭资源丰富,根据《亳州市矿产资源总体规划(2021—2025年)》,区内现有煤矿产地17处,主要分布在涡阳、蒙城等地,保有资源储量43.50亿吨,占全省煤炭资源储量17.17%。主要含煤层为石炭、二叠系地层,煤层埋深600~1000 m。
亳州市地下水类型可划分为松散岩类孔隙水、碳酸盐岩类裂隙溶洞水和基岩裂隙水三种类型。按照含水层的埋藏条件,可进一步划分为浅层孔隙含水层组(50 m以浅)、中深层隙含水层组(50~165 m)、深层孔隙含水层组(165~660 m)、超深层孔隙含水层组(660~900 m)。根据《2021年亳州市水资源公报》,亳州市地下水资源总量约为15.67×108 m3,浅层地下水供水量4.59×108 m3,中深层地下水供水量为1.47×108 m3。全市域内已形成9个超采区,总面积约980.9 km2,其中浅层地下水超采区开采量约0.4×108 m3/a,中深层地下水超采区开采量约1.38×108 m3/a。
1.2 数据
1.2.1 Sentinel-1
Sentinel-1卫星是欧洲航天局发射的地球观测卫星,重访周期为12天,具有干涉宽幅(IW)、超宽幅(EW)、波(WV)和带状图(SM)四种工作模式。本文选取2021年10月至2022年10月间,共62景升轨Sentinel-1干涉宽幅(IW)模式的SLC影像用于形变监测,数据的基本参数见表1。
表 1 Sentinel-1卫星数据参数表Table 1. Parameters of Sentinel-1 satellite data参数 数值 监测日期 轨道高度/km 700 2021-10-02、2021-10-14、2021-10-26、
2021-11-07、2021-11-19、2021-12-01、
2021-12-13、2022-01-06、2022-01-18、
2022-01-30、2022-02-11、2022-02-23、
2022-03-07、2022-03-19、2022-03-31、
2022-04-12、2022-04-24、2022-05-06、
2022-05-18、2022-05-30、2022-06-11、
2022-06-23、2022-07-05、2022-07-17、
2022-07-29、2022-08-10、2022-08-22、
2022-09-03、2022-09-15、2022-09-27、
2022-10-09重访周期/d 12 入射角/(°) 29~46 分辨率/m 5×20 幅宽/m 250 极化方式 VV 轨道号 142,101 / 142,106 1.2.2 SRTM DEM
SRTM数据由美国国家航空航天局(NASA)和美国国家地理空间情报局(NGA)生产并面向全球用户免费发布,该数据覆盖了全球约五分之四的陆地表面,分辨率为30 m,高程精度为±16 m。本文中用于去除干涉测量过程中由地形起伏因素导致的地形相位。
1.2.3 其它数据
驱动力因子的选择主要依据研究区地质环境、水文地质条件、人类工程活动和经济发展状况四方面的综合影响,共选取8个指标,分别为松散层厚度、中深层地下水埋深、深层地下水埋深、中深层水位变幅、深层水位变幅、道路密度、人口密度和单位面积GDP。
2. 方法原理与数据处理
2.1 地面沉降监测
2.1.1 SBAS-InSAR原理
将覆盖研究区的N+1幅影像进行配准后,参照一定的阈值组成M个干涉对[21],则有:
$$ \frac{{N + 1}}{2} \leqslant M \leqslant \frac{{N(N + 1)}}{2}$$ (1) 假设第i(i∈1, 2, ···, M)个干涉对的主辅影像获取时间为ta和tb(其中tb在ta之后),并且其干涉相位中除去形变相位的部分已被剔除,则该干涉对的相位可以表示为:
$$ \varDelta \varphi _j^{({t_a},{t_b})} = {\varphi ^{{t_b}}} - {\varphi ^{{t_a}}} $$ (2) 那么M个干涉对的形变相位可以表示为如下矩阵形式:
$$ \varDelta \varphi ={\left[\varDelta {\varphi }_{1},\varDelta {\varphi }_{2},\varDelta {\varphi }_{3},\cdots ,\varDelta {\varphi }_{M}\right]}^{T} $$ (3) 每个干涉都可以产生一个观测方程,结合式(2)(3),可以组成具有M个观测方程的方程组,其中有N个待求未知数,矩阵形式方程组如下:
$$ A\varphi = \varDelta \varphi $$ (4) 式中:A——M×N的系数矩阵。
若矩阵A的秩r(A)大于N,则可以通过最小二乘法求解式(4),公式如下:
$$ \varphi = {\left( {{A^T}A} \right)^{ - 1}}{A^T}\varDelta \varphi $$ (5) 但在实际计算中,r(A)通常小于N,无法求得ATA矩阵的逆矩阵,此时则对矩阵A进行奇异值分解,分解形式如下:
$$ A = US{V^T} $$ (6) 式中:U——M×M阶正交矩阵,由AAT的特征向量组成;
S——M阶对角矩阵;
V——由ATA的特征向量组成的N×M阶正交矩阵。
$$ {A^ + } = V{S^ + }{U^T} $$ (7) $$ \varphi = {A^ + }\varDelta \varphi $$ (8) 式中:UT——U的转置矩阵;
A+、S+——矩阵A、矩阵S的广义逆矩阵。
将求解出时序形变量φ,除以形变所对应的时间间隔,即可求解出对应的形变速率。
2.1.2 数据处理流程
SBAS-InSAR技术路线如图2所示,获取地面形变信息的流程主要包括两部分:数据预处理和SBAS-InSAR工作流。本研究使用ENVI平台的SARscape对Sentinel-1数据进行处理,SARscape是由sarmap公司开发的一款专业的雷达影像处理软件,已被广泛应用于处理ERS-1/2、RADARSAT-1/2、ENVISAT ASAR、ALOS PALSAR以及 Sentinel-1(哨兵)等一系列星载雷达数据[22 − 25]。
Sentinel-1数据预处理步骤如下:①将数据导入为SARscape的标准格式;②对同一时期两景SAR影像进行镶嵌;③按照研究区范围对数据进行裁剪。对预处理后的影像进行SBAS-InSAR处理,主要流程包括:①对输入数据以最优的组合方式配对;②配对后的像对进行干涉处理;③利用控制点对所有数据重去平;④去除大气相位并估算形变速率;⑤地理编码,将形变结果投影到地理坐标系上。
2.2 地理加权回归模型
空间关系具有异质性和非平稳性规律,为了对空间数据进行精确局部描述,Fotheringham基于局部光滑的思想提出了地理加权回归模型(geographical weighted regression , GWR)[26]。GWR实质上是一种空间变系数回归模型[27],可以根据空间数据的位置信息生成对应的局部回归系数,从而对变量的局部空间关系与空间异质性进行合理的解释[28]。
2.2.1 模型构建
运用GWR模型进行回归分析时,考虑到因子间的多重共线性问题会影响模型的可靠性,因此本文首先计算各因子的方差膨胀因子(VIF)。结果显示(表2),各因子的VIF均处于0到10之间[29],表明因子间不存在多重共线性。
表 2 模型多重共线性检验Table 2. Model multicollinearity test因子 VIF 因子 VIF 中深层地下水埋深 1.234526 松散层厚度 1.519002 中深层水位变幅 1.625721 人口密度 1.116396 深层水位变幅 1.681352 道路密度 1.053348 深层地下水埋深 2.087465 单位面积GDP 2.481104 在此基础上,对亳州市地面沉降建立GWR模型如下:
$$ {y_i} = \sum\limits_{i = 0}^p {{\beta _j}} ({u_i},{v_i}){x_{ij}} + {\varepsilon _i}\quad i = 1,2,\cdots, n $$ (9) 式中:yi——响应变量;
βj(ui, vi)——第i个样本点在(ui, vi)处的第j个回归 参数;
xij——影响因素;
εi——随机误差项。
采用赤池信息准则最优带宽策略,构建不同运行模式下的活动强度GWR模型[27],结果如表3所示。地面沉降GWR模型的可决系数(R2)为0.394583,表明自变量与因变量之间具有相关性。校正可决系数(adjusted R2)是0.373125,说明可解释因变量在模型中具有较高比例。
表 3 2022年地面沉降GWR回归模型参数Table 3. Ground subsidence GWR regression model parameters for 2022监测年份 带宽 赤池信息准则 可决系数 校正可决系数 2022年 824 11850.657545 0.394583 0.373125 3. 结果
3.1 精度验证
为验证本文中研究区地面沉降数据的可靠性,选取谯城区周围3个同期水准点测量值与SBAS-InSAR监测结果进行对比。结果(表4)显示,SBAS-InSAR结果与水准测量值的误差在1 mm以内,说明监测结果具有较高的可信度。
表 4 SBAS-InSAR监测结果与水准数据对比Table 4. Comparison between SBAS-InSAR monitoring results and leveling data点名 实测形变量/mm SBAS-InSAR监测的形变量/mm 差值/mm BJ01 3 3.83 0.83 BJ02 −1 −0.54 −0.46 BXJ08 −4 −3.78 −0.22 监测结果与实测数据间存在一定误差,主要是因为SAR影像在干涉过程中受到大气延迟、地形起伏和失相干等多种因素影响产生的误差。此外,水准测量获取的是单个监测点的高程变化,而SBAS-InSAR结果则是一个单元格网(面状)的平均形变量,二者不一定完全对应。
3.2 地面沉降时空分布特征
通过SBAS-InSAR处理,得到2021年10月至2022年10月内亳州市地表形变速率(图3)。亳州市整体沉降速率为5~30 mm/a,平均沉降速率为5.7 mm/a。地面沉降主要分布于谯城区东北部、涡阳县城、利辛县城以及蒙城县的部分地区;沉降最严重区域位于涡阳县公吉寺镇以北,受煤矿开采影响,沉降速率幅值达到84.3 mm/a;谯城区东北侧的地面沉降幅值为25.8 mm/a;在利辛县城及蒙城县的部分地区内,大多数区域地面沉降速率幅度小于10 mm/a水平,局部区域地面沉降幅度达到20 mm/a水平。
监测时段内沿雷达视线向(Line of Sight, LOS)的时序累计形变量如图4所示。在涡阳县中部、谯城区东北部、利辛县西部以及蒙城县中部,均监测到明显形变,形变量随时间推移逐渐增大。截至观测结束,涡阳县受煤矿开采影响区域,累积沉降量幅值达到83.4 mm,其余地区最大累计沉降量为27.3 mm;亳州市大部分区域地表累计沉降量处于5~30 mm水平,平均累计沉降量为7.3 mm左右。
3.3 地理加权回归模型构建结果
为了能够有效地掌握建模数据的分布情况,本文使用最小值、中值、最大值及平均值对模型运算结果进行叙述性统计。各建模变量拟合系数如表5所示,当系数为正时,自变量与因变量呈正相关关系;当系数为负时,自变量与因变量呈负相关关系,且拟合系数的绝对值越大,相关性越强。因此,各因素对地面沉降的贡献度排序依次为深层水位变幅、中深层水位变幅、中深层地下水埋深、深层地下水埋深、单位面积GDP、松散层厚度、道路密度、人口密度。
表 5 模型运算结果叙述性统计Table 5. Descriptive statistics of model calculation results变量 最小值 中值 最大值 平均值 深层水位变幅 -1.487 0.938 7.769 3.141 中深层水位变幅 -1.482 0.602 2.674 0.596 中深层地下水埋深 -0.747 -0.311 0.065 -0.341 深层地下水埋深 -0.293 -0.050 0.085 -0.104 单位面积GDP -0.003 0.000 0.001 -0.001 松散层厚度 -0.014 0.000 0.013 -0.0005 道路密度 -0.000 0.000 0.001 0.0005 人口密度 -0.001 0.000 0.001 0.000 4. 讨论
4.1 采煤区地面沉降影响因素
亳州市煤矿资源主要分布在涡阳、蒙城两县,其中涡阳县现有矿产地13处,是区内主要的采煤区。结合驱动力因子回归结果与煤炭实际开采情况可知,采煤区沉降受地下水抽取与煤矿开采共同影响,而煤矿开采是沉降严重区域形变的主导因素。驱动力因子回归系数显示,采煤区地面沉降与中深层水位变幅,见图5(c)、深层水位变幅,见图5(d)呈显著正相关,说明地下水水位变化对地面沉降具有一定贡献。而该地区沉降最严重区域位于涡阳县公吉寺镇以北的信湖煤矿,最大沉降达83.4 mm。信湖煤矿于2021年9月16日正式投产,随着采矿活动的进行,矿区沉降速率持续加快。煤炭被采出后,形成采空区,随着采空区范围不断扩张,采空区上部覆岩和周围岩体的应力平衡遭到破坏,覆岩受到的重力作用逐渐增加,当压力超过临界值后,煤层顶板及周围岩体发生弯曲、断裂和垮落,导致整个上覆岩层的变形和移动,最终在地表形成大范围塌陷坑[30]。
4.2 非采煤区地面沉降影响因素
非采煤沉降区主要位于谯城区东北部与利辛县西部,累计沉降量幅值为27.3 mm。驱动力因子回归系数显示,地下水状况与非采煤区地面沉降相关性较强,中深层水位变幅,见图5(c)和深层水位变幅,见图5(d)与地面沉降呈现正相关。自20世纪80年代以来,亳州市城市经济持续发展,人口迅速增长,对地下水资源的需求量也逐年增加。据有关资料估测[20],亳州市目前地下水日开采量在3.5×105 m3左右,深层地下水开采量在1.9×105 m3。对深层地下水的过度开采,诱使承压水头持续降低,降落漏斗面积不断扩大。当水头压力差作用于下伏黏性土层时,黏性土层的中低压缩性,会导致其越流或者压密释水,引起自身测压水头下降,使土体被纵向压缩;而砂性含水层受水头减小的影响,会释放出一部分储存的水,使得含水层内部的应力状态发生变化。原本承压水头支撑的上覆载荷被转移至含水层砂砾间,致使砂砾间的有效压力增加,含水层被垂直压缩。在地表上监测到的沉降量,即为降落漏斗范围内黏性土层与含水砂性土层的压缩量之和[31]。
4.3 地质因素对地面沉降的影响
松散层厚度与地面沉降的关系如图5(e)所示,在亳州市中部和西南部回归系数为负,对地面沉降起抑制作用;在北部和南部回归系数为正,对地面沉降起促进作用。亳州市地处淮北平原,地下发育有第四系和新近系松散沉积物[20],构成了地面沉降的物质基础。城市公共设施建设快速发展,城市建筑物的荷载不断增加,导致松散层被压实,进而引发地面沉降[22];另一方面,松散层中不同土层持水性具有的很大差异,过度开采地下水,使得土层颗粒间的有效应力增大,孔隙体积被压缩,导致地面沉降。
5. 结论
本文利用2021年10月至2022年10月期间62景Sentinel-1卫星SAR影像,采用SBAS-InSAR技术获取了亳州市该时段内的地面形变速率及累计形变量,并对地面沉降的时空格局以及驱动力因素进行了分析,结果如下:
(1)亳州市全域地面基本稳定,但局部地区存在明显的地面沉降现象。2021年10月至2022年10月期间,亳州市地面沉降最严重区域位于涡阳县公吉寺镇以北,幅值为84.3 mm/a,主要受煤矿开采影响所致。其他因采水导致地面沉降最大速率为25.8 mm/a,位于谯城区东北侧。
(2)监测时段内,涡阳县中部、谯城区东北部、利辛县西部以及蒙城县中部均监测到明显形变,并且形变量随时间推移逐渐增大,亳州市整体平均累计沉降量为7.3 mm左右,采煤沉降区累计沉降量幅值为83.4 mm,非采煤沉降区累计沉降量幅值为27.3 mm。
(3)各驱动力因素对地面沉降的贡献度排序为深层水位变幅、中深层水位变幅、中深层地下水埋深、深层地下水埋深、单位面积GDP、松散层厚度、道路密度、人口密度。
-
图 10 泥岩膨胀的微宏观响应机理,(a)分子内界面水化;(b)泥岩膨胀崩解;(c)分子间界面浸润;(d)泥岩地层泥化
Figure 10. Micro- and macroscopic response mechanism of mudstone swelling, (a) hydration process at the intramolecular interface; (b) swelling and disintegration of mudstone; (c) infiltration process at the intermolecular interface; (d) Argillation of mudstone strata
表 1 岩样基础物理指标
Table 1 Basic physical indices of rock samples
天然密度/(g·cm−3) 干密度/(g·cm−3) 天然含水量/% 孔隙率/% 2.611 2.546 2.581 3.604 表 2 膨胀模拟设定
Table 2 Settings for Expansion simulation
0wt%NaCl/分子个数 相对原子质量 5wt%NaCl/分子个数 相对原子质量 蒙脱石 单次 130H2O 2340.0 124H2O + 2NaCl 2349.0 共计 780H2O 14040.0 744H2O + 12NaCl 14094.0 伊利石 共计 65H2O 1170.0 62H2O + 1NaCl 1174.5 共计 390H2O 7020.0 372H2O + 6NaCl 7047.0 物质 原子/离子 间距σ/Å 能量ε/(kcal·mol−1) 电荷q/e 矿物
分子桥联O 3.553 2 0.155 4 −1.050 0 羟基O 3.553 2 0.155 4 −0.950 0 有八面体取代的桥联O 3.553 2 0.155 4 −1.180 8 有四面体取代的桥联O 3.553 2 0.155 4 −1.168 8 有取代的羟基O 3.553 2 0.155 4 −1.080 8 羟基H 0.000 0 0.000 0 0.425 0 四面体Si 3.706 4 1.840 5×10−6 2.100 0 四面体Al 3.706 4 1.840 5×10−6 1.575 0 八面体Al 4.794 3 1.329 8×10−6 1.575 0 八面体Mg 5.909 0 9.029 8×10−7 1.360 0 Na 2.637 8 0.130 1 1.000 0 K 3.742 3 0.100 0 1.000 0 水分子 O水 3.553 2 0.155 4 −0.820 0 H水 0.000 0 0.000 0 0.410 0 表 4 泥岩裂隙网络参数
Table 4 Parameters of the mudstone crack network
分形维数 裂隙体积总和/mm3 0% 5% 0% 5% 0 min 1.435 1.459 0.039 0.122 30 min 2.372 2.131 25.085 6.740 240 min 2.440 2.305 52.890 24.105 -
[1] 丁瑜,周忠浩,吴立新,等. 重庆地区红层泥岩球状风化剥落特征及其形成机制[J]. 中国地质灾害与防治学报,2015,26(1):108 − 112. [DING Yu,ZHOU Zhonghao,WU Lixin,et al. Characteristics and mechanism of spheroidal weathering exfoliation of reded mudstone in Chongqing[J]. The Chinese Journal of Geological Hazard and Control,2015,26(1):108 − 112. (in Chinese with English abstract)] DING Yu, ZHOU Zhonghao, WU Lixin, et al. Characteristics and mechanism of spheroidal weathering exfoliation of reded mudstone in Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1): 108 − 112. (in Chinese with English abstract)
[2] 丁秀丽,赵化蒙,黄书岭. 基于吸湿–膨胀分析模型的岩石膨胀变形演化规律研究[J]. 岩石力学与工程学报,2021,40(增刊2):3005 − 3013. [DING Xiuli,ZHAO Huameng,HUANG Shuling. Study on swelling characteristics of mudstones considering adsorption-expansion analysis model[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup 2):3005 − 3013. (in Chinese with English abstract)] DING Xiuli, ZHAO Huameng, HUANG Shuling. Study on swelling characteristics of mudstones considering adsorption-expansion analysis model[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 2): 3005 − 3013. (in Chinese with English abstract)
[3] 丁秀丽,樊炫廷,黄书岭,等. 考虑水化和膨胀作用的泥岩统计损伤模型及验证[J]. 岩石力学与工程学报,2023,42(11):2601 − 2612. [DING Xiuli,FAN Xuanting,HUANG Shuling,et al. Statistical damage model of mudstone considering hydration and swelling and its verification[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(11):2601 − 2612. (in Chinese with English abstract)] DING Xiuli, FAN Xuanting, HUANG Shuling, et al. Statistical damage model of mudstone considering hydration and swelling and its verification[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(11): 2601 − 2612. (in Chinese with English abstract)
[4] 程树范,曾亚武,高睿,等. 干湿作用下受荷石膏质泥岩的不可逆膨胀特征[J]. 岩土力学,2023,44(增刊1):332 − 340. [CHENG Shufan,ZENG Yawu,GAO Rui,et al. Unrecoverable expansion characteristic of confined compressive clay-sulfate rock under drying-wetting cycles[J]. Rock and Soil Mechanics,2023,44(Sup 1):332 − 340. (in Chinese)] CHENG Shufan, ZENG Yawu, GAO Rui, et al. Unrecoverable expansion characteristic of confined compressive clay-sulfate rock under drying-wetting cycles[J]. Rock and Soil Mechanics, 2023, 44(Sup 1): 332 − 340. (in Chinese)
[5] 唐雅婷,谭杰,李长冬,等. 基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探[J]. 地质科技通报,2022,41(6):137 − 148. [TANG Yating,TAN Jie,LI Changdong,et al. Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests[J]. Bulletin of Geological Science and Technology,2022,41(6):137 − 148. (in Chinese with English abstract)] TANG Yating, TAN Jie, LI Changdong, et al. Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 137 − 148. (in Chinese with English abstract)
[6] 王溢禧,赵俊彦,朱兴华,等. 贵德盆地席芨滩巨型滑坡前缘次级滑坡特征及其复活机理分析[J]. 中国地质灾害与防治学报,2024,35(6):1 − 14. [WANG Yixi,ZHAO Junyan,ZHU Xinghua,et al. Analysis on characteristics and reactivation mechanism of secondary landslides in the front part of the Xijitan giant landslide,Guide Basin[J]. The Chinese Journal of Geological Hazard and Control,2024,35(6):1 − 14. (in Chinese with English abstract)] WANG Yixi, ZHAO Junyan, ZHU Xinghua, et al. Analysis on characteristics and reactivation mechanism of secondary landslides in the front part of the Xijitan giant landslide, Guide Basin[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(6): 1 − 14. (in Chinese with English abstract)
[7] 谭银龙,许万忠,曹家菊,等. 基于Midas-GTS的三峡库区金鸡岭滑坡成因机制与稳定性分析[J]. 水文地质工程地质,2023,50(1):113 − 121. [TAN Yinlong,XU Wanzhong,CAO Jiaju,et al. Mechanisms and stability analysis of the Jinjiling landslide in the Three Gorges Reservoir area based on Midas-GTS[J]. Hydrogeology & Engineering Geology,2023,50(1):113 − 121. (in Chinese)] TAN Yinlong, XU Wanzhong, CAO Jiaju, et al. Mechanisms and stability analysis of the Jinjiling landslide in the Three Gorges Reservoir area based on Midas-GTS[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 113 − 121. (in Chinese)
[8] 魏正发,张俊才,曹小岩,等. 青海西宁南北山滑坡、崩塌成因及影响分析[J]. 中国地质灾害与防治学报,2021,32(4):47 − 55. [WEI Zhengfa,ZHANG Juncai,CAO Xiaoyan,et al. Causes and influential factor analysis of landslides and rockfalls in north & south mountain areas of Xining City,Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):47 − 55. (in Chinese with English abstract)] WEI Zhengfa, ZHANG Juncai, CAO Xiaoyan, et al. Causes and influential factor analysis of landslides and rockfalls in north & south mountain areas of Xining City, Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 47 − 55. (in Chinese with English abstract)
[9] 谢洪波,刘正疆,文广超,等. 四川金川-小金公路沿线滑坡、崩塌影响因素分析[J]. 中国地质灾害与防治学报,2021,32(1):10 − 17. [XIE Hongbo,LIU Zhengjiang,WEN Guangchao,et al. Influencing factors of landslides and rockfalls along the Jinchuan-Xiaojin highway in Sichuan[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):10 − 17. (in Chinese with English abstract)] XIE Hongbo, LIU Zhengjiang, WEN Guangchao, et al. Influencing factors of landslides and rockfalls along the Jinchuan-Xiaojin highway in Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 10 − 17. (in Chinese with English abstract)
[10] 吴凯,倪万魁,武鹏. 宁夏隆德县坡面型泥石流形成机理分析[J]. 中国地质灾害与防治学报,2016,27(1):49 − 54. [WU Kai,NI Wankui,WU Peng. Analysis on the formation mechanism of debris flow on slope in Longde county of Ningxia[J]. The Chinese Journal of Geological Hazard and Control,2016,27(1):49 − 54. (in Chinese with English abstract)] WU Kai, NI Wankui, WU Peng. Analysis on the formation mechanism of debris flow on slope in Longde county of Ningxia[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(1): 49 − 54. (in Chinese with English abstract)
[11] 李长冬,谭钦文. 动水驱动型滑坡物理启滑能够预测吗?[J]. 地球科学,2022,47(10):3908 − 3910. [LI Changdong,TAN Qinwen. Can the physical start-up of hydrodynamic landslide be predicted?[J]. Earth Science,2022,47(10):3908 − 3910. (in Chinese)] LI Changdong, TAN Qinwen. Can the physical start-up of hydrodynamic landslide be predicted?[J]. Earth Science, 2022, 47(10): 3908 − 3910. (in Chinese)
[12] 柴肇云,张鹏,郭俊庆,等. 泥质岩膨胀各向异性与循环胀缩特征[J]. 岩土力学,2014,35(2):346 − 350. [CHAI Zhaoyun,ZHANG Peng,GUO Junqing,et al. Swelling anisotropy and cyclic swelling-shrinkage of argillaceous rock[J]. Rock and Soil Mechanics,2014,35(2):346 − 350. (in Chinese with English abstract)] CHAI Zhaoyun, ZHANG Peng, GUO Junqing, et al. Swelling anisotropy and cyclic swelling-shrinkage of argillaceous rock[J]. Rock and Soil Mechanics, 2014, 35(2): 346 − 350. (in Chinese with English abstract)
[13] 赵建磊,王涛,梁昌玉,等. 基于风化红层泥岩蠕变特性的滑坡时效变形分析——以天水雒堡村滑坡为例[J]. 中国地质灾害与防治学报,2023,34(1):30 − 39. [ZHAO Jianlei,WANG Tao,LIANG Changyu,et al. Analysis on time-dependent deformation of landslide based on creep characteristics of weathered red mudstone:A case study of the Luobao landslide in Tianshui of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):30 − 39. (in Chinese with English abstract)] ZHAO Jianlei, WANG Tao, LIANG Changyu, et al. Analysis on time-dependent deformation of landslide based on creep characteristics of weathered red mudstone: A case study of the Luobao landslide in Tianshui of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 30 − 39. (in Chinese with English abstract)
[14] 郭永春,赵峰先,闫圣龙,等. 红层泥岩三轴膨胀力的试验研究[J]. 水文地质工程地质,2022,49(3):87 − 93. [GUO Yongchun,ZHAO Fengxian,YAN Shenglong,et al. An experimental study of the triaxial expansion force of red-bed mudstone[J]. Hydrogeology & Engineering Geology,2022,49(3):87 − 93. (in Chinese with English abstract)] GUO Yongchun, ZHAO Fengxian, YAN Shenglong, et al. An experimental study of the triaxial expansion force of red-bed mudstone[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 87 − 93. (in Chinese with English abstract)
[15] 叶朝良,薛飞招,谢玉芳,等. 炭质泥岩工程力学特性试验研究[J]. 铁道工程学报,2019,36(11):1 − 6. [YE Chaoliang,XUE Feizhao,XIE Yufang,et al. Experimental research on the engineering mechanical properties of carbon mudstone[J]. Journal of Railway Engineering Society,2019,36(11):1 − 6. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1006-2106.2019.11.001 YE Chaoliang, XUE Feizhao, XIE Yufang, et al. Experimental research on the engineering mechanical properties of carbon mudstone[J]. Journal of Railway Engineering Society, 2019, 36(11): 1 − 6. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-2106.2019.11.001
[16] LIU Changdong,CHENG Yi,JIAO Yuyong,et al. Experimental study on the effect of water on mechanical properties of swelling mudstone[J]. Engineering Geology,2021,295:106448. DOI: 10.1016/j.enggeo.2021.106448
[17] 谭罗荣. 关于粘土岩崩解、泥化机理的讨论[J]. 岩土力学,2001,22(1):1 − 5. [TAN Luorong. Discussion on mechanism of disintegration and argillitization of clay-rock[J]. Rock and Soil Mechanics,2001,22(1):1 − 5. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2001.01.001 TAN Luorong. Discussion on mechanism of disintegration and argillitization of clay-rock[J]. Rock and Soil Mechanics, 2001, 22(1): 1 − 5. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2001.01.001
[18] 苏永华,赵明华,刘晓明. 软岩膨胀崩解试验及分形机理[J]. 岩土力学,2005,26(5):728 − 732. [SU Yonghua,ZHAO Minghua,LIU Xiaoming. Research of fractal mechanism for swelling & collapse of soft rock[J]. Rock and Soil Mechanics,2005,26(5):728 − 732. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2005.05.010 SU Yonghua, ZHAO Minghua, LIU Xiaoming. Research of fractal mechanism for swelling & collapse of soft rock[J]. Rock and Soil Mechanics, 2005, 26(5): 728 − 732. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2005.05.010
[19] JIANG Quan,CUI Jie,FENG Xiating,et al. Application of computerized tomographic scanning to the study of water-induced weakening of mudstone[J]. Bulletin of Engineering Geology and the Environment,2014,73(4):1293 − 1301. DOI: 10.1007/s10064-014-0597-5
[20] 孙怡,邓荣贵,文琪鑫,等. 红层泥质岩循环干湿风化下变形特性试验研究[J]. 铁道科学与工程学报,2020,17(1):57 − 65. [SUN Yi,DENG Ronggui,WEN Qixin,et al. Experimental study on deformation characteristics of red-bed mudstone under cyclic dry-wet weathering[J]. Journal of Railway Science and Engineering,2020,17(1):57 − 65. (in Chinese with English abstract)] SUN Yi, DENG Ronggui, WEN Qixin, et al. Experimental study on deformation characteristics of red-bed mudstone under cyclic dry-wet weathering[J]. Journal of Railway Science and Engineering, 2020, 17(1): 57 − 65. (in Chinese with English abstract)
[21] GENG Jishi,SUN Qiang,LI Houen,et al. Deterioration of mudstone exposed to cyclic hygrothermal conditions based on thermoacoustic emission[J]. Construction and Building Materials,2023,386:131581. DOI: 10.1016/j.conbuildmat.2023.131581
[22] 柴肇云,张亚涛,张学尧. 泥岩耐崩解性与矿物组成相关性的试验研究[J]. 煤炭学报,2015,40(5):1188 − 1193. [CHAI Zhaoyun,ZHANG Yatao,ZHANG Xueyao. Experimental investigations on correlation with slake durability and mineral composition of mudstone[J]. Journal of China Coal Society,2015,40(5):1188 − 1193. (in Chinese with English abstract)] CHAI Zhaoyun, ZHANG Yatao, ZHANG Xueyao. Experimental investigations on correlation with slake durability and mineral composition of mudstone[J]. Journal of China Coal Society, 2015, 40(5): 1188 − 1193. (in Chinese with English abstract)
[23] 张娜,王水兵,严成钢,等. 基于核磁共振技术的泥岩水化损伤孔隙结构演化试验[J]. 煤炭学报,2019,44(增刊1):110 − 117. [ZHANG Na,WANG Shuibing,YAN Chenggang,et al. Pore structure evolution of hydration damage of mudstone based on NMR technology[J]. Journal of China Coal Society,2019,44(Sup 1):110 − 117. (in Chinese with English abstract)] ZHANG Na, WANG Shuibing, YAN Chenggang, et al. Pore structure evolution of hydration damage of mudstone based on NMR technology[J]. Journal of China Coal Society, 2019, 44(Sup 1): 110 − 117. (in Chinese with English abstract)
[24] 戴张俊,郭建华,周哲,等. 川中红层高铁路基长时上拱变形反演与预测[J]. 岩石力学与工程学报,2020,39(增刊2):3538 − 3548. [DAI Zhangjun,GUO Jianhua,ZHOU Zhe,et al. Inversion and prediction of long-term uplift deformation of high-speed railway subgrade in central Sichuan red-bed[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup 2):3538 − 3548. (in Chinese with English abstract)] DAI Zhangjun, GUO Jianhua, ZHOU Zhe, et al. Inversion and prediction of long-term uplift deformation of high-speed railway subgrade in central Sichuan red-bed[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 2): 3538 − 3548. (in Chinese with English abstract)
[25] 东南大学,浙江大学,南京工业大学,等. 土力学[M]. 北京:中国电力出版社,2010. [★★★. Soil mechanics[M]. Beijing:China Electric Power Press,2010. (in Chinese)] ★★★. Soil mechanics[M]. Beijing: China Electric Power Press, 2010. (in Chinese)
[26] 刘梅全,蒲晓林,张谦,等. 无机盐作用下伊利石水化特性的分子模拟[J]. 西南石油大学学报(自然科学版),2021,43(4):81 − 89. [LIU Meiquan,PU Xiaolin,ZHANG Qian,et al. Molecular simulation for inorganic salts inhibition mechanism on illite hydration[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2021,43(4):81 − 89. (in Chinese with English abstract)] LIU Meiquan, PU Xiaolin, ZHANG Qian, et al. Molecular simulation for inorganic salts inhibition mechanism on illite hydration[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(4): 81 − 89. (in Chinese with English abstract)
[27] 冯高顺,余飞,戴张俊,等. 川中红层泥岩吸水膨胀时效特征的试验研究[J]. 岩石力学与工程学报,2022,41(增刊1):2780 − 2790. [FENG Gaoshun,YU Fei,DAI Zhangjun,et al. Experimental study on time effect characteristics of red mudstone swelling in Central Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(Sup 1):2780 − 2790. (in Chinese with English abstract)] FENG Gaoshun, YU Fei, DAI Zhangjun, et al. Experimental study on time effect characteristics of red mudstone swelling in Central Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Sup 1): 2780 − 2790. (in Chinese with English abstract)
[28] 李长冬,孟杰,项林语,等. 白鹤滩库首区砂岩结构多尺度演变机制[J]. 地球科学,2023,48(12):4658 − 4667. [LI Changdong,MENG Jie,XIANG Linyu,et al. Multi-scale evolution mechanism of sandstone structure in Baihetan Reservoir head region[J]. Earth Science,2023,48(12):4658 − 4667. (in Chinese with English abstract)] LI Changdong, MENG Jie, XIANG Linyu, et al. Multi-scale evolution mechanism of sandstone structure in Baihetan Reservoir head region[J]. Earth Science, 2023, 48(12): 4658 − 4667. (in Chinese with English abstract)
[29] ZHANG Zhenhua,CUI Wentian,LIU Zhidan,et al. Study on the cracking mechanism of strongly weathered purple mudstone under wetting and drying effect through experiments and molecular dynamics simulation[J]. Construction and Building Materials,2023,403:133104. DOI: 10.1016/j.conbuildmat.2023.133104
[30] 黄宏伟,车平. 泥岩遇水软化微观机理研究[J]. 同济大学学报(自然科学版),2007,35(7):866 − 870. [HUANG Hongwei,CHE Ping. Research on micro-mechanism of softening and argillitization of mudstone[J]. Journal of Tongji University (Natural Science),2007,35(7):866 − 870. (in Chinese with English abstract)] HUANG Hongwei, CHE Ping. Research on micro-mechanism of softening and argillitization of mudstone[J]. Journal of Tongji University (Natural Science), 2007, 35(7): 866 − 870. (in Chinese with English abstract)
[31] 张永安,李峰,陈军. 红层泥岩水岩作用特征研究[J]. 工程地质学报,2008,16(1):22 − 26. [ZHANG Yongan,LI Feng,CHEN Jun. Analysis of the interaction between mudstone and water[J]. Journal of Engineering Geology,2008,16(1):22 − 26. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1004-9665.2008.01.005 ZHANG Yongan, LI Feng, CHEN Jun. Analysis of the interaction between mudstone and water[J]. Journal of Engineering Geology, 2008, 16(1): 22 − 26. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2008.01.005
[32] 谢小帅,陈华松,肖欣宏,等. 水岩耦合下的红层软岩微观结构特征与软化机制研究[J]. 工程地质学报,2019,27(5):966 − 972. [XIE Xiaoshuai,CHEN Huasong,XIAO Xinhong,et al. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology,2019,27(5):966 − 972. (in Chinese with English abstract)] XIE Xiaoshuai, CHEN Huasong, XIAO Xinhong, et al. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology, 2019, 27(5): 966 − 972. (in Chinese with English abstract)
[33] 刘凤云,谢飞,邱恩喜,等. 川西红层软岩崩解演变特征与微观响应机理试验研究[J]. 工程地质学报,2022,30(5):1597 − 1608. [LIU Fengyun,XIE Fei,QIU Enxi,et al. Experimental study on disintegration evolution charact-eristics and microscopic response mechanism of red-bed soft rock in western Sichuan[J]. Journal of Engineering Geology,2022,30(5):1597 − 1608. (in Chinese with English abstract)] LIU Fengyun, XIE Fei, QIU Enxi, et al. Experimental study on disintegration evolution charact-eristics and microscopic response mechanism of red-bed soft rock in western Sichuan[J]. Journal of Engineering Geology, 2022, 30(5): 1597 − 1608. (in Chinese with English abstract)
[34] WU Qiong,LIU Yuxin,TANG Huiming,et al. Experimental study of the influence of wetting and drying cycles on the strength of intact rock samples from a red stratum in the Three Gorges Reservoir area[J]. Engineering Geology,2023,314:107013. DOI: 10.1016/j.enggeo.2023.107013
[35] 唐辉明,李长冬,龚文平,等. 滑坡演化的基本属性与研究途径[J]. 地球科学,2022,47(12):4596 − 4608. [TANG Huiming,LI Changdong,GONG Wenping,et al. Fundamental attribute and research approach of landslide evolution[J]. Earth Science,2022,47(12):4596 − 4608. (in Chinese with English abstract)] TANG Huiming, LI Changdong, GONG Wenping, et al. Fundamental attribute and research approach of landslide evolution[J]. Earth Science, 2022, 47(12): 4596 − 4608. (in Chinese with English abstract)
[36] 孟杰,李长冬,闫盛熠,等. 基于μCT技术的白鹤滩库区致密砂岩孔-裂隙三维成像特征研究[J]. 地质科技通报,2023,42(1):20 − 28. [MENG Jie,LI Changdong,YAN Shengyi,et al. 3D imaging characteristics of pore and fracture of tight sandstone in Baihetan reservoir area based on μCT technology[J]. Bulletin of Geological Science and Technology,2023,42(1):20 − 28. (in Chinese with English abstract)] MENG Jie, LI Changdong, YAN Shengyi, et al. 3D imaging characteristics of pore and fracture of tight sandstone in Baihetan reservoir area based on μCT technology[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 20 − 28. (in Chinese with English abstract)
[37] 王春虹,李明慧,方小敏,等. 柴达木盆地西部SG-1钻孔中伊蒙混层结构特征及环境意义[J]. 第四纪研究,2016,36(4):917 − 925. [WANG Chunhong,LI Minghui,FANG Xiaomin,et al. Structural characteristic of mixed-layer illite/smectite clay minerals of the Sg-1 core in the western Qaidam basin and its environmental significance[J]. Quaternary Sciences,2016,36(4):917 − 925. (in Chinese with English abstract)] DOI: 10.11928/j.issn.1001-7410.2016.04.12 WANG Chunhong, LI Minghui, FANG Xiaomin, et al. Structural characteristic of mixed-layer illite/smectite clay minerals of the Sg-1 core in the western Qaidam basin and its environmental significance[J]. Quaternary Sciences, 2016, 36(4): 917 − 925. (in Chinese with English abstract) DOI: 10.11928/j.issn.1001-7410.2016.04.12
[38] RAHROMOSTAQIM M,SAHIMI M. Molecular dynamics simulation of hydration and swelling of mixed-layer clays[J]. The Journal of Physical Chemistry C,2018,122(26):14631 − 14639. DOI: 10.1021/acs.jpcc.8b03693
[39] GHASEMI M,SHARIFI M. Effects of layer-charge distribution on swelling behavior of mixed-layer illite-montmorillonite clays:A molecular dynamics simulation study[J]. Journal of Molecular Liquids,2021,335:116188. DOI: 10.1016/j.molliq.2021.116188
[40] 魏然,张丽雅,肖智睿,等. 基于MICP技术的膨胀土变形控制机理研究[J]. 岩土工程学报,2023,45(增刊1):92 − 96. [WEI Ran,ZHANG Liya,XIAO Zhirui,et al. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering,2023,45(Sup 1):92 − 96. (in Chinese with English abstract)] WEI Ran, ZHANG Liya, XIAO Zhirui, et al. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(Sup 1): 92 − 96. (in Chinese with English abstract)
[41] SKIPPER N T,SPOSITO G,CHANG F C. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 2. monolayer hydrates[J]. Clays and Clay Minerals,1995,43(3):294 − 303. DOI: 10.1346/CCMN.1995.0430304
[42] DRITS V A,ZVIAGINA B B,MCCARTY D K,et al. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite[J]. American Mineralogist,2010,95(2/3):348 − 361.
[43] CYGAN R T,LIANG Jianjie,KALINICHEV A G. Molecular models of hydroxide,oxyhydroxide,and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B,2004,108(4):1255 − 1266. DOI: 10.1021/jp0363287
[44] 杨微,陈仁朋,康馨. 基于分子动力学模拟技术的黏土矿物微观行为研究应用[J]. 岩土工程学报,2019,41(增刊1):181 − 184. [YANG Wei,CHEN Renpeng,KANG Xin. Application of molecular dynamics simulation method in micro-properties of clay minerals[J]. Chinese Journal of Geotechnical Engineering,2019,41(Sup 1):181 − 184. (in Chinese with English abstract)] YANG Wei, CHEN Renpeng, KANG Xin. Application of molecular dynamics simulation method in micro-properties of clay minerals[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Sup 1): 181 − 184. (in Chinese with English abstract)
[45] 项林语,李长冬,李浩林,等. 基于分子动力学模拟的钙基蒙脱石表面润湿性研究[J]. 科学技术与工程,2022,22(36):15952 − 15958. [XIANG Linyu,LI Changdong,LI Haolin,et al. Surface wettability of Ca-montmorillonite based on molecular dynamics simulation[J]. Science Technology and Engineering,2022,22(36):15952 − 15958. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2022.36.011 XIANG Linyu, LI Changdong, LI Haolin, et al. Surface wettability of Ca-montmorillonite based on molecular dynamics simulation[J]. Science Technology and Engineering, 2022, 22(36): 15952 − 15958. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2022.36.011
[46] FALCONER K. Fractal geometry:mathematical foundations and applications[M]. Third edition. ©2014:John Wiley & Sons Inc. ,2014.
[47] LIU Hailong,CAO Guoxin. Effectiveness of the young-Laplace equation at nanoscale[J]. Scientific Reports,2016,6:23936. DOI: 10.1038/srep23936
-
期刊类型引用(6)
1. 王勇,邢振涛,李锁,闫勇,司甜. 基于SBAS-InSAR和光学遥感的天津市北部山区潜在滑坡识别研究. 灾害学. 2025(01): 30-35 . 百度学术
2. 谢哲,侯照方,谢杰. 基于钻探及室内试验的蒙城县地面沉降量预测. 能源技术与管理. 2025(01): 24-26 . 百度学术
3. 赵志远,葛超英,徐雯佳. 时序InSAR技术对淮扬区域地面沉降监测. 四川地质学报. 2025(01): 162-169 . 百度学术
4. 李幸丽,戴华阳,方军,张豪磊. 基于SBAS-InSAR技术的老采空区注浆充填地表变形时空分布特征分析. 中国矿业. 2024(11): 86-94 . 百度学术
5. 马恩华,李益敏,俞文轩,吕圣彬. 基于InSAR的玉溪市红塔区地面沉降时空分布特征. 人民长江. 2024(S2): 113-120 . 百度学术
6. 李松虎. 亳州市地下水超采现状及存在问题分析. 治淮. 2023(11): 7-9 . 百度学术
其他类型引用(1)